(通用版)2018年高考数学二轮复习第一部分专题五解析几何教学案文
- 格式:doc
- 大小:1.25 MB
- 文档页数:80
专题五解析几何[研高考·明考点][析考情·明重点]第一讲 小题考法——直线与圆[典例感悟][典例] (1)已知直线l 1:x +2ay -1=0,l 2:(a +1)x -ay =0,若l 1∥l 2,则实数a 的值为( )A .-32B .0C .-32或0D .2(2)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12(3)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________________________________________________________________.[解析] (1)由l 1∥l 2得1×(-a )=2a (a +1),即2a 2+3a =0,解得a =0或a =-32.经检验,当a =0或a =-32时均有l 1∥l 2,故选C.(2)易知BC 所在直线的方程是x +y =1,由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即当a =0时,易得b =1-22,故b 的取值范围是⎝⎛⎭⎪⎫1-22,12. (3)由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2的交点为(1,2).当所求直线斜率不存在,即直线方程为x =1时,显然不满足题意.当所求直线斜率存在时,设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵点P (0,4)到直线的距离为2, ∴2=|-2-k |1+k 2,∴k =0或k =43. ∴直线方程为y =2或4x -3y +2=0.[答案] (1)C (2)B (3)y =2或4x -3y +2=0[方法技巧]直线方程问题的2个关注点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)求直线方程时应根据条件选择合适的方程形式,同时要考虑直线斜率不存在的情况是否符合题意.[演练冲关]1.已知直线l 的倾斜角为π4,直线l 1经过点A (3,2),B (-a,1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =( )A .-4B .-2C .0D .2解析:选B 由题知,直线l 的斜率为1,则直线l 1的斜率为-1,所以2-13+a =-1,所以a=-4.又l 1∥l 2,所以-2b=-1,b =2,所以a +b =-4+2=-2,故选B.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 由l 1∥l 2,得(a -2)a =1×3,且a ×2a ≠3×6,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪6-2312+-2=823. 3.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:5[典例感悟][典例] (1)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43(2)(2015·全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为______________.(3)(2017·广州模拟)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是______________.[解析] (1)设△ABC 外接圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的一般方程为x 2+y 2-2x -433y +1=0,圆心为⎝ ⎛⎭⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎪⎫2332=213. (2)由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.(3)抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3,即x -y +3=0相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.[答案] (1)B (2)⎝ ⎛⎭⎪⎫x -322+y 2=254 (3)x 2+(y -1)2=2[方法技巧] 圆的方程的2种求法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.[演练冲关]1.(2017·长春质检)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( )A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4解析:选D 圆与圆关于直线对称,则圆的半径相同,只需求圆心(2,0)关于直线y =33x 对称的点的坐标即可.设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2×33=-1,b +02=33×a +22,解得⎩⎨⎧a =1,b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4,故选D.2.(2017·北京西城区模拟)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 根据题意直线x -y +1=0与x 轴的交点为(-1,0),即圆心为(-1,0).因为圆C 与直线x +y +3=0相切,所以半径r =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A.3.(2017·惠州调研)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.解析:设圆心坐标为(a ,b ),半径为r .由已知⎩⎪⎨⎪⎧a -2b =0,b >0,又圆心(a ,b )到y 轴、x 轴的距离分别为|a |,|b |,所以|a |=r ,|b |2+3=r 2.综上,解得a =2,b =1,r =2,所以圆心坐标为(2,1),圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4[典例感悟][典例] (1)(2017·昆明模拟)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离(2)(2016·全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.(3)(2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.[解析] (1)由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,即圆M 的圆心为(0,2),半径为2.又圆N 的圆心为(1,1),半径为1,则圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,半径之和为3,1<2<3,故两圆相交.(2)圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以r =a 2+2=2,所以圆C 的面积为π×22=4π.(3)如图所示,∵直线AB 的方程为x -3y +6=0,∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt△BOD 中,∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. [答案] (1)B (2)4π (3)4[方法技巧]1.直线(圆)与圆位置关系问题的求解思路(1)研究直线与圆的位置关系主要通过将圆心到直线的距离同半径做比较实现,两圆位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.2.直线截圆所得弦长的求解方法(1)根据平面几何知识构建直角三角形,把弦长用圆的半径和圆心到直线的距离表示,即l =2r 2-d 2(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离).(2)根据公式:l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率).(3)求出交点坐标,用两点间的距离公式求解.[演练冲关]1.(2017·南昌模拟)如图,在平面直角坐标系xOy 中,直线y =2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB =( )A.510 B .-510C.910D .-910解析:选D 因为圆x 2+y 2=4的圆心为O (0,0),半径为2,所以圆心O 到直线y =2x +1的距离d =|2×0-0+1|22+-2=15,所以弦长|AB |=222-⎝⎛⎭⎪⎫152=2195. 在△AOB 中,由余弦定理得cos ∠AOB =|OA |2+|OB |2-|AB |22|OA |·|OB |=4+4-4×1952×2×2=-910.2.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k =________.解析:如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为C (0,1),半径为r =1,四边形PACB 的面积S =2S △PBC ,所以若四边形PACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ·|PB |,即|PB |的最小值为2,此时|PC |最小,|PC |为圆心到直线kx +y +4=0的距离d ,则d =|5|k 2+1=12+22=5,化简得k 2=4,因为k >0,所以k =2.答案:23.(2017·云南调研)已知动圆C 过A (4,0),B (0,-2)两点,过点M (1,-2)的直线交圆C 于E ,F 两点,当圆C 的面积最小时,|EF |的最小值为________.解析:依题意得,动圆C 的半径不小于12|AB |=5,即当圆C 的面积最小时,AB 是圆C 的一条直径,此时圆心C 是线段AB 的中点,即点C (2,-1),又点M 的坐标为(1,-2),且|CM |=-2+-1+2=2<5,所以点M 位于圆C 内,所以当点M 为线段EF 的中点时,|EF |最小,其最小值为252-22=2 3.答案:2 3[必备知能·自主补缺] (一) 主干知识要记牢 1.直线方程的五种形式2.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B 2.(2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(圆的直径的两端点是A (x 1,y 1),B (x 2,y 2)).4.直线与圆位置关系的判定方法(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切.(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交,d >r ⇔相离,d =r ⇔相切.5.圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则 (1)当|O 1O 2|>r 1+r 2时,两圆外离; (2)当|O 1O 2|=r 1+r 2时,两圆外切;(3)当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交; (4)当|O 1O 2|=|r 1-r 2|时,两圆内切; (5)当0≤|O 1O 2|<|r 1-r 2|时,两圆内含. (二) 二级结论要用好1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0; (3)相交⇔A 1B 2-A 2B 1≠0; (4)垂直⇔A 1A 2+B 1B 2=0.[针对练1] 若直线l 1:mx +y +8=0与l 2:4x +(m -5)y +2m =0垂直,则m =________. 解析:∵l 1⊥l 2,∴4m +(m -5)=0,∴m =1. 答案:12.若点P (x 0,y 0)在圆x 2+y 2=r 2上,则圆过该点的切线方程为:x 0x +y 0y =r 2. [针对练2] 过点(1,3)且与圆x 2+y 2=4相切的直线l 的方程为____________. 解析:∵点(1,3)在圆x 2+y 2=4上, ∴切线方程为x +3y =4,即x +3y -4=0. 答案:x +3y -4=0 (三) 易错易混要明了1.易忽视直线方程的几种形式的限制条件,如根据直线在两坐标轴上的截距相等设方程时,忽视截距为0的情况,直接设为x a +y a=1;再如,忽视斜率不存在的情况直接将过定点P (x 0,y 0)的直线设为y -y 0=k (x -x 0)等.[针对练3] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为__________________.解析:当截距为0时,直线方程为5x -y =0;当截距不为0时,设直线方程为x a +y a=1,代入P (1,5),得a =6,∴直线方程为x +y -6=0.答案:5x -y =0或x +y -6=02.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.如果利用直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0垂直的充要条件A 1A 2+B 1B 2=0,就可以避免讨论.[针对练4] 已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:∵l 1⊥l 2,∴(t +2)(t -1)+(1-t )(2t +3)=0,解得t =1或t =-1. 