同济版高等数学(第七版,下册)第八章 向量代数与空间解析几何 单元测试题 含答案
- 格式:doc
- 大小:497.19 KB
- 文档页数:9
8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。
4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。
第八章一、填空题8.1.1.1、点)1,3,2(-M 关于xoy 面的对称点是)1,3,2(-- .8.1.2.3、向量)2,20(),1,4,2(-=-=b a ϖϖ,则同时垂直于b a ϖϖ,的单位向量为)1,1,1(31--±. 8.1.3.1、向量=⊥-=-=c ,),,2,1(),1,1,3( 则: 且 b a c b a ϖϖϖϖ 1 . 8.1.41、点)1,2,1(M 到平面01022=-++z y x 的距离为 1 .8.1.51、. 过点02)1,2,1(=+-z y x 与平面 平行的平面方程为12=+-z y x 8.1.6.2、平面3=y 在坐标系中的位置特点是 平行xoz 面 .8.1.7.2、过三点A (2,0,0),B (0,3,0),C (0,0,4)的平面方程为1432=++z y x . 8.1.8.2、过两点)(,(2,0,1),1,2321--M M 的直线方程是12241-==-+z y x . 8.1.9.3、过点)4,2,0(且与平面2312=-=+z y z x 及都平行的直线是14322-=-=-z y x . 8.1.10.3、曲面z y x =-22在xoz 面上的截痕的曲线方程为⎩⎨⎧==02y z x . 二、选择题8.2.1.2、点)3,0,4(在空间直角坐标的位置是 ( C )A .y 轴上; B. xoy 平面上; C. xoz 平面上; D. 第一卦限内。
8.2.2.2、设AB 与u 轴交角为α,则AB 在u 轴上的投影AB j u Pr = (C )A .αcos ; B. αsin ; C. α ; D. α.8.2.3.2、两个非零向量b a ρρ与互相垂直,则 ( B )A .其必要不充分条件是0=⋅b a ϖϖ; B. 充分必要条件是0=⋅b a ϖϖ;C .充分不必要条件是0=⋅b a ϖϖ; D. 充分必要条件是0=⨯b a ϖϖ.8.2.4.2、向量),,(z y x a a a a =ϖ, ),,(z y x b b b b =ϖ 且 0=++z z y y x x b a b a b a 则 ( C )A. b a ϖϖ//;B. λλ(b a ϖϖ=为非零常数) ;C. b a ϖϖ⊥ ;D. 0ϖϖϖ=+b a .8.2.5.2、平面0633=--y x 的位置是 ( B )A .平行xoy 面;B . 平行z 轴 ; C. 垂直z 轴; D. 通过z 轴.8.2.6.2、过点131111)1,1,1(--=+=-z y x 与直线 垂直的平面方程为 ( A ) A. 1=-+z y x ; B. 2=-+z y x ;C. 3=-+z y x ;D. 0=-+z y x .8.2.7.2、直线37423L z y x =-+=-+:与平面3224=--z y x 的位置关系是( A ) A .平行; B. 直线在平面上; C. 垂直相交; D. 相交但不垂直.8.2.8.2、xoy 面上曲线369422=-y x 绕x 轴旋转一周,所得曲面方程是( C )A .369)4222=-+y z x (; B. 36)(9)42222=+-+z y z x (; C. 36)(94222=+-z y x ; D. 369422=-y x .8.2.9.2、球面2222R z y x =++与平面a z x =+交线在xoy 平面上投影曲线方程是( D )A .2222)R z y z a =++-(; B. ⎩⎨⎧==++-0)(2222z R z y z a ; C. 2222)(R x a y x =-++; D. ⎩⎨⎧==-++0)(2222z R x a y x 8.2.10.3、方程⎩⎨⎧==++13694222y z y x 表示 ( B )A .椭球面; B. 1=y 平面上椭圆;C. 椭圆柱面;D. 椭圆柱面在平面0=y 上的投影曲线.三、计算题8.3.1.2、 一平面过点)1,0,1(-,且平行于向量)0,1,1()1,1,2(-==b a ϖϖ和,求这个平面。
