七年级数学上册 第1章 有理数 1.5 有理数的乘除 1.5.1 有理数的乘法学案(新版)沪科版
- 格式:doc
- 大小:94.50 KB
- 文档页数:4
湘教版数学七年级上册1.5.1《有理数的乘法》教学设计1一. 教材分析湘教版数学七年级上册1.5.1《有理数的乘法》是学生在掌握了有理数的概念、加法、减法、除法的基础上,进一步学习有理数的乘法。
本节内容通过实例引入有理数的乘法,引导学生理解并掌握有理数乘法的法则,培养学生运用有理数乘法解决实际问题的能力。
教材内容主要包括有理数乘法法则、乘法的运算律及应用。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念、加法、减法、除法有一定的了解。
但学生在学习过程中,可能对有理数乘法法则的理解和运用还不够熟练,尤其是一些特殊情况需要注意。
因此,在教学过程中,要关注学生的学习需求,针对性地进行讲解和辅导。
三. 教学目标1.知识与技能目标:使学生掌握有理数的乘法法则,能够熟练地进行有理数的乘法运算。
2.过程与方法目标:通过实例分析,让学生经历有理数乘法法则的探究过程,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:有理数的乘法法则。
2.难点:有理数乘法法则在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入有理数乘法,让学生感受数学与生活的紧密联系。
2.引导发现法:教师引导学生发现问题,分析问题,从而得出有理数乘法法则。
3.实践操作法:让学生通过动手操作,加深对有理数乘法法则的理解。
4.小组合作学习:培养学生团队合作精神,提高学生解决问题的能力。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生更好地理解有理数乘法。
2.教学素材:准备一些实际问题,用于引导学生运用有理数乘法法则解决问题。
3.练习题:设计一些有梯度的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入有理数乘法,如:“小明买了一本书,原价是15元,他给了老板20元,找回多少钱?”让学生思考并解答,从而引出有理数乘法。
第一章有理数1.5 有理数的乘除1.5.1 有理数的乘法【知识与技能】(1)理解有理数的乘法法则;(2)能根据有理数的乘法法则进行有理数的乘法运算.【过程与方法】经历探索有理数的乘法法则的过程,发展观察、猜想、验证、归纳的能力.【情感态度与价值观】培养学生的语言表达能力,调动学生学习的积极性,培养学生学习数学的兴趣.有理数的乘法法则.有理数的乘法法则的运用.多媒体课件由于长期干旱,水库放水抗旱,水库的水位每天下降2米,已经放了3天,问:水位下降了多少米?你能写出算式吗?学生思考,得出算式:(-2)×3.观察所列的式子,涉及有理数的乘法运算,正是我们今天需要讨论的问题.一、思考探究,获取新知一、探索有理数的乘法.(1)观察下面的乘法算式,你能发现什么规律?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一个乘数逐次递减1,.(2)要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=,3×(-3)=.(3)观察下面的算式,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.规律:.(4)要使(3)中的规律在引入负数后仍然成立,那么应有:(-1)×3=,(-2)×3=,(-3)×3=.二、总结有理数的乘法法则.以小组为单位对以上问题从符号和绝对值两个角度进行观察、归纳,得出正数乘正数,正数乘负数,负数乘负数,0乘数的规律.学生讨论,师生共同归纳:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.三、总结倒数的概念.计算并观察学生自己计算.教师提问:观察这两个式子的计算结果,你能发现什么规律?肯定学生给出的合理答案,教师总结:乘积是1的两个数互为倒数.二、典例精析,掌握新知例1计算例2用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1 km气温的变化量为-6℃,攀登3 km后,气温有什么变化?【解】(-6)×3=-18(℃).答:气温下降18℃.1.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.2.乘积是1的两个数互为倒数.教材P37习题1.4第1,2,3题。
1.5有理数的乘除
学习目标:1.熟悉探索有理数乘法法则的过程;
2.会进行有理数的乘法运算;
3.并能灵活运用乘法运算律进行有理数的乘法运算,使计算简便;
4.培养自己观察、归纳、猜测、概括等能力.
学习重点:有理数的乘法运算.
学习难点:有理数乘法法则的理解.
☆预习导航☆
一、链接:
1.请你计算:(+2)×(+3)=____ ,(+2)×0=_____ .
2.想一想如果我们的乘法运算中遇到负数相乘该怎么运算?
二、导读:
阅读课本,并完成以下问题:
1.通过阅读问题1,你对两个数中有一个数是负数的乘法有什么发现?
2.通过阅读问题2,你对两个负数相乘又有什么发现?
3.小学所学的倒数概念对有理数同样适用吗?
4.通过阅读问题3,你对多个有理数相乘又有什么发现?
三、盘点:
1.有理数的乘法法则:两数相乘,同号得,异号得,并把相乘;
任何数与相乘得零.
2.在有理数范围内,如果两个数的乘积为,我们称这两个数互为倒数.
3.几个数相乘,有一个因数为0,•则积为.
4.几个不为0的数相乘时,积的符号是由决定;当负因数有奇数
个时,积为;当负因数有偶数个时,积为.
☆合作探究☆
1.下列说法中,正确的是教学思路学生纠错
A .同号两数相乘,取原来的符号
B .两数相乘,积大于任何一个因数
C .一个数与0相乘得原数
D .一个数与-1相乘,得原数的相反数
2.在-2,3,4,-5这四个数中,任取两个数相乘,所得的积最大是_______,最小是_______.
3.计算 ① (-34)×(-4
3
) ②(-5)×(-6)×(-2)
③()()()31
0.5181163
-⨯-⨯⨯-⨯ ④
(-8)×(-12)×(-0.125)×(-13)×(-0.001)
☆ 达标检测 ☆
1.
如
果
三
个
有
理
数
的
积
为
,
那
么
( )
A .这三个数均为0
B .这三个数中有两个为0
C .这三个数中至少有一个为0
D .这三个数中至多有一个为0.
2.如果两个有理数在数轴上所对应的点在原点的同侧,那么这两个有理数的积 ( )
A .为正数
B .为负数
C .可能为正数,也可能为负数
D .为零
教学思路 学生纠错
3.计算:
(1)(-6)×(-4) (2)(()()54310.2565⎛
⎫-⨯⨯-⨯- ⎪⎝⎭
(3)-1×302×(-xx )×0 (4)(-6)×(-2.5)×(+2)×(-2
1)
欢迎您的下载,资料仅供参考!。