华为高速铁路覆盖解决方案
- 格式:pdf
- 大小:4.31 MB
- 文档页数:37
智能交通:华为智能铁路解决方案概述2022年刷新的中国中长期铁路网规划,彰显了宏伟蓝图。
到2022年,中国铁路营业总里程将达到12万公里以上,将建成“四纵四横三区域”的铁路网,客专线总里程将达1.3万公里,届时春运将成为历史,铁路公交化,高速铁路缩短了都市经济圈的距离,改变了人们出行方式和生活模式。
方案介绍华为智能铁路解决方案结合铁路业务、运作体制,有效集成先进的通信、自动控制、信息处理、计算机、传感等技术,提供涵盖融合通信、铁路业务信息化、辅助运营等端到端解决方案,保障铁路核心业务的安全高效和核心资产的增值。
方案如下:620)this.style.width=620;" border=0>华为智能铁路解决方案的核心:安全的融合通信网络:为铁路运输组织、客货营销、经营管理的信息互联互通提供安全通道保障和通信业务服务,实现铁路业务间、资产间、业务与资产间以及运营组织间协同工作与信息共享。
通过多种现代传感技术(如:M2M),使得铁路资产可感知,将实时采集到的铁路资产运行状态通过安全的通信网络传递到各生产单位,实现铁路资产可感知、可安全检测、可定位。
铁路业务信息化的综合平台:为铁路日常作业信息化提供核心平台支撑,在核心平台上可以根据铁路业务需求进行快速定制开发,实现运输组织智能化、客货营销社会化、经营管理现代化。
信息化综合平台是开放平台,可以与路内广大企业合作,打造双赢生态链。
方案特点华为智能铁路解决方案具有如下特点:统一承载网解决方案:统一规划国干、路局、客专的承载网架构,根据业务的安全级别需要,从整网角度E2E设计业务的可靠性和QoS 保障。
同时可平滑向IP化网络演进,支持铁路数据业务发展。
在工程实施上可基于既有网络和发展需要分层实施、分阶段实施统一承载网。
国干承载网解决方案:采用先进的OTN-ASON技术,相对传统波分设备,提升可靠性,简化运维复杂度。
路局承载网解决方案:统一路局和客专的承载网架构,引入MSTP/ASON、波分干网与相邻线路置换光线组建保护环等技术,为重要业务提供抗多次故障的冗余能力,增强业务的可靠性和安全性。
高铁网络覆盖方案尽管高铁已经成为人们出行的首选交通方式之一,但在其中一项关键领域却存在着不足,那就是高铁网络覆盖。
为了满足乘客对高品质网络连接需求的同时,提升高铁的竞争力,制定一套高铁网络覆盖方案势在必行。
本文将提出一种可行的方案,旨在解决高铁网络覆盖的问题,并为高铁行业的发展做出贡献。
一、技术方案为了实现高铁网络覆盖的目标,我们可以采取多种技术手段,其中包括信号增强技术、蜂窝网络技术和卫星通信技术。
1. 信号增强技术通过在高铁车厢和车厢顶部安装信号增强设备,可以有效提升高铁网络信号的覆盖范围和信号强度。
这些设备应该具备稳定的信号增强功能,确保在高速行驶过程中依然能够稳定传输数据,以提供可靠的网络连接。
2. 蜂窝网络技术在每辆高铁车厢内设立蜂窝网络设备,这将使乘客能够通过移动设备使用蜂窝网络进行网络通信。
此外,高铁线路两旁的基站也应提供覆盖,以确保高铁列车与网络基础设施的连接畅通无阻。
3. 卫星通信技术采用卫星通信技术可以为高铁提供覆盖范围更广泛的网络连接。
通过在高铁车厢上安装适配卫星通信的设备,可以实现乘客在高铁行进中随时随地访问互联网、进行网络通信的需求。
二、设备布局为了实现高铁网络覆盖方案,我们需要在高铁列车、高铁站和高铁线路周边进行设备的布局安装。
1. 高铁列车每辆高铁列车内应设立信号增强设备,并提供蜂窝网络设备。
这可以确保乘客在高铁运行过程中始终能够享受到高质量的网络连接,并满足他们的网络需求。
2. 高铁站在高铁站点内,应设立基站并覆盖整个站点范围。
这将为乘客进出高铁提供稳定的网络连接,以满足他们的通信需求。
3. 高铁线路周边沿着高铁线路两旁,需要建设一系列的基站和信号增强设备,以确保高铁列车与周边网络设备的连接畅通无阻。
这将提供高速稳定的网络信号,为乘客提供更好的上网体验。
三、前期准备和实施计划为了顺利实施高铁网络覆盖方案,需要进行一系列的前期准备工作和实施计划。
1. 技术调研和测试在实施方案之前,需要进行技术调研和测试,以确定最适合高铁网络覆盖的技术手段。
