高等数学第七版下册(同济)-部分知识点
- 格式:pdf
- 大小:621.26 KB
- 文档页数:5
1.设u =a -b +2c ,v =-a +3b -c .试用a ,b ,c 表示2u -3v .解2u -3v =2(a -b +2c )-3(-a +3b -c )=5a -11b +7c .2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平行四边形.证如图8-1,设四边形ABCD 中AC 与BD 交于M ,已知AM =MC ,MB DM =.故DC DM MC MB AM AB =+=+=.即DC AB //且|AB |=|DC |,因此四边形ABCD是平行四边形.3.把△ABC 的BC 边五等分,设分点依次为D 1,D 2,D 3,D 4,再把各分点与点A 连接.试以AB =c ,BC =a 表向量A D 1,A D 2,A D 3,A D4.证如图8-2,根据题意知511=BD a,5121=D D a,5132=D D a,5143=D D a,故A D 1=-(1BD AB +)=-51a -cA D 2=-(2BD AB +)=-52a -c A D 3=-(3BD AB +)=-53a -c A D 4=-(4BD AB +)=-54a -c.4.已知两点M 1(0,1,2)和M 2(1,-1,0).试用坐标表示式表示向量21M M 及-221M M .解21M M =(1-0,-1-1,0-2)=(1,-2,-2).-221M M =-2(1,-2,-2)=(-2,4,4).5.求平行于向量a =(6,7,-6)的单位向量.解向量a 的单位向量为a a ,故平行向量a 的单位向量为±a a =111±(6,7,-6)=⎪⎭⎫ ⎝⎛-±116,117,116,其中11)6(76222=-++=a .6.在空间直角坐标系中,指出下列各点在哪个卦限?A (1,-2,3),B (2,3,-4),C (2,-3,-4),D (-2,-3,1).解A 点在第四卦限,B 点在第五卦限,C 点在第八卦限,D 点在第三卦限.7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3,4,0),B (0,4,3),C (3,0,0),D (0,-1,0).解在坐标面上的点的坐标,其特征是表示坐标的三个有序数中至少有一个为零,比如xOy 面上的点的坐标为(x 0,y 0,0),xOz 面上的点的坐标为(x 0,0,z 0),yOz 面上的点的坐标为(0,y 0,z 0).在坐标轴上的点的坐标,其特征是表示坐标的三个有序数中至少有两个为零,比如x 轴上的点的坐标为(x 0,0,0),y 轴上的点的坐标为(0,y 0,0),z 轴上的点的坐标为(0,0,z 0).A 点在xOy 面上,B 点在yOz 面上,C 点在x 轴上,D 点在y 轴上.8.求点(a ,b ,c )关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标.解(1)点(a ,b ,c )关于xOy 面的对称点(a ,b ,-c ),为关于yOz 面的对称点为(-a ,b ,c ),关于zOx 面的对称点为(a ,-b ,c ).(2)点(a ,b ,c )关于x 轴的对称点为(a ,-b ,-c ),关于y 轴的对称点为(-a ,b ,-c ),关于z 轴的对称点为(-a ,-b ,c ).(3)点(a ,b ,c )关于坐标原点的对称点是(-a ,-b ,-c ).9.自点P 0),,(000z y x 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标.解设空间直角坐标系如图8-3,根据题意,P 0F 为点P 0关于xOz面的垂线,垂足F 坐标为),,000(z x ;P 0D 为点P 0关于xOy 面的垂线,垂足D 坐标为),,0(00y x ;P 0E 为点P 0关于yOz 面的垂线,垂足E 坐标为)0(0o z y ,,.P 0A 为点P 0关于x 轴的垂线,垂足A 坐标为),0,0(o x ;P 0B 为点P 0关于y 轴的垂线,垂足B 坐标为)0,,0(0y ;P 0C 为点P 0关于z 轴的垂线,垂足C 坐标为),0,0(0z .10.过点P 0),,(000z y x 分别作平行于z 轴的直线和平行于xOy 面的平面,问在它们上面的点的坐标各有什么特点?解如图8-4,过P 0且平行于z 轴的直线l 上的点的坐标,其特点是,它们的横坐标均相同,纵坐标也均相同.而过点P 0且平行于xOy 面的平面 上的点的坐标,其特点是,它们的竖坐标均相同.11.一边长为a 的正方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标.解如图8-5,已知AB=a ,故OA=OB=a 22,于是各顶点的坐标分别为A )0022(,,a ,B (),022,0(a ),C (-a 22,0,0),D (0,-a 22,0),E (a 22,0,a ),F (0,a 22,a ),G (-a 22,0,a ),H (0,-a 22,a ).12.求点M (4,-3,5)到各坐标轴的距离.解点M 到x 轴的距离为d 1=345)3(22=+-,点M 到y 轴的距离为d 2=415422=+,点M 到z 轴的距离为d 3=525)3(422==-+.13.在yOz 面上,求与三点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点.