答案:-1或13.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式|C 1-C 2|A 2+B 2,导致错解.[针对练5] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 解析:把直线6x +4y +5=0化为3x +2y +52=0,故两平行线间的距离d =⎪⎪⎪⎪⎪⎪-5-5232+22=151326.答案:1513264.易误认为两圆相切即为两圆外切,忽视两圆内切的情况导致漏解.[针对练6] 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0相切,则m =________.解析:由x 2+y 2-2x -6y -1=0,得(x -1)2+(y -3)2=11,由x 2+y 2-10x -12y +m =0,得(x -5)2+(y -6)2=61-m .当两圆外切时,有-2+-2=61-m +11,解得m =25+1011;当两圆内切时,有-2+-2=||61-m -11,解得m =25-1011.答案:25±1011[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( )A .0 B. 3 C.33或0 D.3或0解析:选D 因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k 2=1,解得k =0或k =3,故选D.2.(2017·陕西质检)圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2解析:选A 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1.3.(2017·洛阳统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件. 4.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( )A .2个B .3个C .4个D .6个解析:选C 三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:选C 由(a -1)x -y +a +1=0得(x +1)a -(x +y -1)=0,由x +1=0且x +y -1=0,解得x =-1,y =2,即该直线恒过点(-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.6.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2 B .(x -2)2+(y +2)2=2C .(x +2)2+(y +2)2=2 D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=(32)2,过圆心(6,6)作直线x +y -2=0的垂线,垂线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上,又圆心(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为52-322=2,圆心坐标为(2,2),所以标准方程为(x -2)2+(y -2)2=2.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎫y ±332=43B .x 2+⎝ ⎛⎭⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎫x ±332+y 2=43 D.⎝⎛⎭⎪⎫x ±332+y 2=13解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎫±33,0,r 2=|AC |2=12+⎝ ⎛⎭⎪⎫±332=43.所以圆的方程为⎝⎛⎭⎪⎫x ±332+y 2=43,故选C.8.(2017·合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 由题可知,圆心C (1,1),半径r =2.当直线l 的斜率不存在时,直线方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B.9.(2018届高三·湖北七市(州)联考)关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心;②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;④曲线C 所围成图形的面积S 满足π<S <4. 上述命题中,真命题的个数是( ) A .4B .3C .2D .1解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,则可以确定曲线关于x 轴,y 轴对称,关于原点对称,故①是真命题.②由x 2+y 4=1得0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2·y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②是真命题.③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③是真命题.④由③知,π×12<S <2×2,即π<S <4,故④是真命题.综上,真命题的个数为4.10.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,解得a =-1,∴A (-4,-1),|AC |2=(-4-2)2+(-1-1)2=40.又r =2,∴|AB |2=40-4=36,即|AB |=6.11.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R)与C 2:x 2+y 2-2by -1+b 2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( )A .3 2B .-3 2C .6D .-6解析:选B 两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4,圆C 2:x 2+(y -b )2=1,所以C 1(-a,0),C 2(0,b ),||C 1C 2=a 2+b 2=2+1=3,即a 2+b 2=9.由⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时等号成立.所以a +b 的最小值为-3 2.12.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y-7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.二、填空题13.(2017·河北调研)若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________.解析:由题意得直线l 1和l 2截圆所得弦所对的圆心角相等,均为90°,因此圆心到两直线的距离均为22r =2,即|1-2+a |2=|1-2+b |2=2,得a 2+b 2=(22+1)2+(1-22)2=18. 答案:1814.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=22+52=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=915.设直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程为____________.解析:因为直线l 恒过定点(0,1),由x 2+y 2-2x -3=0变形为(x -1)2+y 2=4,易知点(0,1)在圆(x -1)2+y 2=4的内部,依题意,k ·1-00-1=-1,即k =1,所以直线l 的方程为y =x +1.答案:y =x +116.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝ ⎛⎭⎪⎫-k2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的最大距离为322,所以P 到直线AB 的最大距离,即△PAB 的AB 边上的高的最大值为1+322,又|AB |=22,所以△PAB 面积的最大值为12×22×⎝⎛⎭⎪⎫1+322=3+ 2.答案:3+ 2B 组——能力小题保分练1.(2017·石家庄模拟)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为( )A.12 B.32C.34D.34解析:选 D 因为圆心到直线的距离d =24a 2+b2,则直线被圆截得的弦长L =2r 2-d 2=24-44a 2+b 2=23,所以4a 2+b 2=4.则t =a 1+2b 2=122·(22a )·1+2b 2≤122×12×[]2a2+1+2b22=142·[8a 2+1+2(4-4a 2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,此时a =34,故选D.2.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形AOB 的三个顶点,其中OA =OB =2,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,即|k |2=1,解得k =2;当k >2时,|OA ―→+OB ―→|>33|AB ―→|,又直线与圆x 2+y 2=4有两个不同的交点,故|k |2<2,即k <2 2.综上,k 的取值范围为[2,22).3.(2018届高三·湖北七市(州)联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选 C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|12+32=2.当2-r >1,即0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当2-r =1,即r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当0<2-r <1,即1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当2-r =0,即r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当0<r -2<1,即2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1; 当r -2=1,即r =3时,直线与圆相交,此时圆上有3个点到直线的距离为1; 当r -2>1,即r >3时,直线与圆相交,此时圆上有4个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1;由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3.故p 是q 的充要条件,故选C.4.(2018届高三·广东五校联考)已知圆C :x 2+y 2+2x -4y +1=0的圆心在直线ax -by +1=0上,则ab 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,14 B.⎝⎛⎦⎥⎤-∞,18C.⎝ ⎛⎦⎥⎤0,14D.⎝ ⎛⎦⎥⎤0,18 解析:选B 把圆的方程化为标准方程得,(x +1)2+(y -2)2=4,∴圆心坐标为(-1,2),根据题意可知,圆心在直线ax -by +1=0上,把圆心坐标代入直线方程得,-a -2b +1=0,即a =1-2b ,则ab =(1-2b )b =-2b 2+b =-2⎝ ⎛⎭⎪⎫b -142+18≤18,当b =14时,ab 有最大值18,故ab 的取值范围为⎝⎛⎦⎥⎤-∞,18.5.已知点A (3,0),若圆C :(x -t )2+(y -2t +4)2=1上存在点P ,使|PA |=2|PO |,其中O 为坐标原点,则圆心C 的横坐标t 的取值范围为________.解析:设点P (x ,y ),因为|PA |=2|PO |,所以x -2+y 2=2x 2+y 2,化简得(x +1)2+y 2=4,所以点P 在以M (-1,0)为圆心,2为半径的圆上.由题意知,点P (x ,y )在圆C 上,所以圆C 与圆M 有公共点,则1≤|CM |≤3,即1≤t +2+t -2≤3,1≤5t 2-14t +17≤9.不等式5t 2-14t +16≥0的解集为R ;由5t 2-14t +8≤0,得45≤t ≤2.所以圆心C 的横坐标t 的取值范围为⎣⎢⎡⎦⎥⎤45,2.答案:⎣⎢⎡⎦⎥⎤45,2 6.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].答案:[-1,1]第二讲 小题考法——圆锥曲线的方程与性质[典例感悟][典例] (1)(2017·合肥模拟)已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为( )A .1 B. 3 C. 5 D.12(2)在平面直角坐标系中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 1上一点M 到点Q (0,3)的距离的最大值为4.则椭圆C 1的方程为( )A .x 2+y 24=1B.x 24+y 2=1 C.x 216+y 24=1 D.x 24+y 216=1 (3)(2017·全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.[解析] (1)在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A.