一:向量代数与空间几何定理1:设0 ≠a ,则向量b 与a 平行的充要条件为:存在唯一的实数λ,使得a bλ=。
证:充分性:已知一个向量a ,且0 ≠a ,因为规定a λ是一个向量,当0>λ,方向与a相同;当0<λ时,方向与a相反,但方向无论是相反还是相同,都成为两向量共线,即平行,故由a b λ=,所以向量b 与a平行。
必要性:已知a b //,且0 ≠a ,故设b 与a的模长相差一个λ倍关系,即a b =λ,故而b a a==λλ,即a λ的模长等于b 的模长,当b 与a 同向时,令0>λ,则a λ与a 的方向相同,则此次b与aλ同向且等模,故a bλ=;当b与a 反向时,令0<λ,则a λ与a的方向相反,则此次b与aλ仍然同向且等模,故a bλ=仍成立;故又假设存在不等于λ的实数μ满足上面所述的关系,即a b μ=(λμ≠),故a b b)(0μλ-=-=,又0 ≠a ,故μλ=,与假设矛盾,故假设不成立,所以能满足上述关系的实数唯一。
注意:①当02=x 时,而022≠⋅z y ,即),0(22,z y b ,若b a //,则⇒=b aλ⎪⎪⎩⎪⎪⎨⎧====λλz z y y x x 2121210;②当022==y x 时,而02≠z ,即),0,0(2z b ,若b a //,则⇒=b aλ⎪⎪⎩⎪⎪⎨⎧=====z z y y x x 21212100λλλ,但是注意到无论λ=z z 21为何值,021==x x λ以及021==y y λ都恒成立,因为00⋅=λ时,λ可以取任意实数。
故就不需要约定z 1与z 2的关系,即⎪⎩⎪⎨⎧====002121y y x x λλ。
**4.向量的混合积cb ac b a ⋅⨯=)(][作用:①可以求平行六面体的体积;②可以判定a,b,c三个向量是否共面。
推导:假设有如图所示的一个平行六面体,设底面积为S ,因为底面为一个平行四边形,故b a b b a a S⨯=⋅><=,sin ,而该六面体的高θcos c h =,根据叉乘的右手规则,得b a ⨯的方向垂直于底面,如图所示,则θ即为b a z⨯=与c 所成的夹角,故该六面体的体积c b a V c z c c z z c b a h S V⋅⨯=⇒⋅=><=⨯=⋅=)(,cos cos θ,故向量的混合积等于一个以a ,b ,c三个向量为邻边的平行六面体的体积;注意到当混合积的值为零时,该平行六面体的体积就为零,也就是说a,b,c三个向量为棱不能构成平行六面体,这种情况就只有三个向量在同一个平面时才能满足,即a,b ,c 三个向量共面。
军教院第八章空间解析几何测试题一、填空题(共7题,2分/空,共20分)1. 四点O(0,0,0) , A(1,0,0) , B(0,1,1), C(0,0,1)组成的四面体的体积是2. ____________________________________________________________ 已知向量 a (1,1,1), b (1,2,3), c (0,0,1),则(a b) c =__(-2,-1,0) _________________3. ------------------------------------------------------------------------------- 点(1,0,1)到直线3x X z y 0的距离是一晋 ---------------------------------------- 4•点(1,0,2)到平面3x y 2z 1的距离是3皿_75.曲线C: 0对xoy坐标面的射影柱面是对yoz坐标面的射影柱面是—(z 1)2 y2 z 0 ________________ ,对xoz坐标面的射影柱面是____ z x 1 0 _____________ .26.曲线C: x y绕x轴旋转后产生的曲面方程是x4 4(y2 z2) ,曲线z 0 —C绕y轴旋转后产生的曲面方程是_x2 z2 2y ______________________ .2 2 27.椭球面—— 1的体积是??????9 4 25 —二、计算题(共4题,第1题10分,第2题15分,第3题20分,第4题10分, 共55分)1.过点P(a,b,c)作3个坐标平面的射影点,求过这3个射影点的平面方程.