解所求点在yOz 面上,不妨设为P (0,y ,z ),点P 与三点A ,B ,C,)2()1(3222-+-+=z y,)2()2(4222++++=z y.)1()5(22-+-=z y==222222)2()2(4)2()1(3++++=-+-+z y z y 22)1()5(-+-=z y ,即.)1()5()2()1(9,)2()2(16)2()1(922222222-+-=-+-+++++=-+-+z y z y z y z y 解上述方程组,得y=1,z=-2.故所求点坐标为(0,1,-2).14.试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证由2798)63()14()102(,7)93()14()42(,7)96()11()410(222222222==-+++-==-+-+-==-+--+-=.+==故△ABC 为等腰直角三角形.15.设已知两点为M 1(4,2,1),M 2(3,0,2),计算向量21M M 的模、方向余弦和方向角.解向量21M M =(3-4,0-2,2-1)=(-1,-2,-1),2412-1-222==++=)()(.其方向余弦分别为cos α=-21,cos β=-22,cos γ=21.方向角分别为3,43,32πγπβπα===.16.设向量的方向余弦分别满足(1)cos α=0;(2)cos β=1;(3)cos α=cos β=0,问这些向量与坐标轴或坐标面的关系如何?解(1)由cos α=0得知2πα=,故向量与x 轴垂直,平行于yOz 面.(2)由cos β=1得知β=0,故向量与y 轴同向,垂直于xOz 面.(3)由cos α=cos β=0知2πβα==,故向量垂直于x 轴和y 轴,即与z 轴平行,垂直于xOy 面.17.设向量r 的模是4,它与u 轴的夹角为3π,求r 在u 轴上的投影.解已知|r |=4,则Prj u r=|r |cos θ=4∙cos 3π=4×21=2.18.一向量的终点在点B (2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7,求这向量的起点A 的坐标.解设A 点坐标为(x ,y ,z ),则AB =(2-x ,-1-y ,7-z ),由题意知2-x=4,-1-y=-4,7-z=7,故x=-2,y=3,z=0,因此A 点坐标为(-2,-3,0).19.设m =3i +4j +8k ,n =2i -4j -7k 和p =5i +j -4k .求向量a =4m +3n -p 在x 轴上的投影及在y轴上的分向量.解a=4m+3n-p=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k,a在x轴上的投影为13,在y轴上的分向量为7j.1.设k j i b k j i a -+=--=2,23,求(1)b a b a ⨯⋅及;(2)b a 2b 3a 2-⨯⋅及)(;(3)b a ,的夹角的余弦.解(1)),(),,(1-2,12-1-3⋅=⋅b a ,)()()(31-2-21-13=⨯+⨯+⨯==⨯b a 121213---kj i =(5,1,7).(2)1836)(63)2(-=⨯-=⋅-=⋅-b a b a )14,2,10()7,1,5(2)(22==⨯=⨯b a b a (3222222)1(21)2()1(33),cos(-++-+-+=⋅=b a b a b a 21236143==2.设c b a ,,为单位向量,满足.,0a c c b b a cb a ⋅+⋅+⋅=++求解已知,0,1=++===c b a c b a 故0=++⋅++)()(c b a c b a .即0222222=⋅+⋅+⋅+++a c c b b a c b a .因此23-21222=++-=⋅+⋅+⋅)(c b a a c c b b a 3.已知M 1(1,-1,2),M 2(3,3,1)M 3(3,1,3).求与3221,M M M M 同时垂直的单位向量.解21M M =(3-1,3-(-1),1-2)=(2,4,-1)32M M =(3-3,1-3,3-1)=(0,-2,2)由于3221M M M M ⨯与3221,M M M M 同时垂直,故所求向量可取为M M M M a =)(由3221M M M M ⨯=220142--k j i=(6,-4,-4),17268)4()4(6222==-+-+=⨯知).172,172,173()4,4,6(1721--±=--±=a 4.设质量为100kg 的物体从点M1(3,1,8)沿直线移动到点M2(1,4,2),计算重力所作的功(坐标系长度单位为m ,重力方向为z 轴负方向).解21M M =(1-3,4-1,2-8)=(-2,3,-6)F=(0,0,-100×9.8)=(0,0,-980)W=F ∙21M M =(0,0,-980)∙(-2,3,-6)=5880(J).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处,有一与1OP 成角1θ的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处,有一与2OP 成角2θ的力F 2作用着(图8-6),问1θ,2θ,x 1,x 2,21,F F 符合怎样的条件才能使杠杆保持平衡?解如图8-6,已知有固定转轴的物体的平衡条件是力矩的代数和为零,又由对力矩正负符号的规定可得杠杆保持平衡的条件为0sin sin 222111=-θθx F x F ,即222111sin sin θθx F x F =.6.求向量),(4,3-4=a在向量)(1,2,2=b 上的投影.解236122)1,2,2()4,3,4(Pr 222==++⋅-=⋅=b b a a j b .7.设)4,1,2(),2,5,3(=-=b a,问μλ与有怎样的关系,能使b a μλ+与z 轴垂直?解b a μλ+=λ(3,5,-2)+μ(2,1,4)=(μλμλμλ42,5,23+-++).