(2)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b2=1,即x 2+4y 2=4b 2.设M (x ,y ),则|MQ |=x -2+y -2=4b 2-4y 2+y -2=-3y 2-6y +4b 2+9=-y +2+4b 2+12.所以当y =-1时,|MQ |有最大值,为4b 2+12=4,解得b 2=1,则a 2=4,所以椭圆C 1的方程是x 24+y 2=1.故选B.(3)法一:依题意,抛物线C :y 2=8x 的焦点F (2,0),因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,设M (a ,b )(b >0),所以a =1,b =22,所以N (0,42),|FN |=4+32=6.法二:如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6. [答案] (1)A (2)B (3)6[方法技巧]求解圆锥曲线标准方程的思路方法(1)定型,即指定类型,也就是确定圆锥曲线的类型、焦点位置,从而设出标准方程. (2)计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2px 或x 2=2py (p ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[演练冲关]1.(2017·长沙模拟)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1B.x 28+y 26=1C.x 22+y 2=1 D.x 24+y 2=1 解析:选A 由题可知椭圆的焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),而抛物线y 2=-4x的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.故选A.2.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 解析:选B 根据双曲线C 的渐近线方程为y =52x ,可知b a =52.① 又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.3.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=________.解析:法一:令l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,所以|PF |=|PA |=y 0+1=43.法二:如图所示,∠AFO =30°,∴∠PAF =30°,又|PA |=|PF |,∴△APF 为顶角∠APF =120°的等腰三角形,而|AF |=2cos 30°=433,∴|PF |=|AF |3=43.答案:43[典例感悟][典例] (1)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)(2017·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] (1)由题,不妨设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5, ∴p =4(负值舍去),∴C 的焦点到准线的距离为4.(2)双曲线的右顶点为A (a,0),一条渐近线的方程为y =bax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=ab c .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=abc ,即3b 2=ab c ,所以e =23=233. [答案] (1)B (2)233[方法技巧]1.椭圆、双曲线离心率(离心率范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求c a的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值;②利用渐近线方程设所求双曲线的方程.[演练冲关]1.(2017·成都模拟)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P .若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( )A. 2B.-3+624 C. 3 D.3+627解析:选D 如图,在圆O 中,F 1F 2为直径,P 是圆O 上一点,所以PF 1⊥PF 2,设以OF 1为直径的圆的圆心为M ,且圆M 与直线PF 2相切于点Q ,则M ⎝ ⎛⎭⎪⎫-c 2,0,MQ ⊥PF 2,所以PF 1∥MQ ,所以|MQ ||PF 1|=|MF 2||F 1F 2|,即c2|PF 1|=3c22c ,可得|PF 1|=2c 3,所以|PF 2|=2c 3+2a ,又|PF 1|2+|PF 2|2=|F 1F 2|2,所以4c 29+⎝ ⎛⎭⎪⎫2c 3+2a 2=4c 2,即7e 2-6e -9=0,解得e =3+627,e =3-627(舍去).故选D. 2.(2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0, 3 ]∪[9,+∞)C .(0,1]∪[4,+∞)D.(0, 3 ]∪[4,+∞)解析:选A 当0<m <3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB =120°,则ab≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB=120°,则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞).3.(2017·贵阳检测)如图,抛物线y 2=4x 的一条弦AB 经过焦点F ,取线段OB 的中点D ,延长OA 至点C ,使|OA |=|AC |,过点C ,D 作y 轴的垂线,垂足分别为点E ,G ,则|EG |的最小值为________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则y 3=2y 1,y 4=12y 2,|EG |=y 4-y 3=12y 2-2y 1.因为AB 为抛物线y 2=4x 的焦点弦,所以y 1y 2=-4,所以|EG |=12y 2-2×⎝ ⎛⎭⎪⎫-4y 2=12y 2+8y 2≥212y 2×8y 2=4,当且仅当12y 2=8y 2,即y 2=4时取等号,所以|EG |的最小值为4.答案:4[典例感悟][典例] (1)(2018届高三·河南九校联考)已知直线y =kx +t 与圆x 2+(y +1)2=1相切且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是( )A .(-∞,-3)∪(0,+∞)B .(-∞,-2)∪(0,+∞)C .(-3,0)D .(-2,0)(2)(2017·宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率为( )A.53 B.54 C.53或2516D.53或54 [解析] (1)因为直线与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .将直线方程代入抛物线方程并整理得x 2-4kx -4t =0,于是Δ=16k 2+16t =16(t 2+2t )+16t >0,解得t >0或t <-3.故选A.(2)圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径r=1.当m <0,n >0时,由mx 2+ny 2=1得y 21n-x 2-1m=1,则双曲线的焦点在y 轴上,不妨设双曲线与圆相切的渐近线方程为y =a b x ,即ax -by =0,则圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,即8a 2-6ab =0,则b =43a ,平方得b 2=169a 2=c 2-a 2,即c 2=259a 2,则c =53a ,离心率e =c a =53;当m >0,n <0时,同理可得e =54,故选D.[答案] (1)A (2)D[方法技巧]处理圆锥曲线与圆相结合问题的注意点(1)注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.(2)注意圆与特殊线的位置关系,如圆的直径与椭圆长轴(短轴),与双曲线的实轴(虚轴)的关系;圆与过定点的直线、双曲线的渐近线、抛物线的准线的位置关系等.[演练冲关]1.(2018届高三·广西三市联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53C .2D .3解析:选B 取线段PF1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1,∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a ,∵|PF 2|=|F 1F 2|=2c ,∴|PF 1|=2a +2c ,∴|PA |=12·|PF 1|=a +c ,则在Rt△APF 2中,4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.2.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,则直线OM 与直线l 的斜率之积为( )A .-9B .-92C .-19D .-3解析:选A 设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9bk 2+9,故直线OM 的斜率k OM =y M x M=-9k,所以k OM ·k =-9,即直线OM 与直线l 的斜率之积为-9.[必备知能·自主补缺] (一) 主干知识要记牢圆锥曲线的定义、标准方程和性质(二) 二级结论要用好 1.椭圆焦点三角形的3个规律设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是|PF 1|=a +ex 0,|PF 2|=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .2.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a -y 2b=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式S =c |y 0|=12r 1r 2sin θ=b 2tanθ2(其中|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ).(2)焦半径若P 在右支上,|PF 1|=ex 0+a ,|PF 2|=ex 0-a ;若P 在左支上,|PF 1|=-ex 0-a ,|PF 2|=-ex 0+a .3.抛物线y 2=2px (p >0)焦点弦AB 的4个结论 (1)x A ·x B =p 24;(2)y A ·y B =-p 2; (3)|AB |=2psin 2α(α是直线AB 的倾斜角); (4)|AB |=x A +x B +p . 4.圆锥曲线的通径 (1)椭圆通径长为2b2a;(2)双曲线通径长为2b2a;(3)抛物线通径长为2p . 5.圆锥曲线中的最值(1)椭圆上两点间的最大距离为2a (长轴长). (2)双曲线上两点间的最小距离为2a (实轴长).(3)椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离.(4)抛物线上的点中顶点到抛物线准线的距离最短. (三) 易错易混要明了1.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.[针对练1] △ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,设内切圆的圆心为P ,过点P 作AC ,BC 的垂线PD ,PF ,垂足分别为D ,F ,则|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,∴|CA |-|CB |=|AD |-|BF |=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x >3).。