这里a,b,c是3个非零实数.解:设点P(a,b, c)在平面z 0上的射影点为M1(a,b,0),在平面x 0上的射影ujujmr f点为M2(0, a,b),在平面y 0上的射影点为M3(a,0, c),贝U M1M2 ( a,0,c),lULULUM1M3 (0, b,c)3.求曲线2y绕x 轴旋转产生的曲面方面1解:设皿1(为,丫1,乙)是母线x 22y上任意一点则过皿1(为』1, z ,)的纬圆方程是⑵由于 V 1 V 2(0,0, 2), V 1 V 2uuJuuuuuuuulr 阿皿2,川2)11和12间的距离d ----------------------V 1 v 2uuuuuir 于是 IVh , M,M 2 , uuuuuuM 側3所确定的平面方程是 即 bc(x a) ac(yb) abz 0 .2-已知空间两条直线'1::y0 o ,l 2:(1)证明11和12是异面直线;(2)求11和12间的距离;(3) 求公垂线方程.证明:(1)11的标准方程是-1片今,h 经过点艸1,方向向量 V 1 {1, 1,0} I 2的标准方程是,12经过点M 2(0,0, 2),方 向向量V 2{1,1,0},于uujuir(M 1M 2M V 2)0,所以11和12是异面直线。
462第八章 向量代数与空间解析几何一、预习导引第一节 向量及其线性运算1. 中学阶段已经学习了向量的概念、线性运算及运算规律.阅读本节前两部分的内容,从中找出与你以前学过的向量有关内容不同之处.2. 尝试自己画出空间直角坐标系的图形,确认每一个卦限的方位.你能找出坐标轴上的点、坐标面上的点及各卦限内的点的坐标的特点吗?空间任意一个向量你能用坐标表示吗?阅读本节第三部分内容,从中找出答案.3. 在空间直角坐标系中,向量可以用坐标来表示,那么向量的线性运算是否也可以利用坐标作运算?点的坐标表示与向量的坐标表示有区别吗?利用坐标进行向量运算要注意什么问题?仔细阅读本节第四部分内容,你将会正确解答这些问题.4. 在空间直角坐标系中画出向量()1,2,2OM =,利用本节第三部分知识,求向量OM 的模及它与,,x y z 三个坐标轴的夹角(分别设为,,αβγ,称为向量的方向角)的余弦cos ,cos ,cos αβγ,并考察向量的模、方向余弦与其坐标的关系.这种关系式可以推广到空间任意向量吗?阅读本节第五部分的1、2,验证你的结论是否正确.在书上画出来空间任意两点间的距离公式.5 .阅读本节第五部分的3,细心体会向量在轴上的投影概念.向量(),,OM x y z =在三个坐标轴上的投影分别是什么?与向量OM 在三个坐标轴上的分向量有什么区别?注意向量投影的性质.第二节 数量积 向量积 *混合积1. 中学阶段我们已经学习了平面上两向量的数量积的定义、坐标表示及运算规律,请你尝试把数量积的定义、坐标表示及运算规463 律推广到空间向量.阅读本节第一部分内容,验证你的推论.2. 两向量的向量积是一个向量,怎样确定这个向量的模、方向及向量积如何用坐标表示、有什么运算规律?带着这些问题阅读本节第二部分,从中找出答案.3. 向量的混合积顾名思义,是指既含有向量积又含有数量积的向量运算,即()a b c ⨯⋅.根据本节前两部分所学知识,用坐标表示向量的混合积()a b c ⨯⋅;混合积()a b c ⨯⋅的几何意义是什么?阅读本节第三部分内容,检验你的结论.第三节 平面及其方程1. 在平面解析几何中,把平面曲线看作动点的轨迹,建立了曲线和二元方程之间的关系,那么空间曲面或曲线是否也可以看作动点的几何轨迹,建立三元方程或方程组之间的关系?阅读曲面方程与空间曲线方程的概念,从你熟悉的学习和生活实践中举例说明这些概念.2. 用坐标表示向量()0000,,M M x x y y z z =---垂直于向量(),,n A B C =.把(),,M x y z 看作动点,满足0M M n ⊥的点M 的集合在空间表示怎样的图形?如果把n 换为2n ,0M M n ⊥的坐标表示式会变吗?换为任意非零常数乘以n 呢?仔细阅读本节第二部分,回答上述问题,揣摩用平面的点法式方程求解的问题类型.3. 平面方程0Ax By Cz D +++=中,,,,A B C D 中任意一个为零、任意两个为零及,,A B C 中任意两个为零且0D =时,它们对应的几何图形分别有什么特点?阅读本节第三部分,总结特殊的三元一次方程所表示的平面的特点.4. 