要b a μλ+与z 轴垂直,即要(b a μλ+)⊥(0,0,1),即(b a μλ+)∙(0,0,1)=0,亦即(μλμλμλ42,5,23+-++)∙(0,0,1)=0,故(μλ42+-)=0,因此μλ2=时能使b a μλ+与z 轴垂直.8.试用向量证明直径所对的圆周角是直角.证如图8-7,设AB 是圆O 的直径,C 点在圆周上,要证∠ACB=2π,只要证明0=⋅BCAC 即可.由BC AC ⋅=)()(OC BO OC AO +⋅+=BO OC OC AO BO AO ⋅+⋅+⋅=0=+⋅-⋅+OC AO OC AO .故BC AC⊥,∠ACB为直角.9.已知向量j i c k j i b k j i a 23,32-=+-=+-=和,计算:(1)b c a c b a )()(⋅-⋅(2))()(c b b a +⨯+(3)cb a ⋅⨯)(解(1)8)3,1,1()1,3,2(=-⋅-=⋅ba ,8)0,2,1()1,3,2(=-⋅-=⋅c a ,b c a c b a )()(⋅-⋅)24,8,0()3,1,1(8)0,2,1(8--=---=k i 248--=.(2)b a +=(2,-3,1)+(1,-1,3)=(3,-4,4),c b +=(1,-1,3)+(1,-2,0)=(2,-3,3),)()(c b b a +⨯+332443--=kj i k j --=--=)1,1,0(.(3)c b a ⋅⨯)(.2021311132=---=10.已知k j OBk i OA 3,3+=+=,求△OAB 的面积.解由向量积的几何意义知S △OAB⨯)1,3,3(310301--==⨯kj i OB OA,⨯191)3()3(22=+-+-=S △OAB219=11.已知),,(),,,(),,,(z y x z y x z y x c c c c b b b b a a a a ===,试利用行列式的性质证明:ba c a cbc b a ⋅⨯=⋅⨯=⋅⨯)()()(证因为,)(z yxz y xz y xc c c b b b a a a cb a =⋅⨯zyxz y x z y x a a a c c c b b b a c b =⋅⨯)(=⋅⨯b a c )(zyxz yxz y xb b b a a ac c c ,而由行列式的性质知z yxz y x z y x c c c b b b a a a z yx z y x z y x a a a c c c b b b ==zyxz y x z y x b b b a a a c c c ,故b ac a c b c b a ⋅⨯=⋅⨯=⋅⨯)()()(.12.试用向量证明不等式:332211232221232221b a b a b a b b b a a a ++≥++++,其中321321,,,,,b b b a a a 为任意实数.并指出等号成立的条件.证设向量=a (321,,a a a ),=b (321,,b b b ).由),cos(b a b a ba =⋅b a ≤,从而232221232221332211b b b a a a b a b a b a ++++≤++,当321,,a a a 与321,,b b b 成比例,即332211b a b a b a ==时,上述等式成立.1.求过点(3,0,-1)且与平面012573=-+-z y x 平行的平面方程.解所求平面与已知平面012573=-+-z y x 平行.因此所求平面的法向量可取为n=(3,-7,5),设所求平面为0573=++-D z y x .将点(3,0,-1)代入上式得D=-4.故所求平面方程为04573=-+-z y x .2.求过点M 0(2,9,-6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解.6,9,2(0)-=OM 所求平面与0OM 垂直,可取n=0OM ,设所求平面方程为0692=+-+D z y x .将点M 0(2,9,-6)代入上式得D=-121.故所求平面方程为0121692=--+z y x .3.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解由0121111121212111=+---+----+--z y x ,得023=--z y x ,即为所求平面方程.注设M (x,y,z )为平面上任意一点,)3,2,1)(,,(==i z y x M i i i i 为平面上已知点.由,0)(31211=⨯⋅M M M M MM 即,0131313121212111=---------z z y y x x z z y y x x z z y y x x 它就表示过已知三点M i (i=1,2,3)的平面方程.4.指出下列各平面的特殊位置,并画出各平面:(1)x=0;(2)3y-1=0;(3)2x-3y-6=0;(4)x-3y=0;(5)y+z=1;(6)x-2z=0;(7)6x+5y-z=0.解(1)—(7)的平面分别如图8—8(a )—(g ).(1)x=0表示yOz 坐标面.(2)3y-1=0表示过点(0,31,0)且与y 轴垂直的平面.(3)2x-3y-6=0表示与z 轴平行的平面.(4)x-3y=0表示过z 轴的平面.(5)y+z=1表示平行于x 轴的平面.(6)x-2z=0表示过y 轴的平面.(7)6x+5y-z=0表示过原点的平面.5.求平面0522=++-z y x 与各坐标面的夹角的余弦.解平面的法向量为n=(2,-2,1),设平面与三个坐标面xOy ,yOz ,zOx 的夹角分别为321,,θθθ.则根据平面的方向余弦知,3111)2(2)1,0,0()1,2,2(cos cos 2221=⋅+-+⋅-=⋅==k n k n γθ,3213)0,0,1()1,2,2(cos cos 2=⋅⋅-=⋅==i n i n αθ3213)0,1,0()1,2,2(cos cos 3-=⋅⋅-=⋅==j n j n βθ.6.