§6.3 解析几何的综合问题考点核心整合解析几何考查的重点是圆锥曲线,在历年的高考中,占解析几何总分值的四分之三以上.解析几何的综合问题也主要以圆锥曲线为载体,通常从以下几个方面进行考查:位置问题.直线与圆锥曲线的位置关系问题,是解析几何研究的重点内容.常涉及直线与曲线交点的判断、弦长、面积、对称、共线等问题.其解法是充分利用方程思想以及韦达定理.最值问题.最值问题是从动态角度去研究解析几何中的数学问题的主要内容.其解法是设变量、建立目标函数、转化为求函数的最值.范围问题.范围问题主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.以上这些问题由于综合性较强,所以备受命题者的青睐.常用来综合考查学生在数形结合、等价转化、分类讨论、逻辑推理等多方面的能力.考题名师诠释【例1】(2006浙江高考,5理)若双曲线mx 2-y 2=1上的点到左准线的距离是到左焦点距离的31,则m=( ) A.21 B.23 C.81 D.89 解析:∵到准线的距离是到左焦点距离的31,∴e=3,即mm 1 =3,∴m=81. 答案:C 【例2】已知双曲线22a x -22by =1(a >0,b >0)的左、右两个焦点分别为F 1、F 2,P 为双曲线左支上的一点,P 到左准线的距离为d.(1)若双曲线的一条渐近线是y=3x,问是否存在点P 使d,|PF 1|,|PF 2|成等比数列?若存在,求出P 点坐标,若不存在,说明理由;(2)在已知双曲线的左支上使d,|PF 1|,|PF 2|成等比数列的点P 存在时,求离心率e 的取值范围.解:(1)法一:由y=3x 是渐近线,得ab =3,c 2=a 2+b 2=4a 2,∴e=2,设P 点的坐标为(x 0,y 0),由双曲线的第二定义,得|PF 1|=ed=2d,|PF 2|=e(c a 2-x 0),d=-ca 2-x 0, ∴e 2d 2=d ·e(c a 2-x 0),化简得2(-2a -x 0)=2a -x 0 解得x 0=-23a <-a,∴点P 存在. 法二:同解法一得,|PF 1|=ed=2d,∴|PF 2|=2a+|PF 1|=2a+2d,又∵|PF 1|2=d ·|PF 2|,∴有4d 2=d ·(2a+2d)解得d=a,又∵d min =-c a 2-(-a)=a-c a 2=a-a a 22=2a ,d=a >2a , ∴存在点P ,使d,|PF 1|,|PF 2|成等比数列.(2)法一:由(1)得d=-c a 2-x 0,|PF 1|2=d ·|PF 2|∴有e 2d 2=d ·e(c a 2-x 0),∴ed=ca 2-x 0 即e(-c a 2-x 0)=(ca 2-x 0), 解得x 0=)1()1(e e e a -+≤-a,∴1<e ≤1+2. 法二:由||||12PF PF =d PF ||1=e,可得|PF 2|=e |PF 1|, 又|PF 2|-|PF 1|=2a,∴|PF 1|=12-e a ,|PF 2|=12-e ae . ∵|PF 1|+|PF 2|≥|F 1F 2|,而|F 1F 2|=2c=2ea, ∴1212-+-e ae e a ≥2ea, 又∵a >0,e >1,∴e 2-2e-1≤0,解得1<e ≤1+2.法三:由(1)得e 2d 2=d(2a+ed).解得d=e e a -22≥d min =-ca 2+a, ∴有e 2-2e-1≤0,解得1<e ≤1+2.点评:确定某几何量的值域或取值范围,一般需要建立起方程或不等式,因此,要树立用方程和不等式的解题思路.与圆锥曲线有关的参数范围问题的讨论常用的两种方法:①不等式(组)求解法;②函数值域求解法.本题要注意双曲线的离心率e >1,否则所得答案就不完整.【例3】(2004湖北黄冈、荆州高三联考)已知动点P 与双曲线22x -32y =1的两个焦点F 1、F 2的距离之和为定值2a(a >5),且cos ∠F 1PF 2的最小值为-91. (1)求动点P 的轨迹方程;(2)若已知D(0,3),M 、N 在动点P 的轨迹上,且DM =λDN ,求实数λ的取值范围.解:(1)由题意知c 2=5,设|PF 1|+|PF 2|=2a(a >5),由余弦定理得cos ∠F 1PF 2 =||||102||||2||||||212212212221PF PF a PF PF F F PF PF -=-+-1. 又|PF 1|·|PF 2|≤(2||||21PF PF +)2=a 2, 当且仅当|PF 1|=|PF 2|时,|PF 1|·|PF 2|取最大值,此时cos ∠F 1PF 2取最小值22102a a --1, 令22102aa --1=-91⇒a 2=9. ∵c=5,∴b 2=4.故所求点P 的轨迹方程为92x +42y =1. (2)设N(s,t)、M(x,y),则由=λDN ,可得(x,y-3)=λ(s,t-3),故x=λs,y=3+λ(t-3),∴M 、N 在动点P 的轨迹上.故4922t s +=1且4)33(9)(22λλλ-++t s =1. 消去s 得4)33(222t t λλλ--+=1-λ2, 解得t=λλ6513-.又|t|≤2, ∴|λλ6513-|≤2.解得51≤λ≤5. 故λ的取值范围是[51,5]. 评述:本题考查了解析几何的基本方法以及解析几何与三角、不等式、向量的联系,是在知识的交汇点处命题的充分体现,体现了高考命题的方向.【例4】(2004上海高考,22)设P 1(x 1,y 1),P 2(x 2,y 2),…,P n (x n ,y n )(n ≥3,n ∈N )是二次曲线C 上的点,且a 1=|OP 1|2,a 2=|OP 2|2,…,a n =|OP n |2构成了一个公差为d(d ≠0)的等差数列,其中O 是坐标原点,记S n =a 1+a 2+…+a n .(1)若C 的方程为2510022y x +=1,n=3,点P 1(10,0)且S 3=255,求点P 3的坐标;(只需写出一个) (2)若C 的方程为22a x +22by =1(a >b >0),点P 1(a,0),对于给定的自然数n ,当公差d 变化时,求S n 的最小值.(1)解:a 1=|OP 1|2=100,由S 3=23(a 1+a 3)=255,得 a 3=|OP 3|2=70.由⎪⎩⎪⎨⎧=+=+,70,12510023232323y x y x 解得⎪⎩⎪⎨⎧==.10,602323y x ∴点P 3的坐标为(215,10).(2)解法一:原点O 到二次曲线C:22a x +22by =1(a >b >0)上各点的最小距离为b ,最大距离为a.∵a 1=|OP 1|2=a 2,∴d <0,且a n =|OP n |2=a 2+(n-1)d ≥b 2. ∴122--n a b ≤d <0. ∵n ≥3,2)1(-n n >0, ∴S n =na 2+2)1(-n n d 在[122--n a b ,0]上递增. 故S n 的最小值为na 2+2)1(-n n ×122--n a b =2)(22b a n +. 解法二:对每个自然数k(2≤k ≤n),由⎪⎩⎪⎨⎧=+-+=+,1,)1(2222222b y ax d k a y x k k k k 解得y k 2=222)1(b a d k b ---.∵0<y k 2≤b 2,得122--k a b ≤d <0, ∴122--n a b ≤d <0. 以下与解法一相同.评述:本题主要考查了解析几何、数列、函数、不等式等基本知识,具有一定的综合性,是考查学生良好的数学思维和分析问题、解决问题能力的一道好题.链接·拓展请选定一条除椭圆外的二次曲线C 及C 上一点P 1,对于给定的自然数n,写出符合条件的点P 1,P 2,…,P n 存在的充要条件,并说明理由.解法一:若双曲线C:22a x -22by =1,点P 1(a,0),则对于给定的n ,点P 1,P 2,…,P n 存在的充要条件是d >0.∵原点O 到双曲线C 上各点的距离h ∈[|a|,+∞),且|OP 1|2=a 2,∴点P 1,P 2,…,P n 存在当且仅当|OP n |2>|OP 1|2,即d >0存在.解法二:若抛物线C:y 2=2px,点P 1(0,0),则对于给定的n ,点P 1,P 2,…,P n 存在的充要条件是d >0.理由同上.解法三:若圆C:(x-a)2+y 2=a 2(a ≠0),点P 1(0,0),则对于给定的n,点P 1,P 2,…,P n 存在的充要条件是0<d ≤142-n a .。
第二讲 椭圆、双曲线、抛物线的定义、方程与性质[考情分析]圆锥曲线的定义、方程与性质是每年必考热点,多以选择、填空考查,着重考查圆锥曲线的几何性质与标准方程求法,难度中档偏下.年份卷别 考查角度及命题位置 2017 Ⅰ卷双曲线的性质及应用·T 5椭圆的综合应用·T 12 Ⅱ卷双曲线离心率的范围·T 5 抛物线的方程及应用·T 12 Ⅲ卷 椭圆的离心率求法·T 11已知双曲线的渐近线求参数·T 142016Ⅰ卷椭圆的离心率求法·T 5 Ⅲ卷直线与椭圆的位置关系、椭圆的离心率求法·T 122015Ⅰ卷 椭圆与抛物线的简单性质·T 5双曲线的几何性质·T 16 Ⅱ卷双曲线的标准方程·T 15 [真题自检]1.(2017·高考全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A.13 B.12 C.23D.32解析:法一:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF , 所以S △APF =12·|PF |·|AP |=12×3×1=32.故选D.法二:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP →=(1,0),PF →=(0,-3),所以AP →·PF →=0,所以AP ⊥PF ,所以S △APF =12|PF ||AP |=12×3×1=32.故选D.答案:D2.(2017·高考全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13解析:以线段A 1A 2为直径的圆的圆心为坐标原点O (0,0),半径为a .由题意,圆心到直线bx -ay+2ab =0的距离为2aba 2+b 2=a ,即a 2=3b 2.又e 2=1-b 2a 2=23,所以e =63,故选A. 答案:A3.(2016·高考全国卷Ⅱ)设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PE ⊥x 轴,则k =( ) A.12 B .1 C.32D .2解析:∵y 2=4x ,∴F (1,0).又∵曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,∴P (1,2). 将点P (1,2)的坐标代入y =k x(k >0),得k =2.故选D. 答案:D4.(2016·高考全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23D.34解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0).设E(0,m),由PF∥OE,得|MF||OE|=|AF||AO|,则|MF|=m a-ca.①又由OE∥MF,得12|OE||MF|=|BO||BF|,则|MF|=m a+c2a.②由①②得a-c=12(a+c),即a=3c,∴e=ca=13.故选A.答案:A椭圆、双曲线、抛物线的定义及标准方程[方法结论]1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|);(2)双曲线:|||PF1|-|PF2|=2a(2a<|F1F2|);(3)抛物线:|PF|=|PM|,点F不在直线l上,PM⊥l于M.2.求解圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.[题组突破]1.(2017·大连双基)若抛物线y2=4x上一点P到其焦点F的距离为2,O为坐标原点,则△OFP 的面积为( )A.12B.1C.32D.2解析:设P(x P,y P),由题可得抛物线焦点为F(1,0),准线方程为x=-1,又点P到焦点F的距离为2,∴由定义知点P到准线的距离为2,∴x P+1=2,∴x P=1,代入抛物线方程得|y P|=2,∴△OFP的面积为S=12·|OF|·|y P|=12×1×2=1.答案:B2.(2017·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59解析:由题意知a =3,b = 5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y轴上,O 为F 1F 2的中点,由三角形中位线性质可推得PF 2⊥x 轴,所以|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513,故选B.答案:B3.已知双曲线x 2a 2-y 212=1(a >0),以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为43,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 26-y 212=1 D.x 24-y 212=1 解析:根据对称性,不妨设点A 在第一象限,A (x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=a 2y =23a x ,解得⎩⎪⎨⎪⎧x =a 212+a 2y =23a 12+a2,∵四边形ABCD 的面积为43,∴4xy =4×23a312+a2=43,解得a =2,故双曲线的方程为x 24-y 212=1,选D.答案:D [误区警示]1.圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础. 2.在使用椭圆与双曲线的标准方程时,要注意区分焦点位置.椭圆、双曲线、抛物线的几何性质[方法结论]1.椭圆、双曲线中,a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =c a= 1-⎝ ⎛⎭⎪⎫b a 2; (2)在双曲线中:c 2=a 2+b 2,离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.3.抛物线方程中p 的几何意义为焦点到准线的距离.[题组突破]1.(2017·河南八市联考)已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是( ) A.72 B .3 C.52D .2解析:抛物线的准线方程为x =-12,依据抛物线的定义,得|QM |-|QF |≥|x Q +3|-⎪⎪⎪⎪⎪⎪x Q +12=⎪⎪⎪⎪⎪⎪3-12=52,选C.答案:C2.(2017·合肥质检)若双曲线C 1:x 22-y 28=1与C 2:x 2a 2-y 2b2=1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45,则b =( ) A .2 B .4 C .6D .8解析:由题意得,ba=2⇒b =2a ,C 2的焦距2c =45⇒c =a 2+b 2=25⇒b =4,故选B. 答案:B3.(2017·广东五校联考)设椭圆E :x 2a 2+y 2b2=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E上在第二象限内的点,直线BO 交E 于点C .若直线BF 平分线段AC ,则E 的离心率为________. 解析:设AC 的中点为M ,连接OM ,AB ,则OM 为△ABC 的中位线,B ,F ,M 在一条线上, 于是△OFM ∽△AFB ,且|OF ||FA |=12,即c a -c =12,解得e =c a =13.答案:134.