阅读本节第四部分,弄清楚两平面的夹角的概念,夹角取值的范围,并用向量的坐标表示两平面的夹角.思考如何判断两平面的位置关系.推导空间中的点到平面的距离公式.第四节 空间直线及其方程4641. 从几何的角度看,两张相交平面确定一条直线L ,直线L 用动点的坐标表示,即由两个三元一次方程构成的方程组.通过空间一条直线L 的平面有多少?L 的方程唯一吗?阅读本节第一部分,从中找出答案.2. 用坐标表示向量()0000,,M M x x y y z z =---平行于向量(),,s m n p =.把(),,M x y z 看作动点,满足0//M M s 的点M 的集合在空间表示怎样的图形?如果把s 换为2s ,0//M M s 的坐标表示式会变吗?换为任意非零常数乘以s 呢?仔细阅读本节第二部分,回答上述问题,在书上画出直线的对称式方程和参数式方程.3. 阅读本节第三部分,弄清楚两直线夹角的取值范围.如何计算两直线的夹角?如何判断两直线的位置关系?4. 阅读本节第四部分,弄清楚直线与平面的夹角的取值范围.如何计算直线与平面的夹角?如何判断直线与平面的位置关系?分析平面束方程与三元一次方程的关系.第五节 曲面及其方程1. 阅读本节第一部分内容,通过例1与例2仔细揣摩:已知空间曲面如何建立其方程;已知坐标,,x y z 间的一个方程怎样研究它所表示的曲面的形状.2. 阅读本节第二部分内容,找出在进行旋转曲面方程的推导过程中,变化的量和不变的量,总结旋转曲面的方程的特点.思考给定一个三元二次方程,你能判断出它是否是旋转曲面?如果是,你能给出它的母线的方程和轴吗?它的母线唯一吗?3. 柱面方程的特点是什么?它的图形有什么特点?柱面方程与平面曲线方程有什么区别与联系?带着这些问题,阅读本节第三部分内容,从中找出答案.4. 阅读本节第四部分内容,从中找出下列问题的答案,怎样方程表示的曲面是二次曲面?常见的二次曲面有哪些?它们的图形是怎样的?。
高等数学A(2)复习题第八章 空间解析几何与向量代数一、填空题1、空间坐标系中)1,1,2(),0,1,2(),0,0,0(B A O ,则向量AB 与OB 的夹角为__________.2、平面-2-60x y z +=和2-50x y z ++=的夹角θ= .3、设1,2,2a =-r (),1,1,4b =-r (),则夹角(,)a b ∧r r =_______.5、向量k j i k j i a ϖϖϖϖϖϖϖϖ22432-+=+-=β与的夹角为_____________.6、设点A 位于第I 卦限,向径OA u u u r 与x 轴,y 轴的夹角依次为π3和π4,且OA 6=u u u r ,则点A 的坐标为 .7、设0,1,2,1,1,3a b ==--r r ()(),则同时垂直于a ρ和b ρ的单位向量为 .8、向量2,3,6a =-r (),则与a ρ同向的单位向量为______________.9、设空间点A(1,-2,3),则与点A 关于原点对称的点的坐标为__________.10、设向量a ρ与2,1,2b =-r ()平行,18-=⋅b a ρρ,则向量a ρ= .11、设向量(3,2,1)a =-r ,4(2,,)3b k =r .已知a b ⊥r r ,则k =_____________. 14、设两向量分别为-a =r (1,2,2)和-b =r (1,1,4),则数量积a b ⋅r r =_______.15、设向量 1 , -1, k a =r ()与向量 2 , 4, 2b =r () 垂直,则k =_______.16、过点)3,1,2(-且垂直于直线11211-+==-z y x 的平面方程为 . 17、设一平面通过z 轴和点(3,1,2)-,则其方程为_____________________.18、直线22112z y x =-+=-与平面2342=+-z y x 的位置关系为 (填平行、垂直或斜交).19、将xOz 坐标面上的抛物线2z 20x y ⎧=⎨=⎩绕x 轴旋转一周,所生成的面方程为 . 20、曲线 ⎪⎩⎪⎨⎧==-01422z x y 绕x 轴旋转一周,所得的旋转曲面的方程为 . 21、xOy 坐标面上的曲线20x y -=绕x 轴旋转一周,所得的旋转曲面方程为 .22、点(1,2,1)到平面0253=--+z y x 的距离为 .23、点(1,2,1)到平面1x y z ++=的距离为____________.24、 直线 310x y z x y z ++=⎧⎨--=⎩与平面 10x y z --+=的夹角为 . 