一平面过点(1,0,-1)且平行于向量)1,1,2(=a 和)0,1,1(-=b ,试求这个平面方程.解所求平面平行于向量a 和b ,可取平面的法向量)3,1,1(011112-=-=⨯=kj i b a n .故所求平面为0)1(3)0(1)1(1=+--⋅+-⋅z y x ,即043=--+z y x .7.求三平面322,02,13=++-=--=++z y x z y x z y x 的交点.解联立三平面方程.322,02,13=++-=--=++z y x z y x z y x 解此方程组得.3,1,1=-==z y x故所求交点为(1,-1,3).8.分别按下列条件求平面方程:(1)平行于xOz 面且经过点(2,-5,3);(2)通过z 轴和点(-3,1,-2);(3)平行于x 轴且经过两点(4,0,-2)和(5,1,7).解(1)所求平面平行于xOz 面,故设所求平面方程为0=+D By .将点(2,-5,3)代入,得05=+-D B ,即B D 5=.因此所求平面方程为05=+B By ,即05=+y .(2)所求平面过z 轴,故设所求平面为0=+By Ax .将点(-3,1,-2)代入,得03=+-B A ,即A B 3=.因此所求平面方程为03=+Ay Ax ,即03=+y x .(3)所求平面平行于x 轴,故设所求平面方程为0=++D Cz By .将点(4,0,-2)及(5,1,7)分别代入方程得2=+-D C 及07=++D C B .D B D C 29,2-==.因此,所求平面方程为0229=++-D z DDy ,即029=--z y .9.求点(1,2,1)到平面01022=-++zy x 的距离.解利用点),,(00o o z y x M 到平面0=+++D Cz By Ax 的距离公式222000C B A DCz By Ax d +++++=.1332211012221222=-=++-⋅+⋅+=1.求过点(4,-1,3)且平行于直线51123-==-z y x 的直线方程.解所求直线与已知直线平行,故所求直线的方向向量)5,1,2(=s ,直线方程即为531124-=+=-z y x .2.求过两点)1,2,3(1-M 和)2,0,1(2-M 的直线方程.解取所求直线的方向向量)1,2,4()12),2(0,31(21-=-----==M M s ,因此所求直线方程为112243-=+=--z y x .3.用对称式方程及参数方程表示直线.42,1=++=+-z y x z y x 解根据题意可知已知直线的方向向量112111-=kj i s ).3,1,2(-=取x=0,代入直线方程得.4,1=+=+-z y z y 解得.25,23==z y 这样就得到直线经过的一点(25,23,0).因此直线的对称式方程为.32512320-=-=--z y x 参数方程为.325,23,2t z t y t x +=+=-=注由于所取的直线上的点可以不同,因此所得到的直线对称式方程或参数方程得表达式也可以是不同的.4.求过点(2,0,-3)且与直线1253,0742=+-+=-+-z y x z y x 垂直的平面方程.解根据题意,所求平面的法向量可取已知直线的方向向量,即),11,14,16(253421-=--==kj i s n 故所求平面方程为.0)3(11)0(14)2(16=++-+--z y x 即.065111416=---z y x 5.求直线0123,09335=-+-=-+-z y x z y x 与直线01883,02322=-++=+-+z y x z y x 的夹角的余弦.解两已知直线的方向向量分别为),1,4,3(1233351-=--=k j i s ),10,5,10(1831222-=-=kj i s 因此,两直线的夹角的余弦212121),(cos cos s s s s s s ⋅== .010)5(10)1(4310154103222222=+-+-++⨯-⨯-⨯=6.证明直线72,72=++-=-+z y x z y x 与直线02,8363=--=-+z y x z y x 平行.证已知直线的方向向量分别是),15,3,9(112363),5,1,3(11212121---=---==--=kj i s k j i s 由123s s -=知两直线互相平行.7.求过点(0,2,4)且与两平面12=+zx 和23=-z y 平行的直线方程.解所求直线与已知的两个平面平行,因此所求直线的方向向量可取),1,3,2(31020121-=-=⨯=kj i n n s 故所求直线方程为.143220-=-=-z y x 注本题也可以这样解:由于所求直线与已知的两个平面平行,则可视所求直线是分别与已知平面平行的两平面的交线,不妨设所求直线为.3,2b z y a z x=-=+将点(0,2,4)代入上式,得.10,8-==b a 故所求直线为.103,82-=-=+z y z x 8.求过点(3,1,-2)且通过直线12354z y x =+=-的平面方程.解利用平面束方程,过直线12354z y x =+=-的平面束方程为,0)23(2354=-+=+=-z y y x λ将点(3,1,-2)代入上式得.2011=λ因此所求平面方程为,0)23(20112354=-+=+=-z y y x即.0592298=---z y x 9.求直线0,03=--=++z y x z y x 与平面01=+--z y x 的夹角.解已知直线的方向向量),2,4,2(111311-=--=k j is 平面的法向量).1,1,1(--=n 设直线与平面的夹角为,ϕ则,0)1()1(1)2(42)1()2()1(412),cos(sin 222222=-+-+-++-⋅-+-⋅+⋅=⋅==n s n s s n ϕ即.0=ϕ10.