(2017·高考全国卷Ⅲ)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.解析:因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,所以a =5.答案:5 [误区警示]1.注意易混椭圆与双曲线中a 2、b 2、c 2的关系.2.已知双曲线的一条渐近线y =mx (m ≠0),则要注意判断其焦点位置后,才能说明ba=|m |,还是b a =⎪⎪⎪⎪⎪⎪1m ,从而再利用e = 1+⎝ ⎛⎭⎪⎫b a2求离心率.3.对于形如y =ax 2(a ≠0),求焦点坐标与准线时注意先化为标准方程.直线与椭圆、双曲线、抛物线的位置关系[方法结论]弦长问题设直线与圆锥曲线交于A (x 1,y 1),B (x 2,y 2)两点,若直线AB 的斜率存在(设为k ),则|AB |=1+k 2|x 1-x 2|或|AB |=1+1k2|y 1-y 2|(k ≠0),其中|x 1-x 2|=x 1+x 22-4x 1x 2,|y 1-y 2|=y 1+y 22-4y 1y 2;若直线AB 的斜率不存在,则直接求出直线与圆锥曲线的交点坐标,利用两点间的距离公式求弦长.[典例](1)(2017·洛阳模拟)已知抛物线C :x 2=4y 的焦点为F ,直线AB 与抛物线C 相交于A ,B 两点,若2OA →+OB →-3OF →=0,则弦AB 中点到抛物线C 的准线的距离为________.解析:法一:依题意得,抛物线的焦点F (0,1),准线方程是y =-1,因为2(OA →-OF →)+(OB →-OF →)=0,即2FA →+FB →=0,所以F ,A ,B 三点共线.设直线AB :y =kx +1(k ≠0),A (x 1,y 1),B (x 2,y 2),则由⎩⎪⎨⎪⎧y =kx +1x 2=4y ,得x 2=4(kx +1),即x 2-4kx -4=0,x 1x 2=-4 ①;又2FA →+FB →=0,因此2x 1+x 2=0 ②.由①②解得x 21=2,弦AB 的中点到抛物线C 的准线的距离为12[(y 1+1)+(y 2+1)]=12(y 1+y 2)+1=18(x 21+x 22)+1=5x 218+1=94.法二:依题意得,抛物线的焦点F (0,1),准线方程是y =-1,因为2(OA →-OF →)+(OB →-OF →)=0,即2FA →+FB →=0,所以F ,A ,B 三点共线.不妨设直线AB 的倾斜角为θ,0<θ<π2,|FA |=m ,点A 的纵坐标为y 1,则有|FB |=2m .分别由点A ,B 向抛物线的准线作垂线,垂足分别为A 1,B 1,作AM ⊥BB 1于M ,则有|AA 1|=|AF |=m ,|BB 1|=|FB |=2m ,|BM |=|BB 1|-|AA 1|=m ,sin θ=|BM ||AB |=13,|AF |=y 1+1=2-|AF |sin θ,|AF |=21+sin θ,同理|BF |=y 2+1=21-sin θ,|AF |+|BF |=21-sin θ+21+sin θ=41-sin 2θ=92,因此弦AB 的中点到抛物线C 的准线的距离等于12[(y 1+1)+(y 2+1)]=12(y 1+y 2)+1=12(|AF |+|BF |)=94.答案:94(2)(2017·合肥质检)已知点F 为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .①求椭圆E 的方程;②设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.解析:①由题意,得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c2=1.由⎩⎪⎨⎪⎧x 24+y 23=c 2x 4+y 2=1,得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0⇒c 2=1, ∴椭圆E 的方程为x 24+y 23=1.②由①得M (1,32),∵直线x 4+y2=1与y 轴交于P (0,2),∴|PM |2=54,当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|PA |·|PB |⇒λ=45,当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +23x 2+4y 2-12=0⇒(3+4k 2)x 2+16kx +4=0,依题意得:x 1x 2=43+4k 2,且Δ=48(4k 2-1)>0,∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, ∴λ=45(1+13+4k 2),∵k 2>14,∴45<λ<1.综上所述,λ的取值范围是[45,1).[类题通法]直线与圆锥曲线的位置关系问题充分体现了方程思想,化归思想及数形结合思想,着重考查运算及推理能力,其解决的方法一般是:(1)设直线方程,在直线的斜率不确定的情况下要分斜率存在和不存在进行讨论,或将直线方程设成x =my +b 的形式;(2)联立直线方程与曲线方程并将其转化为一元二次方程,利用判别式或根与系数的关系得到交点横坐标或纵坐标的关系;(3)涉及弦的问题,一般要用到弦长公式|AB |=1+k 2·|x 1-x 2|或|AB |=1+1k2|y 1-y 2|.[演练冲关]已知抛物线x 2=2py 上点P 处的切线方程为x -y -1=0. (1)求抛物线的方程;(2)设A (x 1,y 1)和B (x 2,y 2)为抛物线上的两个动点,其中y 1≠y 2且y 1+y 2=4,线段AB 的垂直平分线l 与y 轴交于点C ,求△ABC 面积的最大值.解析:(1)设点P (x 0,x 202p ),由x 2=2py 得y =x 22p ,y ′=x p ,∵切线的斜率为1,∴x 0p =1且x 0-x 202p-1=0,解得p =2,∴抛物线的方程为x 2=4y . (2)设线段AB 的中点M (x 3,y 3),则x 3=x 1+x 22,y 3=y 1+y 22,k AB =y 2-y 1x 2-x 1=x 224-x 214x 2-x 1=14×(x 1+x 2)=x 32,∴直线l 的方程为y -2=-2x 3(x -x 3),即2x +x 3(-4+y )=0,∴l 过定点(0,4).⎩⎪⎨⎪⎧y -2=x 32x -x 3x 2=4y⇒x 2-2xx 3+2x 23-8=0,得Δ=4x 23-4(2x 23-8)>0⇒-22<x 3<22, |AB |=1+x 234|x 1-x 2|=1+x 23432-4x 23=4+x 238-x 23,C (0,4)到AB 的距离d =|CM |=x 23+4,∴S △ABC =12|AB |·d =124+x 2328-x 23=12 12x 23+4x 23+416-2x 23≤1212×2433=8,当且仅当x 23+4=16-2x 23,即x 3=±2时取等号, ∴S △ABC 的最大值为8.圆锥曲线与其他知识的交汇圆锥曲线与方程是解析几何的核心部分,是高考重点考查的内容,且所占分值较大,近年高考中,圆锥曲线与圆、平面向量、解三角形、不等式等知识交汇命题,成为命题的热点和难点.[典例] (2017·武汉调研)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,经过右焦点F 垂直于l 1的直线分别交l 1,l 2于A ,B 两点.若|OA |,|AB |,|OB |成等差数列,且AF →与FB →反向,则该双曲线的离心率为( )A.52B. 3C. 5D.52解析:设实轴长为2a ,虚轴长为2b ,令∠AOF =α,则由题意知tan α=b a,在△AOB 中,∠AOB =180°-2α,tan ∠AOB =-tan 2α=AB OA,∵|OA |,|AB |,|OB |成等差数列,∴设|OA |=m -d ,|AB |=m ,|OB |=m +d ,∵OA ⊥BF ,∴(m -d )2+m 2=(m +d )2,整理,得d =14m ,∴-tan 2α=-2tan α1-tan 2α=AB OA =m 34m =43,解得b a =2或b a =-12(舍去),∴b =2a ,c =4a 2+a 2=5a ,∴e =c a= 5. 答案:C [类题通法]平面向量与圆锥曲线的交汇问题多考查平面向量的应用,通过运算沟通数与形的转化,从而使问题解决.[演练冲关](2017·贵阳模拟)双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( ) A .(1,52) B .(52,+∞) C .(1,54)D .(54,+∞)解析:依题意,注意到题中的双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,且“右”区域是由不等式组⎩⎪⎨⎪⎧y <b ax y >-ba x所确定,又点(2,1)在“右”区域内,于是有1<2b a ,即b a >12,因此题中的双曲线的离心率e =1+ba2∈(52,+∞),选B. 答案:B。
专题五解析几何[研高考²明考点][析考情²明重点]第一讲 小题考法——直线与圆[典例感悟][典例] (1)已知直线l 1:x +2ay -1=0,l 2:(a +1)x -ay =0,若l 1∥l 2,则实数a 的值为( )A .-32B .0C .-32或0D .2(2)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12(3)过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程为________________________________________________________________.[解析] (1)由l 1∥l 2得1³(-a )=2a (a +1),即2a 2+3a =0,解得a =0或a =-32.经检验,当a =0或a =-32时均有l 1∥l 2,故选C.(2)易知BC 所在直线的方程是x +y =1,由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12³a +b a +1³⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即当a =0时,易得b =1-22,故b 的取值范围是⎝⎛⎭⎪⎫1-22,12. (3)由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.∴l 1与l 2的交点为(1,2).当所求直线斜率不存在,即直线方程为x =1时,显然不满足题意.当所求直线斜率存在时,设所求直线方程为y -2=k (x -1),即kx -y +2-k =0, ∵点P (0,4)到直线的距离为2, ∴2=|-2-k |1+k 2,∴k =0或k =43. ∴直线方程为y =2或4x -3y +2=0.[答案] (1)C (2)B (3)y =2或4x -3y +2=0[方法技巧]直线方程问题的2个关注点(1)求解两条直线平行的问题时,在利用A 1B 2-A 2B 1=0建立方程求出参数的值后,要注意代入检验,排除两条直线重合的情况.(2)求直线方程时应根据条件选择合适的方程形式,同时要考虑直线斜率不存在的情况是否符合题意.[演练冲关]1.已知直线l 的倾斜角为π4,直线l 1经过点A (3,2),B (-a,1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =( )A .-4B .-2C .0D .2解析:选B 由题知,直线l 的斜率为1,则直线l 1的斜率为-1,所以2-13+a =-1,所以a=-4.又l 1∥l 2,所以-2b=-1,b =2,所以a +b =-4+2=-2,故选B.2.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A. 2 B.823C. 3D.833解析:选B 由l 1∥l 2,得(a -2)a =1³3,且a ³2a ≠3³6,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪6-2312+ -12=823. 3.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |²|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |²|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |²|PB |=0,故|PA |²|PB |的最大值是5.答案:5[典例感悟][典例] (1)已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( )A.53B.213C.253D.43(2)(2015²全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为______________.(3)(2017²广州模拟)若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是______________.[解析] (1)设△ABC 外接圆的一般方程为x 2+y 2+Dx +Ey +F =0,∴⎩⎨⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,∴⎩⎪⎨⎪⎧D =-2,E =-433,F =1,∴△ABC 外接圆的一般方程为x 2+y 2-2x -433y +1=0,圆心为⎝ ⎛⎭⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝⎛⎭⎪⎫2332=213. (2)由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2, 4-m 2=r 2,解得⎩⎪⎨⎪⎧m =32,r 2=254.所以圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.