二、解答题1、求平行于x 轴,且过点)2,1,3(-M 及)0,1,0(N 的平面方程.2、求通过 x 轴和点( 4, – 3, – 1) 的平面方程.3、求通过点P (1,2,3)且垂直于两平面012, 02=++-=-+z y x z y x 的平面方程.4、求平行于xoz 坐标面且经过点(2,-5,3)的平面方程.5、求过点()2,0,3-且与直线-24-7035-210x y z x y z +=⎧⎨++=⎩垂直的平面方程.6、求过点)0,4,2(0M 且与直线 ⎩⎨⎧=--=-+023017:1x y z x l 平行的直线方程. 7、求过点)3,1,0(-且与平面0122:=--+z y x π垂直的直线方程,并求出直线与平面的交点坐标.8、求过点()2,1,3且与直线11321x y z +-==-垂直相交的直线的方程. 9、求过点)2,0,1(0-M 且与平面0643=+-+z y x 平行,又与直线14213:z y x L =+=- 垂直的直线方程. 三、综合题1、验证两直线12z 25y 1x :L 1-=-=与12z 14y 32x :L 2-=-=-相交,并求出它们所在的平面方程. 2、求过点A(1,1-1),B(-2,-2,2)和C(1,-1,2)三点的平面方程.。
练习题第八章 空间解析几何与向量代数(一). 向量a,b的运算1.设{}1,3,1-=a ,{}1,1,2-=b ,则与向量a ,b同时垂直的向量为( ).A . {}7,3,2-;B . {}7,3,2-; C. {}7,3,2--; D. {}7,3,2.2.设{}1,3,2-=a,{}3,1,1-=b ,则⨯-)(a b =a ( ).A . {}1,5,8--; B . {}1,5,8-;C. {}1,5,8-; D. {}1,5,8--.3.设a ,b ,c为非零向量,则下列结论中一定正确的是( ).A . 若c a b a ⋅=⋅,则c b =;B . 若c a b a⨯=⨯,则c b =;C. a b b a ⋅=⋅;D. a b b a ⨯=⨯.(二). 平面与直线4.(1)直线过点)3,2,0(-,且与平面014=++-z y x 垂直,则该直线的方程是(2)平面过点)2,0,1(-,且与直线331241-+=+=+z y x 垂直,则该平面的方程是 (3)设有直线⎩⎨⎧=+--=+++031020123:z y x z y x l 及平面0324:=-+-z y x π,则直线l 与π的关系5.(1)设曲面3222-+=y x z 上点P 处的切平面平行于平面0742=+++z y x ,则点P 的坐标是(2)设曲面222y x z -=上点P 处的法线于垂直平面0142=-+-z y x ,则点P 的坐标是A. 平行于πB. 在π上C. 垂直于πD. 与π斜交第九章 多元函数微分学(一). 求一、二阶偏导数6.x y y x z sin sin 33+=,则yx z ∂∂∂2= , =dz .(二). 求隐函数的全微分(提示:公式法,移项化为(,,)0F x y z =,计算,,x y z F F F 。
)11.设xy e z z=+,求dz 和yx z ∂∂∂2.解13.),(y x z z =由)(z y x z ϕ+=(0)(1≠'-z y ϕ,ϕ可导)所确定,求,z z x y∂∂∂∂ 解:14.设方程0),(2222=--y z x z f 确定了函数),(y x z z =,其中f 有连续偏导数,证明1=∂∂+∂∂yzy z x z x z . 证明:(三). 二元函数的极值点15.二元函数22242),(y x y x y x f ---=的驻点是( ).A .)1,1(--; B. )1,1(-; C. )1,1(-; D. )1,1(16.设0),(00=y x f x ,0),(00=y x f y ,则( ).A . 二元函数),(y x f 在),(00y x 处连续; B. 二元函数),(y x f 在),(00y x 处的全微分为零; C . ),(00y x 为二元函数),(y x f 的极值点;D.),(00y x 为二元函数),(y x f 的驻点.17.若xy z =,则下列结论中错误的是( ).A . 