试确定下列各组中的直线和平面间的关系;(1)37423z y x =-+=-+和3224=--z y x ;(2)723z y x =-=和8723=+-z y x ;(3)431232--=+=-z y x 和.3=++z y x 解设直线的方向向量为s ,平面的法向量为n ,直线与平面的夹角为,ϕ且ns n s s n ⋅==),cos(sin ϕ.(1)),2,2,4(),3,7,2(--=--=ns,0)2()2(43)7()2()2(3)2()7(4)2(sin 222222=-+-+⋅+-+--⋅+-⋅-+⋅-=ϕ则.0=ϕ故直线平行于平面或在平面上,现将直线上的点A (-3,-4,0)代入平面方程,方程不成立.故点A 不在平面上,因此直线不在平面上,直线与平面平行.(2)),7,2,3(),7,2,3(-=-=n s 由于n s =或,17)2(37)2(377)2()2(33sin 222222=+-+⋅+-+⋅+-⋅-+⋅=ϕ知2πϕ=,故直线与平面垂直.(3)),1,1,1(),4,1,3(=-=n s 由于0=⋅n s 或,0111)4(131)4(1113sin 222222=++⋅-++⋅-+⋅+⋅=ϕ知,0=ϕ将直线上的点A (2,-2,3)代入平面方程,方程成立,即点A 在平面上.故直线在平面上.11.求过点(1,2,1)而与两直线1,012=-+-=+-+z y x z y x 和0,02=+-=+-z y x z y x 平行的平面的方程.解两直线的方向向量为),1,1,0(111112),3,2,1(11112121--=--=--=--=kj i s k j is取),1,1,1(11032121--=----=⨯=k j i s s n 则过点(1,2,1),以n 为法向量的平面方程为,0)1(1)2(1)1(1=-⋅--⋅+-⋅-z y x 即.0=+-z y x 12.求点(-1,2,0)在平面012=+-+z y x 上的投影.解作过已知点且与已知平面垂直的直线.该直线与平面的交点即为所求.根据题意,过点(-1,2,0)与平面012=+-+z y x 垂直的直线为,102211--=-=+z y x 将它化为参数方程,,22,1t z t y t x -=+=+-=代入平面方程得,01)()22(21=+--+++-t t t 整理得32-=t .从而所求点(-1,2,0)在平面012=+-+z y x 上的投影为(32,32,35-).13.求点P (3,-1,2)到直线042,01=-+-=+-+z y x z y x 的距离.解直线的方向向量).3,3,0(112111--=--=kj i s 在直线上取点(1,-2,0),这样,直线的方程可表示成参数方程形式.3,32,1t z t y x -=--==(1)又,过点P (3,-1,2),以)3,3,0(--=s 为法向量的平面方程为,0)2(3)1(3=--+-z y 即.01=-+z y (2)将式(1)代入式(2)得21-=t ,于是直线与平面的交点为(23,21,1-),故所求距离为.223)232()211()13(222=-++-+-=d 14.设M 0是直线L 外一点,M 是直线L 上任意一点,且直线的方向向量为s ,试证:点M 0到直线L的距离d =.证如图8-9,点M 0到直线L 的距离为d.由向量积的几何意义知s ⨯表示以M M 0,s 为邻边的平行四边形的面积.而表示以s 为边长的该平面四边形的高,即为点M 0到直线L 的距离.于是d =15.求直线0923,042=---=+-z y x z y x 在平面14=+-z y x 上的投影直线的方程.解作过已知直线的平面束,在该平面束中找出与已知平面垂直的平面,该平面与已知平面的交线即为所求.设过直线0923,042=---=+-z y x z y x 的平面束方程为,0)923(42=---++-z y x z y x λ经整理得.09)21()4()32(=--+--++λλλλz y x 由,01)21()1()4(4)32(=⋅-+-⋅--+⋅+λλλ得1113-=λ.代入平面束方程,得.0117373117=--+z y x 因此所求投影直线的方程为.14,0117373117=+-=--+z y x z y x 16.画出下列各平面所围成的立体的图形.(1);012243,1,2,0,0,0=-++=====z y x y x z y x(2).4,2,1,0,0yz y x z x =====解(1)如图8-10(a );(2)如图8-10(b ).1.一球面过原点及A (4,0,0),B (1,3,0)和C (0,0,-4)三点,求球面的方程及球心的坐标和半径.解设所求球面的方程为2222)()()(R c z b y a x =-+-+-,将已知点的坐标代入上式,得,2222R c b a =++(1),)4(2222R c b a =++-(2),)3()1(2222R c b a =+-+-(3)2222)4(R c b a =+++,(4)联立(1)(2)得,2=a 联立(1)(4)得,2-=c 将2=a 代入(2)(3)并联立得b=1,故R=3.因此所求球面方程为,9)2()1()2(222=++-+-z y x 其中球心坐标为),2,1,2(-半径为3.2.建立以点(1,3,-2)为球心,且通过坐标原点的球面方程.解设以点(1,3,-2)为球心,R 为半径的球面方程为,)2()3()1(2222R z y x =++-+-球面经过原点,故,14)20()30()10(2222=++-+-=R 从而所求球面方程为.14)2()3()1(222=++-+-z y x 3.方程0242222=++-++z y x z y x 表示什么曲面?解将已知方程整理成,)6()1()2()1(2222=++++-z y x所以此方程表示以(1,-2,-1)为球心,以6为半径的球面.4.