(3)抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3,即x -y +3=0相切,所以r =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.[答案] (1)B (2)⎝ ⎛⎭⎪⎫x -322+y 2=254 (3)x 2+(y -1)2=2[方法技巧] 圆的方程的2种求法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程.(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数.[演练冲关]1.(2017²长春质检)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4解析:选D 圆与圆关于直线对称,则圆的半径相同,只需求圆心(2,0)关于直线y =33x 对称的点的坐标即可.设所求圆的圆心坐标为(a ,b ),则⎩⎪⎨⎪⎧b -0a -2³33=-1,b +02=33³a +22,解得⎩⎨⎧a =1,b =3,所以圆(x -2)2+y 2=4的圆心关于直线y =33x 对称的点的坐标为(1,3),从而所求圆的方程为(x -1)2+(y -3)2=4,故选D.2.(2017²北京西城区模拟)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程是( )A .(x +1)2+y 2=2 B .(x +1)2+y 2=8 C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 根据题意直线x -y +1=0与x 轴的交点为(-1,0),即圆心为(-1,0).因为圆C 与直线x +y +3=0相切,所以半径r =|-1+0+3|12+12=2,则圆C 的方程为(x +1)2+y 2=2,故选A.3.(2017²惠州调研)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.解析:设圆心坐标为(a ,b ),半径为r .由已知⎩⎪⎨⎪⎧a -2b =0,b >0,又圆心(a ,b )到y 轴、x 轴的距离分别为|a |,|b |,所以|a |=r ,|b |2+3=r 2.综上,解得a =2,b =1,r =2,所以圆心坐标为(2,1),圆C 的标准方程为(x -2)2+(y -1)2=4.答案:(x -2)2+(y -1)2=4[典例感悟][典例] (1)(2017²昆明模拟)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离(2)(2016²全国卷Ⅰ)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.(3)(2016²全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.[解析] (1)由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2,即圆M 的圆心为(0,2),半径为2.又圆N 的圆心为(1,1),半径为1,则圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,半径之和为3,1<2<3,故两圆相交.(2)圆C :x 2+y 2-2ay -2=0化为标准方程为x 2+(y -a )2=a 2+2,所以圆心C (0,a ),半径r =a 2+2,因为|AB |=23,点C 到直线y =x +2a ,即x -y +2a =0的距离d =|0-a +2a |2=|a |2,由勾股定理得⎝ ⎛⎭⎪⎫2322+⎝ ⎛⎭⎪⎫|a |22=a 2+2,解得a 2=2,所以r =a 2+2=2,所以圆C 的面积为π³22=4π.(3)如图所示,∵直线AB 的方程为x -3y +6=0,∴k AB =33,∴∠BPD =30°, 从而∠BDP =60°. 在Rt△BOD 中,∵|OB |=23,∴|OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB , ∴OH 为直角梯形ABDC 的中位线, ∴|OC |=|OD |,∴|CD |=2|OD |=2³2=4. [答案] (1)B (2)4π (3)4[方法技巧]1.直线(圆)与圆位置关系问题的求解思路(1)研究直线与圆的位置关系主要通过将圆心到直线的距离同半径做比较实现,两圆位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立关于切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长的问题,可先求出圆心到圆外点的距离,再结合半径利用勾股定理计算.2.直线截圆所得弦长的求解方法(1)根据平面几何知识构建直角三角形,把弦长用圆的半径和圆心到直线的距离表示,即l =2r 2-d 2(其中l 为弦长,r 为圆的半径,d 为圆心到直线的距离).(2)根据公式:l =1+k 2|x 1-x 2|求解(其中l 为弦长,x 1,x 2为直线与圆相交所得交点的横坐标,k 为直线的斜率).(3)求出交点坐标,用两点间的距离公式求解.[演练冲关]1.(2017²南昌模拟)如图,在平面直角坐标系xOy 中,直线y =2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB =( )A.510 B .-510C.910D .-910解析:选D 因为圆x 2+y 2=4的圆心为O (0,0),半径为2,所以圆心O 到直线y =2x +1的距离d =|2³0-0+1|22+ -12=15,所以弦长|AB |=222-⎝⎛⎭⎪⎫152=2195. 在△AOB 中,由余弦定理得cos ∠AOB =|OA |2+|OB |2-|AB |22|OA |²|OB |=4+4-4³1952³2³2=-910.2.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k =________.解析:如图,把圆的方程化成标准形式得x 2+(y -1)2=1,所以圆心为C (0,1),半径为r =1,四边形PACB 的面积S =2S △PBC ,所以若四边形PACB 的最小面积是2,则S △PBC 的最小值为1.而S △PBC =12r ²|PB |,即|PB |的最小值为2,此时|PC |最小,|PC |为圆心到直线kx +y +4=0的距离d ,则d =|5|k 2+1=12+22=5,化简得k 2=4,因为k >0,所以k =2.答案:23.(2017²云南调研)已知动圆C 过A (4,0),B (0,-2)两点,过点M (1,-2)的直线交圆C 于E ,F 两点,当圆C 的面积最小时,|EF |的最小值为________.解析:依题意得,动圆C 的半径不小于12|AB |=5,即当圆C 的面积最小时,AB 是圆C 的一条直径,此时圆心C 是线段AB 的中点,即点C (2,-1),又点M 的坐标为(1,-2),且|CM |= 2-1 2+ -1+2 2=2<5,所以点M 位于圆C 内,所以当点M 为线段EF 的中点时,|EF |最小,其最小值为2 5 2- 2 2=2 3.答案:2 3[必备知能²自主补缺] (一) 主干知识要记牢 1.直线方程的五种形式2.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B2. (2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d =|C 1-C 2|A 2+B 2.3.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2.(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).(3)圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(圆的直径的两端点是A (x 1,y 1),B (x 2,y 2)).4.直线与圆位置关系的判定方法(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交,Δ<0⇔相离,Δ=0⇔相切.(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交,d >r ⇔相离,d =r ⇔相切.5.圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则 (1)当|O 1O 2|>r 1+r 2时,两圆外离; (2)当|O 1O 2|=r 1+r 2时,两圆外切;(3)当|r 1-r 2|<|O 1O 2|<r 1+r 2时,两圆相交; (4)当|O 1O 2|=|r 1-r 2|时,两圆内切; (5)当0≤|O 1O 2|<|r 1-r 2|时,两圆内含. (二) 二级结论要用好1.直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0的位置关系 (1)平行⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0; (2)重合⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0; (3)相交⇔A 1B 2-A 2B 1≠0; (4)垂直⇔A 1A 2+B 1B 2=0.[针对练1] 若直线l 1:mx +y +8=0与l 2:4x +(m -5)y +2m =0垂直,则m =________.解析:∵l 1⊥l 2,∴4m +(m -5)=0,∴m =1. 答案:12.若点P (x 0,y 0)在圆x 2+y 2=r 2上,则圆过该点的切线方程为:x 0x +y 0y =r 2. [针对练2] 过点(1,3)且与圆x 2+y 2=4相切的直线l 的方程为____________. 解析:∵点(1,3)在圆x 2+y 2=4上, ∴切线方程为x +3y =4,即x +3y -4=0. 答案:x +3y -4=0 (三) 易错易混要明了1.易忽视直线方程的几种形式的限制条件,如根据直线在两坐标轴上的截距相等设方程时,忽视截距为0的情况,直接设为x a +y a=1;再如,忽视斜率不存在的情况直接将过定点P (x 0,y 0)的直线设为y -y 0=k (x -x 0)等.[针对练3] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为__________________.解析:当截距为0时,直线方程为5x -y =0;当截距不为0时,设直线方程为x a +y a=1,代入P (1,5),得a =6,∴直线方程为x +y -6=0.答案:5x -y =0或x +y -6=02.讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解,如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0.如果利用直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0垂直的充要条件A 1A 2+B 1B 2=0,就可以避免讨论.[针对练4] 已知直线l 1:(t +2)x +(1-t )y =1与l 2:(t -1)x +(2t +3)y +2=0互相垂直,则t 的值为________.解析:∵l 1⊥l 2,∴(t +2)(t -1)+(1-t )(2t +3)=0,解得t =1或t =-1. 答案:-1或13.求解两条平行线之间的距离时,易忽视两直线系数不相等,而直接代入公式|C 1-C 2|A 2+B 2,导致错解.[针对练5] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 解析:把直线6x +4y +5=0化为3x +2y +52=0,故两平行线间的距离d =⎪⎪⎪⎪⎪⎪-5-5232+22=151326.答案:1513264.易误认为两圆相切即为两圆外切,忽视两圆内切的情况导致漏解.[针对练6] 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0相切,则m =________.解析:由x 2+y 2-2x -6y -1=0,得(x -1)2+(y -3)2=11,由x 2+y 2-10x -12y +m =0,得(x -5)2+(y -6)2=61-m .当两圆外切时,有 5-1 2+ 6-3 2=61-m +11,解得m =25+1011;当两圆内切时,有 5-1 2+ 6-3 2=||61-m -11,解得m =25-1011.答案:25±1011[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017²沈阳质检)已知直线l :y =k (x +3)和圆C :x 2+(y -1)2=1,若直线l 与圆C 相切,则k =( )A .0 B. 3 C.33或0 D.3或0解析:选D 因为直线l 与圆C 相切,所以圆心C (0,1)到直线l 的距离d =|-1+3k |1+k 2=1,解得k =0或k =3,故选D.2.(2017²陕西质检)圆:x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( ) A .1+ 2 B .2 C .1+22D .2+2 2解析:选A 将圆的方程化为(x -1)2+(y -1)2=1,即圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1.3.(2017²洛阳统考)直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“|AB |=2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 依题意,注意到|AB |=2=|OA |2+|OB |2等价于圆心O 到直线l 的距离等于22,即有1k 2+1=22,k =±1.因此,“k =1”是“|AB |=2”的充分不必要条件.4.