二元函数xy z =在)0,0(处连续; B. 0)0,0(=x f ,0)0,0(=y f ; C . 0)0,0(=dz ;D.)0,0(为二元函数),(y x f 的极值点.18.设二元函数),(y x f 可微,若),(00y x f 为),(y x f 的极值,则( ).A . ),(00y x f 必为),(0y x f 的极值;B. ),(00y x f 必为),(0y x f 的极值;C . 0),(00=y x f x ,0),(00=y x f y ;D. 以上结论都是正确的.* 某厂要用铁板做一个体积为2m 3的有盖长方体水箱,问当长、宽、高各取怎样的尺寸时, 才能使用料最省?第十章 重积分(一). 交换二次积分的积分次序(直角坐标)19.将二次积分换序:⎰⎰y y dx y x f dy 2),(10= .20.改变二次积分的积分次序:⎰⎰=10),(y ydx y x f dy ( ). A.⎰⎰x x dy y x f dx 2),(10; B. ⎰⎰201),(x dy y x f dx ; C.⎰⎰110),(xdy y x f dx ; D. ⎰⎰xdy y x f dx 01),(.21.设),(y x f 为连续函数,则=⎰⎰x dy y x f dx 010),(( ). A. ⎰⎰y dx y x f dy 010),(; B.⎰⎰110),(ydx y x f dy ;C.⎰⎰ydx y x f dy 110),(; D.⎰⎰110),(dx y x f dy .22.改变二次积分的积分次序:⎰⎰1102),(x dy y x f dx ( ). A.⎰⎰1002),(y dx y x f dy ; B. ⎰⎰110),(ydx y x f dy ;C.⎰⎰1102),(y dx y x f dy ; D. ⎰⎰ydx y x f dy 010),((二). 二重积分的计算(利用性质,利用对称性,直角坐标,极坐标) 23.设D :122≤+y x ,),(y x f 在D 上连续,且 σd y x f xy y x f D⎰⎰-+=),(1),(,则=⎰⎰σd y x f D),(24.设D :20,10≤≤≤≤y x ,),(y x f 在D 上连续,且 σd y x f xy y x f D⎰⎰+=),(),(,则=),(y x f .25.设Ω:10,10,10≤≤≤≤≤≤z y x ,则=⎰⎰⎰Ωdv z xy 3121 .26.设D :10,10≤≤≤≤y x ,则=+⎰⎰σd eyx D.(三). 三重积分的计算(柱面坐标,截面法)注:在用高斯公式计算第二类曲面积分中用到。
a b a b
+=-,则必有(与三个坐标轴夹角均相等的单位向量为(
()
1,1,1(B)
111
,,
⎛⎫
⎪
11
,,
⎛
(D)
1
,
⎛
--
18. 直线 L通过点)1,2,1(A,且垂直于直线
1
11 :
321 x y z
L -+
==,又与平面
1
:23
y z
∑-=平行,求直线
L的方程.
19. 求过点()
2,3,4
A-与
1:2330 x y z
π-+-=及
2:54370 x y z
π+--=平行的直线方程.
20. 求过点(2,1,1),平行于直线
212
321
x y z
-+-
==
-
且垂直于平面2350
x y z
+-+=的平面方程.
21. 求过点M (3,-1,2)且平行于直线⎩⎨⎧=++=++923212z y x z y x 和⎩⎨⎧=++=+--0
3032z y x z y x 的平面方程.
22. 求过直线
2
23221-=-+=-z y x 且垂直于平面0523=--+z y x 的平面方程.
23. 求过点)3,4,1(--并与下面两直线
⎩⎨⎧-=+=+-53142:1y x z y x L 和⎪⎩⎪⎨⎧+-=--=+=t z t y t x L 23142:2都垂直的直线方程.
24. 直线过点)1,1,1(且与直线12121:
-==-z y x L 相交,又平行于平面0522=++-z y x ,求此直线方程.
25. 设直线l 1 :
158121x y z --+==-,直线l 2 : 623
x y y z -=⎧⎨+=⎩求两直线的夹角
解:用点向式.所给直线的方向向量1{3,2,1}=s ,所给平面的法向量1{0,2,1}n =-.