求与坐标原点O 及点(2,3,4)的距离之比为1:2的点的全体所组成的曲面的方程,它表示怎样的曲面?解设动点坐标为(z y x ,,),根据题意有,21)4()3()2()0()0()0(222222=-+-+--+-+-z y x z y x 化简整理得.)2932()34()1()32(2222=+++++z y x 它表示以(34,1,32---)为球心,以2932为半径的球面.5.将xOz 坐标面上的抛物线x z 52=绕x 轴旋转一周,求所生成的旋转曲面的方程.解以22z y +±代替抛物线方程x z 52=中的z ,得222)(z y +±x 5=,即x z y 522=+.注xOz 面上的曲线0),(=z x F 绕x 轴旋转一周所生成的旋转曲面方程为0),(22=+±z y x F .6.将xOz 坐标面上的圆922=+z x 绕z 轴旋转一周,求所生成的旋转曲面的方程.解以22y x +±代替圆方程922=+z x 中的x ,得,9)(2222=++±z y x 即.9222=++z y x7.将xOy 坐标面上的双曲线369422=-y x分别绕x 轴及y 轴旋转一周,求所生成的旋转曲面的方程.解以22zy +±代替双曲线方程369422=-y x中的y ,得该双曲线绕x 轴旋转一周而生成的旋转曲面方程为,36)(942222=+±-z y x 即.36)(94222=+-z y x 以22zx +±代替双曲线方程369422=-y x中的x ,得该双曲线绕y 轴旋转一周而生成的旋转曲面方程为,369)(42222=-+±y z x 即.369)(4222=-+y z x 8.画出下列各方程所表示的曲面:(1);)2()2(222a y a x =+-(2);19422=+-y x (3);14922=+z x (4);02=-z y (5)22x z-=.解(1)如图8-11(a );(2)如图8-11(b );(3)如图8-11(c );(4)如图8-11(d );(5)如图8-11(e ).9.指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:(1);2=x (2);1+=x y (3);422=+y x(4).122=-y x解(1)2=x 在平面解析几何中表示平行于y 轴的一条直线,在空间解析几何中表示与yOz 面平行的平面.(2)1+=x y在平面解析几何中表示斜率为1,y 轴截距也为1的一条直线,在空间解析几何中表示平行于z 轴的平面.(3)422=+y x在平面解析几何中表示圆心在原点,半径为2的圆,在空间解析几何中表示母线平行于z 轴,准线为0,422==+z y x 的圆柱面.(4)122=-y x在平面解析几何中表示以x 轴为实轴,y 轴为虚轴的双曲线,在空间解析几何中表示母线平行于z轴,准线为,122==-z y x 的双曲柱面.10.说明下列旋转曲面是怎样形成的:(1);1994222=++z y x (2);14222=+-z y x (3);1222=--z y x (4).)(222y x a z+=-解(1)1994222=++z y x 表示xOy 面上的椭圆19422=+y x 绕x轴旋转一周而生成的旋转曲面,或表示xOz 面的椭圆19422=+z x 绕x 轴旋转一周而生成的旋转曲面.(2)14222=+-z y x 表示xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而生成的旋转曲面,或表示yOz 面的双曲线1422=+-z y 绕y 轴旋转一周而生成的旋转曲面.(3)1222=--z y x表示xOy 面上的双曲线122=-y x 绕x 轴旋转一周而生成的旋转曲面,或表示xOz 面的双曲线122=-z x 绕x 轴旋转一周而生成的旋转曲面.(4)222)(y x a z+=-表示xOz 面上的直线a x z +=或a x z +-=绕z 轴旋转一周而生成的旋转曲面,或表示yOz 面的直线a y z+=或a y z +-=绕z 轴旋转一周而生成的旋转曲面.11.画出下列方程所表示的曲面:(1);44222=++z y x(2);44222=--z y x(3).94322y x z +=解(1)如图8-12(a );(2)如图8-12(b );(3)如图8-12(c );12.画出下列各曲面所围立体的图形:(1)1,03,0,3,022=+=-=-==y x y x y x z z(在第一卦限内);(2)222222,,0,0,0R z y R y x z y x =+=+===(在第一卦限内).解(1)如图8-13所示;(2)如图8-14所示.1.画出下列曲线在第一卦限内的图形;(1);2,1==y x (2);0,422=---=yxyx z(3).,222222a z x a y x =+=+解(1)如图8-15(a );(2)如图8-15(b );(3)如图8-15(c ).2.指出下列方程组在平面解析几何中与在空间解析几何中分别表示什么图形:(1);32,15-=+=x y x y (2).3,19422==+y y x 解(1)32,15-=+=x y x y 在平面解析几何中表示两直线的交点.在空间解析几何中表示两平面的交线,即空间直线.(2)3,19422==+y y x 在平面解析几何中表示椭圆19422=+y x 与其切线3=y 的交点,即切点.在空间解析几何中表示椭圆柱面19422=+y x 与其切平面3=y 的交线,即空间直线.3.分别求母线平行于x 轴及y 轴而且通过曲线0,162222222=-+=++y z x z y x 的柱面方程.解在,162222222=-+=++y z x z y x 中消去x ,得,16322=-z y 即为母线平行于x 轴且通过已知曲线的柱面方程.