高速铁路专网覆盖解决方案完善的铁路GSM网络覆盖不仅能给用户提供便利的通信服务,创造更优质的网络价值,而且是以后第三代移动通信网络的铺设和扩容提供坚实基础;不但能为中国移动业务的发展带来商机,也能为我国信息化的发展带来巨大的促进作用。
本方案通过使用BBU+RRU这种组网方式,针对对不同区域类型,不同覆盖场景的解决方案论述,可为高速铁路的覆盖达到最优的效果,同时也可为其他同类工程提供参考和借鉴。
BBU;RRU;小区规划;切换规划;小区分层本方案将铁路列车考虑为一个话务流动用户群,为其提供一条服务质量良好的专用覆盖通道,用户群从车站出发,直至抵达目的站,用户都附着在专网覆盖区内,发生的话务/数据流也都为专用通道吸收。
用户抵站后,离开专用通道,切换至车站或周边小区。
1.覆盖策略一般高铁沿线环境较为复杂,网络覆盖难度很大。
对于不同的道路环境需要采用相应的覆盖策略。
(1)平原、高原路段的覆盖:覆盖站沿铁路两侧均匀交错分布,选择地势较高处,俯瞰铁路。
(2)丘陵、山地、峡谷路段的覆盖:对于部分较深的峡谷地段,测试信号较差的地段,必须在峡谷两侧最高处、转弯处建设站点。
(3)隧道路段的覆盖:针对不同的隧道制定不同的覆盖方法:隧道长度小于500m的使用高增益天线进行覆盖;长度大于500m的结合漏缆分布系统进行覆盖。
(4)高架桥梁路段的覆盖:桥梁的覆盖须保证天线高度合理,天线的高度应该高出桥梁平面25米,与铁道垂直距离保持在50米左右。
(5)站台路段的覆盖:对于大型火车站候车室与站台通道均有室内分布系统,因此专网与公网的切换只需做室内分布与专网的切换关系,需要注意的是要将专网的CRO设置值高于室内分布的CRO,因为火车在站内停留时间较短,如没及时切换到专网中,火车开动后势必会发生掉话现象。
2.BBU+RRU组网解决方案从整条铁路状况来分析,在铁路沿线新建基站的难度较高,投资较大,我们从节约成本的角度考虑,高铁以BBU+RRU 为主要覆盖手段。
内容摘要目前,通信市场呈现三分天下的格局,移动通信的市场竞争日益激烈,为了更好的为用户提供服务,抢占市场,需要不断提高网络运行质量,以优质的网络吸引客户。
随着铁路高速的来临,移动通信也面临着高速带来的压力,如何保障用户在高速运行情况下的网络质量,也给我们带来新的挑战。
挑战带来机遇,面对挑战,需要我们不断采用新技术、新办法,文中通过运用技术手段解决高速铁路覆盖问题,以满足用户的使用,为市场发展提供有力的网络支持。
关键词:移动通信、高速铁路、覆盖目录一、普通覆盖形势下对高铁覆盖面临的主要问题 (5)(一)CRH列车车体密封性好、损耗严重 (5)(二)高速移动中的切换和小区重选 (5)(三)位置更新频繁,现网信令负荷重 (5)二、实际采用技术及解决方案 (7)(一)专网覆盖方案 (7)1.基站专网.................................................................... 错误!未定义书签。
2.基站+光纤直放站 ................................................... 错误!未定义书签。
(二)方案对比:基站专网vs 基站+光纤直放站专网 (7)三、光纤直放站(GRRU)技术及功能特点 (9)(一)GRRU工作原理............................................................ 错误!未定义书签。
(二)GRRU功能特点............................................................ 错误!未定义书签。
四、设计实现方案 (10)(一)设计原则 (13)1.对铁路施行专网覆盖 (13)2.采用基站+射频拉远单元的组网方式 (14)3.沿铁路线设置线性位置区 (14)(二)具体设计方案主要考虑因素 (16)1.车厢穿透损耗 (16)2.覆盖电平 (16)3.多普勒频移 (19)4.小区重叠覆盖区 (20)5.光纤直放站重叠区切换带设置 (21)6.小区参数设置 (23)7.小区容量计算 (23)8.跨省边界的小区覆盖 (25)9.天线选型 (25)10.天线挂高及架设方式 (27)11.专网起点及专网与站台的过渡方式 (27)(三)主要创新 (28)1、思路创新 (28)2、技术创新 (28)3、产品创新 (28)五、设计方案示例 (28)(一)京广铁路保定铁路线基本概况 (28)(二)对现阶段高速铁路网路环境进行详细测试 (29)(三)设计思路及设备配置 (30)1.设计思路 (30)2.设备配置 (30)(四)设计图纸部分示例 (31)六、总结 (33)移动通信在高速铁路覆盖中的技术及解决方案一.高速铁路概况铁路作为我国国民经济的大动脉,对实现国民经济和社会发展的宏伟目标起着极为重要的作用。
