风机水泵的变频调速节能分析
- 格式:pdf
- 大小:408.97 KB
- 文档页数:3
风机水泵变频调速的节能运行原理风机和水泵是典型的变转矩负载。
变转矩负载的特性是转矩随速度的上升而上升。
风机和水泵的电动机的轴功率P 与其流量(风量)Q ,扬程(压力)H 之间的关系式如下:P ∝Q×H ④当流量由Q 1变化到Q 2时,电动机的转速为N 1、N 2,Q 、H 、P 相对于转速的关系如下:Q 2=Q 1×(N 2/N 1)H 2=H 1×(N 2/N 1)2 ⑤ P 2=P 1×(N 2/N 1)3而电动机的轴功率P 和转矩T 的关系为: T ∝P /N 因此:T 2=T 1×(N 2/N 1)2 ⑥由式⑤和式⑥可以看出,风机和水泵的电动机的轴功率(功率输出)与转速的3次方成正比,而转矩与转速的2次方成正比。
图6(a )显示出了风机和水泵的扬程(压力)与风量(流量)的关系曲线,图6(b )显示出转矩与电机速度的关系曲线:从图6中可以看出,在低速时,功率会有很大的下降。
由于风机或水泵运行于额定转速以上是恒功率调速,此时风机和水泵效率很低,机械磨损大,容易损坏电机。
从理论上讲,速度降低10%时会带来30%左右的功率下降,由于功率的大幅度降低,可获得显著的节能效果。
风机水泵在改用变频调速前,要根据实际工况首先取得设备运行的技术参数,进行改造前的一些必要的技术论证,计算是其中最为重要的一个环节,而节能估算又是论证计算中关系到用户是否体现经济效益的重要环节。
在节能方面的计算是无法非常精确的,这是由于实际工况中有许多无法精确预算的影响因素存在。
因此,只能称其为“节能估算”。
节能是指能量形式相互转换过程。
包括能量转换为功的过程中,H 2H 1转矩T 功率P 21转速 100%图6(a)图6(b)努力减少多余的能量消耗,即所谓“所费多于所当费,或所得少于所可得”的那部分能耗,而“当费”与“可得”的那部分是不能被节约的。
对于电力产生的消费来说,“可得”是指发电机应得到的发电效果,“当费”是指用电器(包括电动机)做功的耗效果。
举例说明离心式风机与水泵采用变频调速节能的原理在各种工业用风机、水泵中,如锅炉鼓、引风机、深井、离心泵等,大部分是额定功率运行,而它们的能耗都与机组的转速有关。
通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
风机流量的设计均以最大风量需求来设计,其调整方式采用调节风门、挡板开度的大小、回流、启停电机等方式控制,无法形成闭环控制,也很少考虑省电。
这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。
在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。
从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
同样,离心式水泵在我国当前的工业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,水泵流量的设计同样为最大流量,压力的调控方式只能通过控制阀门的大小、电机的启停等方法。
这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。
电气控制采用直接或Y-△启动,不能改变风机和水泵的转速,无法具有软启动的功能,机械冲击大,传动系统寿命短,震动及噪声大,功率因数较低等是其主要难点。
为解决这些难题,相关科研技术人员根据生产需要对风机和水泵等装置的转速进行控制和调节以适应工艺要求和运行工况,在满足生产需求的基础上又节约了能源。
所以,变频调速对生产生活具有十分重要的意义,这也就意味着我们有必要了解风机和水泵等装置采用变频调速节能的原理。
为了对变频调速节能原理有更清晰、更深入的理解,我们可以先从变频器的工作原理出发。
变频器电路(见下图)的基本工作原理为:三相交流电源经二极管整流桥输出恒定的直流电压,由六组大功率晶体管组成逆变器,利用其开关功能,由高频脉宽调制(PWM)驱动器按一定规律输出脉冲信号,控制晶体管的基极,使晶体管输出一组等幅而不等宽的矩形脉冲波形,其幅值为逆变器直流侧电压Vd而宽度则按正弦规律变化,这一组脉冲可以用正弦波来等效,此脉冲电压用来驱动电机运转,通过控制PWM驱动器输出波形的幅值和频率,即可改变晶体管输出波形的频率和电压,达到变频调速的目的。
风机泵类变频节能的工作原理变频调速节能装置的节能原理1、变频节能由流体力学可知,P(功率)=Q(流量)╳H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,假如水泵的效率肯定,当要求调整流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