在,162222222=-+=++y z x z y x 中消去y ,得,162322=+z x 即为母线平行于y 轴且通过已知曲线多的柱面方程.4.求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影的方程.解在1,9222=+=++z x z y x 中消去z ,得,9)1(222=-++x y x 即,82222=+-y x x它表示母线平行于z轴的柱面,故0,82222==+-z y x x 表示已知交线在xOy 面上的投影的方程.5.将下列曲线的一般方程化为参数方程:(1);,9222x y z y x ==++(2).0,4)1()1(222==+++-z z y x解(1)将x y=代入,9222=++z y x 得,9222=+z x 取,cos 23t x =则,sin 3t z =从而可得该曲线的参数方程tz t y t x sin 3,cos 23,cos 23===(t ≤0˂π2)(2)将z=0代入,4)1()1(222=+++-z y x 得,3)1(22=+-y x 取,cos 31t x =-则,sin 3t y =从而可得该曲线的参数方程0,sin 3,cos 31==+=z t y t x (t ≤0˂π2)6.求螺旋线θθθb z a y a x ===,sin ,cos 在三个坐标面上的投影曲线的直角坐标方程.解由θθsin ,cos a y a x==得,222a y x =+故该螺旋线在xOy 面上的投影曲线的直角坐标方程为,222==+z a y x 由θθb z a y ==,sin 得bza y sin =,故该螺旋线在yOz 面上的投影曲线的直角坐标方程为0,sin ==x bza y 由θθb z a x ==,cos 得,cos b za x =故故该螺旋线在yOz 面上的投影曲线的直角坐标方程为.0,cos ==y bza x 7.求上半球2220y x a z --≤≤与圆柱体a ax y x (22≤+>0)的公共部分在xOy 面和xOz 面上的投影.解如图8-16.所求立体在xOy 面上的投影即为ax y x ≤+22,而由axy x y x a z =+--=22222,得.2ax a z -=故所求立体在xOz 面上的投影为由x 轴,z 轴及曲线ax a z-=2所围成的区域.8.求旋转抛物面)40(22≤≤+=z y x z在三坐标面上的投影解联立422=+=z y x z ,得422=+y x.故旋转抛物面在xOy面上的投影为.0,422=≤+z y x 如图8-17.联立0,22=+=x y x z 得,2y z=故旋转抛物面在yOz 面上的投影为2y z=及4=z 所围成的区域.同理,联立0,22=+=y y x z 得,2x z =故旋转抛物面在xOz 面上的投影为2x z=及4=z 所围成的区域.。
练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。
高等数学下册(同济大学第七版)知识点高等数学下册知识点下册预备知识第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角。
(二) 数量积,向量积1、 数量积:θcos b a b a=⋅1)2a a a =⋅高等数学(下)知识点 2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a z y x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1)椭圆锥面:22222zbyax=+2)椭球面:1222222=++czbyax旋转椭球面:1222222=++czayax3)单叶双曲面:1222222=-+czbyax4)双叶双曲面:1222222=--czbyax5)椭圆抛物面:zbyax=+22226)双曲抛物面(马鞍面):zbyax=-22227)椭圆柱面:12222=+byax8)双曲柱面:12222=-byax9)抛物柱面:ay x=2(四)空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F 2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第九章 多元函数微分法及其应用(一) 基本概念(了解)1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。
高等数学第七版重点汇总第一章 函数与极限●极限是函数在某一点x 0处的局部性质,与函数在此处是否有定义无关。
● 有限个无穷小的乘积也是无穷小 ● 常数与无穷小的乘积是无穷小 ●如果limf(x)=A,limg(x)=B,那么1) lim[f(x)±g(x)]=limf(x)±limg(x)=A ±B 2) lim[f(x)·g(x)]=limf(x)·limg(x)=A ·B 3) 若B ≠0,则BAx g x f x g x f ==)(lim )(lim )()(lim 数列也基本适用 ●如果limf(x)存在,而n 是正整数,那么 lim[f(x)]n =[limf(x)]n● 抓大头●当x →∞时,且a 0≠0,b 0≠0,m 和n 为非负整数⎪⎪⎩⎪⎪⎨⎧∞=+⋅⋅⋅+++⋅⋅⋅++∞→--0lim 0110110b a b x b x b a x a x a x nn n m m m m <n m >n m n 当当当= ● 夹逼准则 ●等价无穷小sinx ~x arcsinx ~x 11-+n x ~x tanx ~x arctanx ~x a x -1~a x ln ln(1+x)~x e x -1~x 1-cosx ~221x● 1∞型=e ●如果=αβlim0,β是α的高阶无穷小,记作()αβo =; 如果=αβlim∞,β是α的低阶无穷小; 如果=αβlim c ≠0,β是α的同阶无穷小;如果0≠lim c k =αβ,k >0,β是α的k 阶无穷小;如果=αβlim 1,β是α的等价无穷小,记作α~β.