若三条直线l 1:4x +y =3,l 2:mx +y =0,l 3:x -my =2不能围成三角形,则实数m 的取值最多有( )A .2个B .3个C .4个D .6个解析:选C 三条直线不能围成三角形,则至少有两条直线平行或三条直线相交于同一点.若l 1∥l 2,则m =4;若l 1∥l 3,则m =-14;若l 2∥l 3,则m 的值不存在;若三条直线相交于同一点,则m =1或-53.故实数m 的取值最多有4个,故选C.5.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0 B .x 2+y 2+2x +4y =0 C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:选C 由(a -1)x -y +a +1=0得(x +1)a -(x +y -1)=0,由x +1=0且x +y -1=0,解得x =-1,y =2,即该直线恒过点(-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.6.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是( )A .(x +2)2+(y -2)2=2 B .(x -2)2+(y +2)2=2 C .(x +2)2+(y +2)2=2 D .(x -2)2+(y -2)2=2解析:选D 由题意知,曲线方程为(x -6)2+(y -6)2=(32)2,过圆心(6,6)作直线x +y -2=0的垂线,垂线方程为y =x ,则所求的最小圆的圆心必在直线y =x 上,又圆心(6,6)到直线x +y -2=0的距离d =|6+6-2|2=52,故最小圆的半径为52-322=2,圆心坐标为(2,2),所以标准方程为(x -2)2+(y -2)2=2.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎫y ±332=43B .x 2+⎝ ⎛⎭⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎫x ±332+y 2=43 D.⎝⎛⎭⎪⎫x ±332+y 2=13解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12³120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎫±33,0,r 2=|AC |2=12+⎝ ⎛⎭⎪⎫±332=43.所以圆的方程为⎝ ⎛⎭⎪⎫x ±332+y 2=43,故选C. 8.(2017²合肥质检)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)且与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:选B 由题可知,圆心C (1,1),半径r =2.当直线l 的斜率不存在时,直线方程为x =0,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34,所以直线l 的方程为y =-34x +3,即3x +4y -12=0.综上,直线l 的方程为x =0或3x +4y -12=0,故选B.9.(2018届高三²湖北七市(州)联考)关于曲线C :x 2+y 4=1,给出下列四个命题: ①曲线C 有两条对称轴,一个对称中心; ②曲线C 上的点到原点距离的最小值为1; ③曲线C 的长度l 满足l >42;④曲线C 所围成图形的面积S 满足π<S <4. 上述命题中,真命题的个数是( ) A .4B .3C .2D .1解析:选A ①将(x ,-y ),(-x ,y ),(-x ,-y )代入,方程不变,则可以确定曲线关于x 轴,y 轴对称,关于原点对称,故①是真命题.②由x 2+y 4=1得0≤x 2≤1,0≤y 4≤1,故x 2+y 2≥x 2+y 2²y 2=x 2+y 4=1,即曲线C 上的点到原点的距离为x 2+y 2≥1,故②是真命题.③由②知,x 2+y 4=1的图象位于单位圆x 2+y 2=1和边长为2的正方形之间,如图所示,其每一段弧长均大于2,所以l >42,故③是真命题.④由③知,π³12<S <2³2,即π<S <4,故④是真命题.综上,真命题的个数为4.10.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=( )A .2B .4 2C .6D .210解析:选C 由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,解得a =-1,∴A (-4,-1),|AC |2=(-4-2)2+(-1-1)2=40.又r =2,∴|AB |2=40-4=36,即|AB |=6.11.两个圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R)与C 2:x 2+y 2-2by -1+b 2=0(b ∈R)恰有三条公切线,则a +b 的最小值为( )A .3 2B .-3 2C .6D .-6解析:选B 两个圆恰有三条公切线,则两圆外切,两圆的标准方程为圆C 1:(x +a )2+y 2=4,圆C 2:x 2+(y -b )2=1,所以C 1(-a,0),C 2(0,b ),||C 1C 2=a 2+b 2=2+1=3,即a 2+b 2=9.由⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,得(a +b )2≤18,所以-32≤a +b ≤32,当且仅当“a =b ”时等号成立.所以a +b 的最小值为-3 2.12.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .(4,5)D .(4,5]解析:选A 设直线4x -3y +m =0与直线4x -3y -2=0之间的距离为1,则有|m +2|5=1,m =3或m =-7.圆心(3,-5)到直线4x -3y +3=0的距离等于6,圆心(3,-5)到直线4x -3y-7=0的距离等于4,因此所求圆半径的取值范围是(4,6),故选A.二、填空题13.(2017²河北调研)若直线l 1:y =x +a 和直线l 2:y =x +b 将圆(x -1)2+(y -2)2=8分成长度相等的四段弧,则a 2+b 2=________.解析:由题意得直线l 1和l 2截圆所得弦所对的圆心角相等,均为90°,因此圆心到两直线的距离均为22r =2,即|1-2+a |2=|1-2+b |2=2,得a 2+b 2=(22+1)2+(1-22)2=18. 答案:1814.已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为____________.解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a5=455,解得a =2,所以圆C 的半径r =|CM |=22+ 5 2=3,所以圆C 的方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=915.设直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程为____________.解析:因为直线l 恒过定点(0,1),由x 2+y 2-2x -3=0变形为(x -1)2+y 2=4,易知点(0,1)在圆(x -1)2+y 2=4的内部,依题意,k ²1-00-1=-1,即k =1,所以直线l 的方程为y =x +1.答案:y =x +116.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上不同的两点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,则△PAB 面积的最大值是________.解析:由题意知圆心⎝ ⎛⎭⎪⎫-k2,0在直线x -y -1=0上,所以-k2-1=0,解得k =-2,得圆心的坐标为(1,0),半径为1.又知直线AB 的方程为x -y +2=0,所以圆心(1,0)到直线AB 的最大距离为322,所以P 到直线AB 的最大距离,即△PAB 的AB 边上的高的最大值为1+322,又|AB |=22,所以△PAB 面积的最大值为12³22³⎝⎛⎭⎪⎫1+322=3+ 2.答案:3+ 2B 组——能力小题保分练1.(2017²石家庄模拟)若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为( )A.12 B.32C.34D.34解析:选 D 因为圆心到直线的距离d =24a 2+b2,则直线被圆截得的弦长L =2r 2-d 2=24-44a 2+b 2=23,所以4a 2+b 2=4.则t =a 1+2b 2=122²(22a )²1+2b 2≤122³12³[] 22a 2+ 1+2b 2 2=142²[8a 2+1+2(4-4a 2)]=942,当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,此时a =34,故选D.2.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA ―→+OB ―→|≥33|AB ―→|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:选C 当|OA ―→+OB ―→|=33|AB ―→|时,O ,A ,B 三点为等腰三角形AOB 的三个顶点,其中OA =OB =2,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,即|k |2=1,解得k =2;当k >2时,|OA ―→+OB ―→|>33|AB ―→|,又直线与圆x 2+y 2=4有两个不同的交点,故|k |2<2,即k <2 2.综上,k 的取值范围为[2,22).3.(2018届高三²湖北七市(州)联考)已知圆C :(x -1)2+y 2=r 2(r >0).设条件p :0<r <3,条件q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选 C 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3³0+3|12+ 32=2.当2-r >1,即0<r <1时,直线在圆外,圆上没有点到直线的距离为1; 当2-r =1,即r =1时,直线在圆外,圆上只有1个点到直线的距离为1; 当0<2-r <1,即1<r <2时,直线在圆外,此时圆上有2个点到直线的距离为1; 当2-r =0,即r =2时,直线与圆相切,此时圆上有2个点到直线的距离为1; 当0<r -2<1,即2<r <3时,直线与圆相交,此时圆上有2个点到直线的距离为1; 当r -2=1,即r =3时,直线与圆相交,此时圆上有3个点到直线的距离为1; 当r -2>1,即r >3时,直线与圆相交,此时圆上有4个点到直线的距离为1.综上,当0<r <3时,圆C 上至多有2个点到直线x -3y +3=0的距离为1;由圆C 上至多有2个点到直线x -3y +3=0的距离为1可得0<r <3.故p 是q 的充要条件,故选C.4.(2018届高三²广东五校联考)已知圆C :x 2+y 2+2x -4y +1=0的圆心在直线ax -by +1=0上,则ab 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,14 B.⎝⎛⎦⎥⎤-∞,18C.⎝ ⎛⎦⎥⎤0,14D.⎝ ⎛⎦⎥⎤0,18 解析:选B 把圆的方程化为标准方程得,(x +1)2+(y -2)2=4,∴圆心坐标为(-1,2),根据题意可知,圆心在直线ax -by +1=0上,把圆心坐标代入直线方程得,-a -2b +1=0,即a =1-2b ,则ab =(1-2b )b =-2b 2+b =-2⎝ ⎛⎭⎪⎫b -142+18≤18,当b =14时,ab 有最大值18,故ab 的取值范围为⎝⎛⎦⎥⎤-∞,18.5.已知点A (3,0),若圆C :(x -t )2+(y -2t +4)2=1上存在点P ,使|PA |=2|PO |,其中O 为坐标原点,则圆心C 的横坐标t 的取值范围为________.解析:设点P (x ,y ),因为|PA |=2|PO |,所以 x -3 2+y 2=2x 2+y 2,化简得(x +1)2+y 2=4,所以点P 在以M (-1,0)为圆心,2为半径的圆上.由题意知,点P (x ,y )在圆C 上,所以圆C 与圆M 有公共点,则1≤|CM |≤3,即1≤ t +1 2+ 2t -4 2≤3,1≤5t 2-14t +17≤9.不等式5t 2-14t +16≥0的解集为R ;由5t 2-14t +8≤0,得45≤t ≤2.所以圆心C 的横坐标t 的取值范围为⎣⎢⎡⎦⎥⎤45,2. 答案:⎣⎢⎡⎦⎥⎤45,2 6.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.解析:由题意可知M 在直线y =1上运动,设直线y =1与圆x 2+y 2=1相切于点P (0,1).当x 0=0即点M 与点P 重合时,显然圆上存在点N (±1,0)符合要求;当x 0≠0时,过M 作圆的切线,切点之一为点P ,此时对于圆上任意一点N ,都有∠OMN ≤∠OMP ,故要存在∠OMN =45°,只需∠OMP ≥45°.特别地,当∠OMP =45°时,有x 0=±1.结合图形可知,符合条件的x 0的取值范围为[-1,1].答案:[-1,1]第二讲 小题考法——圆锥曲线的方程与性质[典例感悟][典例] (1)(2017²合肥模拟)已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为( )A .1 B. 3 C. 5 D.12(2)在平面直角坐标系中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 1上一点M 到点Q (0,3)的距离的最大值为4.则椭圆C 1的方程为( )A .x 2+y 24=1B.x 24+y 2=1 C.x 216+y 24=1 D.x 24+y 216=1 (3)(2017²全国卷Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.