11321436021
⨯==-++-i
j k s n i j k , (4分)
由题设知,所求直线的方向向量1s ⊥s 且1s ⊥n ,取11()436s =⨯=-++s n i j k ,于是所求直线方程为
121:436
x y z L ---==- . (7分)
19. 求过点()2,3,4A -与1:2330x y z π-+-=及2:54370x y z π+--=平行的直线方程。
解:所求直线的方向向量可取:
21
392113543i
j k s i j k =-=-++- 3分 所求直线的方程为:
23492113
x y z -+-==-. 7分 20. 求过点(2,1,1),平行于直线212321
x y z -+-==-且垂直于平面2350x y z +-+=的平面方程. 解:用点法式.所给直线的方向向量{3,2,1}=-s ,所给平面的法向量1{1,2,3}n =-.
1321484123
⨯=-=-++-i
j k s n i j k , (4分)
由题设知,所求平面的法向量⊥n s 且1⊥n n ,取11()24
=-⨯=--n s n i j k ,于是所求平面方程为 (2)2(1)(1)0x y z -----=,
即 210x y z --+=. (7分)
21. 求过点M (3,-1,2)且平行于直线⎩⎨⎧=++=++923212z y x z y x 和⎩⎨⎧=++=+--0
3032z y x z y x 的平面方程。
解:依题意可知直线⎩⎨⎧=++=++923212z y x z y x 的方向向量1121232
==-i j k s i k 2分
直线⎩⎨⎧=++=+--03032z y x z y x 的方向向量2211237131
=--=-+i j k s i j k 则平面的法向量121
013933(3)23
7n s s j i j k =⨯=-=---=-++-i j
k i k 4分
所求平面方程为
(x-3)+3(y+1)+(z-2)=0 或x+3y+z-2=0 7分
22. 求过直线2
23221-=-+=-z y x 且垂直于平面0523=--+z y x 的平面方程。
解: 直线的方向矢量{}2,3,2-=→s ,已知平面的法矢量为{}1,2,3-=→n ,设所求平面的法矢量,*→n ,由题意→
→⊥n
n *且→→⊥s n *, (2分) 故可令,138123232*→
→→→
→→→→→++-=--=⨯=k j i k j i n s n (4分)
于是所求平面方程为.0)2(13)2(8)1(=-+++--z y x
即 09138=+--z y x 。
(6分)
23. 求过点)3,4,1(--并与下面两直线 ⎩⎨⎧-=+=+-53142:1y x z y x L 和⎪⎩
⎪⎨⎧+-=--=+=t z t y t x L 23142:2都垂直的直线方程. 解:设所求直线方程为{},,,,
341n m l s nt z mt y lt x =⎪⎩
⎪⎨⎧+=+-=+-=→
(2分) 直线1L 与2L 的方向矢量分别为{}{},2,1,410,1,321-=-=→→s s 由题意有,,21→
→→→⊥⊥s s s s ,
故 ,46120240103⎩
⎨⎧-=-=⇒⎩⎨⎧=+-=++-n m n l n m l n m l 令1=n , (4分) 则所求直线为.3464121⎪⎩
⎪⎨⎧+=--=--=t z t y t x (7分)
24. 直线过点)1,1,1(且与直线1
2121:-==-z y x L 相交,又平行于平面0522=++-z y x ,求此直线方程. 解:过点),,(111与平面2250x y z -++=平行的平面方程为:2210x y z -+-=。
(2分)
记为1π 。
将直线
12121:-==-z y x L 改写成参数方程122x t y t z t =+⎧⎪=⎨⎪=+⎩
, (4分) 带入1π求出1π与L 的交点对应的参数1t =-,其对应的交点为(1,1,1)-- 故所求的直线方程为:
111220
x y z ---== (7分) 25. 设直线l 1: 158121x y z --+==-,直线l 2 : 623
x y y z -=⎧⎨+=⎩求两直线的夹角 解 因为直线1l 的方向向量1(1,2,1)s =-
直线2l 的方向向量2101011110210102021
i j k
s i j k --=-=-+ 2i j k =--+ 11
121cos 2
s s s s θ⋅==, 3πθ= 所以两直线的夹角为
3
π。