即水泵电机的耗电功率与转速近似成立方比的关系。
例如:一台水泵电机功率为55KW,当转速下降到原转速的4/5时,其耗电量为28.16KW,省电48.8%,当转速下降到原转速的1/2时,其耗电量为6.875KW,省电87.5%。
2、功率因数补偿节能无功功率不但增加线损和设备的发热,更主要的是功率因数的降低导致电网有功功率的降低,大量的无功电能消耗在线路当中,设备使用效率低下,铺张严峻,由公式P=S╳COSФ,Q=S╳SINФ,其中S -视在功率,P-有功功率,Q-无功功率,COSФ-功率因数,可知COSФ越大,有功功率P越大,一般水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,COS Ф≈1,从而削减了无功损耗,增加了电网的有功功率。
3、软启动节能由于电机为直接启动或Y/D启动,启动电流等于(4-7)倍额定电流,这样会对机电设备和供电电网造成严峻的冲击,而且还会对电网容量要求过高,启动时产生的大电流和震惊时对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。
而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开头,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,延长了设备和阀门的使用寿命。
节约了设备的维护费用。
变频调速节能装置的节能原理1、变频节能由流体力学可知,P(功率)=Q(流量)╳H(压力),流量Q与转速N的一次方成正比,压力H与转速N的平方成正比,功率P与转速N的立方成正比,假如水泵的效率肯定,当要求调整流量下降时,转速N可成比例的下降,而此时轴输出功率P成立方关系下降。
风机水泵的变频调速节能分析
节能降耗、增加效益是全社会应为之努力的方向。
我国的电动机用电量占全国发电量
的60%~70%,风机、水泵设备年耗电量占全国电力消耗的1/3。
应用于风机、水泵等设备的传统方法是通过调节出口或入口的挡板、阀门开度来控制给风量和给水量,其输出功
率大量消耗在挡板、阀门地截流过程中。
另外,由于在通常的设计中为了满足峰值需求,
水泵选型的裕量往往过大,也造成了不应有的浪费。
根据风机、水泵类的转矩特性,采用
变频调速器来调节流量、风量,将大大节约电能。
下面就分析一下在风机水泵类负载中使
用变频器所能达到的效果。
一,通过变频调速达到的一次节能。
下面以水泵为例来说明,由图1可以看到:
流量Q正比于转速n
压力H正比于n2
转矩T正比于n2
功率P正比于n3
图1 水泵流量、压力、功率曲线…
在普通的水泵流量控制中使用阀门来调节,如图2所示:
图2 阀门控制水泵流量
管道阻力h与流量Q的关系为h正比于RQ2,其中R为阻力系数
电机在恒速运行时,流量为100%情况下(工作点为A),水泵轴功率相当于Q1AH1O
所包容的面积。
电机在恒速运行时,采取调节阀门的办法获得70%的流量(工作点为B),将导致
管阻增大,水泵轴功率相当于Q2BH2O所包容的面积,所以轴功率下降不大。
采用变频调速控制流量时,由于管道特性没有改变,水泵特性发生变化(工作点为C),轴功率与Q2CH3O所包容的面积成正比。
故其节能量与CBH2H3所包容的面积成正比,
输入功率大大减小。
如图3所示:
图3 变频调节水泵流量
正如前面提到的,轴功率P与转速n的三次方成正比。
采用变频器进行调速,当流量
下降到80%时,转速也下降到80%,而轴功率N将下降到额定功率的51.2%,如果流量下降到60%,轴功率N可下降到额定功率的21.6%,当然还需要考虑由于转速降低会引起的效
率降低及附加控制装置的效率影响等.即使这样,这个节能数字也是很可观的,因此在装有风机水泵的机械中,采用转速控制方式来调节风量或流量,在节能上是个有效的方法。
二,变频调速所实现的二次节能
变频调速自动根据负载情况调整输出电压,通过对电机的最佳励磁,有效地降低了无
功损耗,提高系统功率因数,降低电机工作噪音, 延长电机使用寿命。
电动机的总电流(IS)为电机励磁电流(IM)与电机力矩电流(IT)的矢量和, IS和IM夹角的余弦值即为电动机的功率因数;
电机励磁电流决定于加在电机线圈上的电压, 在工频状态下, 交流电压为380V恒定不变, 因此励磁电流也不会改变;
在变频状态下, 变频器自动检测负载力矩, 根据实际负载决定输出电压, 因此在负载较低的时候自动降低输出电压, 以维持最高的功率因数.
由于变频器自动降低了电机励磁电流, 使得输出总电流明显低于工频工作的总电流, 节约了线路中的损耗和无功功率的损失;
这个功能在丹佛斯VLT系列变频器中称为AEO功能(Automatic Energy Optimization, 自动节能功能).
声明:上海津信电气有限公司拥有此篇技术文档的所有权,任何人如需转载,必须表明出处。