[解析] (1)在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12³|PF 1|³|PF 2|=12³(5+3)³(5-3)=1.故选A.(2)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b2=1,即x 2+4y 2=4b 2.设M (x ,y ),则|MQ |= x -0 2+ y -3 2=4b 2-4y 2+ y -3 2=-3y 2-6y +4b 2+9=-3 y +1 2+4b 2+12.所以当y =-1时,|MQ |有最大值,为4b 2+12=4,解得b 2=1,则a 2=4,所以椭圆C 1的方程是x 24+y 2=1.故选B.(3)法一:依题意,抛物线C :y 2=8x 的焦点F (2,0),因为M 是C 上一点,FM 的延长线交y 轴于点N ,M 为FN 的中点,设M (a ,b )(b >0),所以a =1,b =22,所以N (0,42),|FN |=4+32=6.法二:如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6. [答案] (1)A (2)B (3)6[方法技巧]求解圆锥曲线标准方程的思路方法(1)定型,即指定类型,也就是确定圆锥曲线的类型、焦点位置,从而设出标准方程. (2)计算,即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2px 或x 2=2py (p ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).[演练冲关]1.(2017²长沙模拟)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( )A.x 24+y 23=1B.x 28+y 26=1C.x 22+y 2=1 D.x 24+y 2=1 解析:选A 由题可知椭圆的焦点在x 轴上,所以设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),而抛物线y 2=-4x的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.故选A.2.(2017²全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 解析:选B 根据双曲线C 的渐近线方程为y =52x ,可知b a =52.① 又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.3.已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=________.解析:法一:令l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,所以|PF |=|PA |=y 0+1=43.法二:如图所示,∠AFO =30°,∴∠PAF =30°,又|PA |=|PF |,∴△APF 为顶角∠APF =120°的等腰三角形, 而|AF |=2cos 30°=433,∴|PF |=|AF |3=43.答案:43[典例感悟][典例] (1)(2016²全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)(2017²全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.[解析] (1)由题,不妨设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25,抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5, ∴p =4(负值舍去),∴C 的焦点到准线的距离为4.(2)双曲线的右顶点为A (a,0),一条渐近线的方程为y =b ax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ³0|b 2+a 2=ab c .又因为∠MAN =60°,圆的半径为b ,所以b ²sin 60°=abc ,即3b 2=ab c ,所以e =23=233. [答案] (1)B (2)233[方法技巧]1.椭圆、双曲线离心率(离心率范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求c a的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值;②利用渐近线方程设所求双曲线的方程.[演练冲关]1.(2017²成都模拟)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P .若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( )A. 2B.-3+624 C. 3 D.3+627解析:选D 如图,在圆O 中,F 1F 2为直径,P 是圆O 上一点,所以PF 1⊥PF 2,设以OF 1为直径的圆的圆心为M ,且圆M 与直线PF 2相切于点Q ,则M ⎝ ⎛⎭⎪⎫-c 2,0,MQ ⊥PF 2,所以PF 1∥MQ ,所以|MQ ||PF 1|=|MF 2||F 1F 2|,即c2|PF 1|=3c22c ,可得|PF 1|=2c 3,所以|PF 2|=2c 3+2a ,又|PF 1|2+|PF 2|2=|F 1F 2|2,所以4c 29+⎝ ⎛⎭⎪⎫2c 3+2a 2=4c 2,即7e 2-6e -9=0,解得e =3+627,e =3-627(舍去).故选D. 2.(2017²全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0, 3 ]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0, 3 ]∪[4,+∞)解析:选A 当0<m <3时,焦点在x 轴上,要使C 上存在点M 满足∠AMB =120°,则ab≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB=120°,则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞).3.(2017²贵阳检测)如图,抛物线y 2=4x 的一条弦AB 经过焦点F ,取线段OB 的中点D ,延长OA 至点C ,使|OA |=|AC |,过点C ,D 作y 轴的垂线,垂足分别为点E ,G ,则|EG |的最小值为________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则y 3=2y 1,y 4=12y 2,|EG |=y 4-y 3=12y 2-2y 1.因为AB 为抛物线y 2=4x 的焦点弦,所以y 1y 2=-4,所以|EG |=12y 2-2³⎝ ⎛⎭⎪⎫-4y 2=12y 2+8y 2≥212y 2³8y 2=4,当且仅当12y 2=8y 2,即y 2=4时取等号,所以|EG |的最小值为4.答案:4[典例感悟][典例] (1)(2018届高三²河南九校联考)已知直线y =kx +t 与圆x 2+(y +1)2=1相切且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是( )A .(-∞,-3)∪(0,+∞)B .(-∞,-2)∪(0,+∞)C .(-3,0)D .(-2,0)(2)(2017²宝鸡质检)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率为( )A.53B.54C.53或2516D.53或54 [解析] (1)因为直线与圆相切,所以|t +1|1+k2=1,即k 2=t 2+2t .将直线方程代入抛物线方程并整理得x 2-4kx -4t =0,于是Δ=16k 2+16t =16(t 2+2t )+16t >0,解得t >0或t <-3.故选A.(2)圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径r =1.当m <0,n >0时,由mx 2+ny 2=1得y 21n-x 2-1m=1,则双曲线的焦点在y 轴上,不妨设双曲线与圆相切的渐近线方程为y =a b x ,即ax -by =0,则圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,即8a 2-6ab =0,则b =43a ,平方得b 2=169a 2=c 2-a 2,即c 2=259a 2,则c =53a ,离心率e =c a =53;当m >0,n <0时,同理可得e =54,故选D.[答案] (1)A (2)D[方法技巧]处理圆锥曲线与圆相结合问题的注意点(1)注意圆心、半径和平面几何知识的应用,如直径所对的圆周角为直角,构成了垂直关系;弦心距、半径、弦长的一半构成直角三角形等.(2)注意圆与特殊线的位置关系,如圆的直径与椭圆长轴(短轴),与双曲线的实轴(虚轴)的关系;圆与过定点的直线、双曲线的渐近线、抛物线的准线的位置关系等.[演练冲关]1.(2018届高三²广西三市联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( )A.43B.53C .2D .3解析:选B 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1,∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a ,∵|PF 2|=|F 1F 2|=2c ,∴|PF 1|=2a +2c ,∴|PA |=12²|PF 1|=a +c ,则在Rt△APF 2中,4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.2.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,则直线OM 与直线l 的斜率之积为________.解析:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kbk 2+9,y M =kx M +b =9bk 2+9,故直线OM 的斜率k OM =y M x M=-9k,所以k OM ²k =-9,即直线OM 与直线l 的斜率之积为-9.答案:-9[必备知能²自主补缺] (一) 主干知识要记牢圆锥曲线的定义、标准方程和性质(二) 二级结论要用好 1.椭圆焦点三角形的3个规律设椭圆方程是x 2a 2+y 2b2=1(a >b >0),焦点F 1(-c,0),F 2(c,0),点P 的坐标是(x 0,y 0).(1)三角形的三个边长是|PF 1|=a +ex 0,|PF 2|=a -ex 0,|F 1F 2|=2c ,e 为椭圆的离心率. (2)如果△PF 1F 2中∠F 1PF 2=α,则这个三角形的面积S △PF 1F 2=c |y 0|=b 2tan α2.(3)椭圆的离心率e =sin ∠F 1PF 2sin ∠F 1F 2P +sin ∠F 2F 1P .2.双曲线焦点三角形的2个结论P (x 0,y 0)为双曲线x 2a 2-y 2b2=1(a >0,b >0)上的点,△PF 1F 2为焦点三角形.(1)面积公式S =c |y 0|=12r 1r 2sin θ=b 2tanθ2(其中|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ).(2)焦半径若P 在右支上,|PF 1|=ex 0+a ,|PF 2|=ex 0-a ;若P 在左支上,|PF 1|=-ex 0-a ,|PF 2|=-ex 0+a .3.抛物线y 2=2px (p >0)焦点弦AB 的4个结论 (1)x A ²x B =p 24;(2)y A ²y B =-p 2; (3)|AB |=2psin 2α(α是直线AB 的倾斜角); (4)|AB |=x A +x B +p . 4.圆锥曲线的通径 (1)椭圆通径长为2b2a;(2)双曲线通径长为2b2a;(3)抛物线通径长为2p . 5.圆锥曲线中的最值(1)椭圆上两点间的最大距离为2a (长轴长). (2)双曲线上两点间的最小距离为2a (实轴长).(3)椭圆焦半径的取值范围为[a -c ,a +c ],a -c 与a +c 分别表示椭圆焦点到椭圆上的点的最小距离与最大距离.(4)抛物线上的点中顶点到抛物线准线的距离最短. (三) 易错易混要明了1.利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.[针对练1] △ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,设内切圆的圆心为P ,过点P 作AC ,BC 的垂线PD ,PF ,垂足分别为D ,F ,则|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,∴|CA |-|CB |=|AD |-|BF |=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)2.解决椭圆、双曲线、抛物线问题时,要注意其焦点的位置. [针对练2] 若椭圆x 2k +8+y 29=1的离心率为12,则k 的值为________. 解析:当焦点在x 轴上时,a 2=8+k ,b 2=9,e 2=c 2a 2=a 2-b 2a 2=k -1k +8=14,解得k =4.当焦点在y 轴上时,a 2=9,b 2=8+k ,e 2=c 2a 2=a 2-b 2a 2=1-k 9=14,解得k =-54.答案:4或-543.直线与圆锥曲线相交的必要条件是它们构成的方程组有实数解,消元后得到的方程中要注意:二次项的系数是否为零,判别式Δ≥0的限制.尤其是在应用根与系数的关系解决问题时,必须先有“判别式Δ≥0”;在解决交点、弦长、中点、斜率、对称或存在性问题时都应在“Δ>0”下进行.[课时跟踪检测]A 组——12+4提速练一、选择题。