CDMA高铁覆盖解决方案1.高铁解决方案1.1现网覆盖通过现网扇区分裂或者扇区角度调整来完成高铁覆盖,采用高增益窄波束天线来完成,此方案得基于现网基站较多覆盖较好,而且站距在3公里左右满足高铁覆盖。
1.2专网覆盖通过新建基站的方式结合窄波束高增益天线专门覆盖高铁沿线,前提是高铁沿线2公里内无现网基站且高铁沿线覆盖较差。
1.3覆盖方案论证根据高铁覆盖有三种覆盖实施方式:1)方案一:采用现网基站优化+数字直放站补盲方式2)方案二:采用分布式基站(BBU+RRU)3)方案三:采用现网基站优化+随行直放站2.基站优化+数字直放站2.1CRRU设备简介数字光纤直放站利用光纤传输信号,相对于其它类型直放站有信号稳定、通信质量好、干扰小、没有隔离度问题等优点。
2.1.1. 设备系统框图重发主端口重发分集端口2.1.2. CRRU 与传统直放站的比较2.1.3. CRRU 与基站设备的比较2.2容量及链路分析2.2.1.容量计算列车行车“自动闭塞区间”为10公里左右,在20公里范围内,单向仅一列列车,对于复线铁路,最多同时有2列客车通行,以此来进行话务量的预测:1)最大客流量分析根据目前国内的客车情况,普通16节客车,硬座单车满员108人,硬卧满员单节60人,软卧单节满员36人,通常一列火车硬卧不少于2节,软卧不少于1节,基于此,每列普通客车的满员人数约1600人,则总客流量估计不少于3200人。
按超员20%计算,则总客流量不少于3840人。
2)CDMA手机持有率分析根据目前移动通信的发展状况,我们按手机持有率85%计算,其中CDMA 用户占有率按10%。
3)人均忙时话务量分析人均忙时话务量按0.02Erl计4)最大话务量计算计算公式:最大话务量(Erl)=总人数*手机持有率*CDMA用户占有率*人均忙时话务量。
预测C网最大突发话务量=3840*85%*10%*0.02=6.53Erl。
对应爱尔兰表,按2%呼损率,对于CDMA网,需要提供11个话务信道。
高速铁路手机信号专网覆盖关键技术摘要:随着高速铁路网的建成,高速铁路手机信号网络覆盖需求越来越高,采用何种网络覆盖方式对高速铁路覆盖显得尤为重要,以下介绍是本人在工作中接触并且实际应用的一种覆盖方式。
关键词:高速铁路隧道专网大网泄漏电缆一、背景2004年1月,国务院常务会议讨论通过了《中长期铁路网规划》,这是国务院批准的第一个行业规划,也是截至2020年我国铁路建设的蓝图。
正是2004年1月通过的这份纲领性文件,促使青藏铁路提前一年建成通车,指导全国铁路第六次大面积提速成功实施,让大秦铁路突破世界重载运量极限,更推动京津城际铁路开通运营,开辟了中国高速铁路的新纪元。
铁路网规划建设四横四纵客运专线,建设客运专线1.2万公里以上,客车速度目标值达到每小时200公里及以上。
具体建设内容:1、“四纵”客运专线:⑴北京-南京-上海客运专线,贯通京津至长江三角洲东部沿海经济发达地区;⑵北京-武汉-广州-深圳客运专线,连接华北和华南地区;⑶北京-沈阳-哈尔滨(大连)客运专线,连接华北和东北地区;⑷杭州-宁波-福州-深圳客运专线,连接长江三角洲、珠江三角洲和东南沿海地区。
2、“四横”客运专线:⑴徐州-郑州-西安-兰州客运专线,连接华东和西北地区;⑵上海-杭州-南昌-长沙-贵阳-昆明客运专线,连接华东、华中和西南地区;⑶青岛-石家庄-太原客运专线,连接华东和华北地区;⑷上海-武汉-重庆-成都客运专线,连接西南和华东地区。
二、高速铁路网信号覆盖解决方式随着高速铁路网的建成,时速达到200公里/小时至350公里/小时,对铁路网手机信号覆盖提出了更高的要求。
1、新建高速铁路客运专线对列车覆盖带来的不利影响:(1)列车车体损耗大,信号屏蔽严重;(2)列车速度快,频偏严重;(3)切换频繁,掉话率高;(4)位置更新频繁,信令负荷大;根据以上对高速铁路带来的不利影响分析,我们认为采用光纤RRU拉远专网覆盖方式更适合高速铁路覆盖,专网形成独立网络,使用独立的载频资源。