若β是α的同阶无穷小,则()ααβo +=(充要条件) ● 函数连续,()00)(lim x f x f x x =→● 连续则极限存在,极限存在不一定连续 ●间断点: 1) 情况:① 函数在x=x 0处没有定义 ② 在x=x 0处有定义,但)(lim 0x f x x →不存在③ 函数在x=x 0处有定义,)(lim 0x f x x →存在,但()00≠)(lim x f x f x x →2) 分类① 第一类:跳跃 可去 ② 第二类:无穷 震荡 ●基本初等函数在其定义域内都是连续的,包括三角函数x x x x x x csc ,sec ,cot ,tan ,cos ,sin●基本初等函数的反函数在其定义域内都是连续的,包括反三角函数●复合函数连续,且()00x g u =,则()[]()000lim u f x g f x x =→=()[]0x g f●幂指函数连续,且()a x u =lim >0()b x v =lim ,,则b x v a x u =)()(lim● 介值定理(零点定理的推广)设函数()x f y =在闭区间[]b a ,上连续,则在这区间端点处取值不同时,即:()()B b f A a f ==,,且B A ≠。
第九章基本知识点1. 偏导数的定义及其计算方法(详细概念见书P65起,在此不再赘述)2. 全微分若函数 z = f (x , y ) 在点(x, y ) 可微 ,则该函数在该点偏导数yzx z ∂∂∂∂,必存在,且有y yzx x z z ∆∂∂+∆∂∂=d ,习惯上把自变量的增量用微分表示,于是y d yz x x z z ∂∂+∂∂=d d 3. 多元复合函数的求导法则(1)链式法则“分段用乘,分叉用加,单路全导,叉路偏导”若函数,可导在点)(,)(t t v t u ψϕ==),(v u f z =),(在点v u 处偏导连续,则复合函数))(),((t t f z ψϕ=在点 t 可导, 且有链式法则tvv z t u u z t z d d d d d d ⋅∂∂+⋅∂∂= (2) 全微分形式不变性,),(对v u f z =不论 u , v 是自变量还是因变量,v v u f u v u f z v u d ),(d ),(d +=4. 隐函数求导公式(1) 一个方程的情形yx F Fx y -=d d (隐函数求导公式) (2) 方程组的情形利用雅可比行列式求导(P88起)5. 多元函数微分学的几何应用(1)空间曲线的切线与法平面1) 参数式情况.空间光滑曲线⎪⎩⎪⎨⎧===Γ)()()(:t z t y t x ωψϕ切向量))(,)(,)((000t t t T ωψϕ'''=,切线方程)(')(' )(' 000000t z z t y y t x x ωψφ-=-=-法平面方程))((00x x t -'ϕ)()(00y y t -'+ψ0))((00=-'+z z t ω2) 一般式情况空间光滑曲线⎩⎨⎧==Γ0),,(0),,(:z y x G z y x F 切向量⎝⎛=T ,),(),(M z y G F ∂∂,),(),(Mx z G F ∂∂My x G F ),(),(∂∂⎪⎪⎭⎫,切线方程与法平面方程利用点法式即可求之 (2)曲面的切平面与法线1) 隐式情况 .空间光滑曲面0),,(:=∑z y x F 曲面 ∑ 在点),,(000z y x M 的法向量)),,(,),,(,),,((000000000z y x F z y x F z y x F n z y x =切线方程与法平面方程利用点法式即可求之 2)显式情况空间光滑曲面),(:y x f z =∑法向量)1,,(y x f f n --=,法线的方向余弦22221cos ,1cos yx y yx x f f f f f f ++-=++-=βα,2211cos yx f f ++=γ切平面方程:)(),()(),(0000000y y y x f x x y x f z z y x -+-=- 法线方程:1),(),(0000000--=-=-z z y x f y y y x f x x y x6. 多元函数的极值(1) 利用充分条件求极值(P113)第一步 利用必要条件在定义域内找驻点.第二步 利用充分条件 判别驻点是否为极值点(2) 条件极值1) 简单问题用代入法,转化为无条件极值 2) 一般问题用拉格朗日乘数法(P116起)。
高等数学同济第七版下课后习题及解答高等数学作为大学理工科专业的重要基础课程,对于培养学生的逻辑思维和解决问题的能力起着至关重要的作用。
而《高等数学》同济第七版更是被广泛使用的经典教材之一。
在学习过程中,课后习题是巩固知识、深化理解的重要环节。
下面,我们就来详细探讨一下这本教材下册的课后习题及解答。
首先,我们来了解一下这本教材下册所涵盖的主要内容。
下册主要包括多元函数微积分学、无穷级数、常微分方程等重要章节。
每个章节都配有丰富的习题,旨在帮助学生掌握相关的概念、定理和方法。
在多元函数微积分学部分,习题的类型多种多样。
有关于偏导数、全微分的计算,也有涉及多元函数极值和条件极值的问题。
例如,在计算偏导数时,学生需要熟练掌握对各个变量的求导法则,并且要注意函数的复合结构。
对于全微分的习题,需要理解全微分的定义以及其与偏导数的关系,通过练习能够准确地求出给定函数的全微分。
而在极值问题中,学生要学会运用拉格朗日乘数法,通过建立方程组来求解极值点。
无穷级数这一章节的习题则主要集中在级数的收敛性判别、函数展开成幂级数等方面。
对于级数的收敛性判别,需要掌握各种判别法,如比较判别法、比值判别法、根值判别法等。
在函数展开成幂级数的习题中,学生要熟悉常见函数的幂级数展开式,并能够运用相应的方法将给定的函数展开成幂级数。
常微分方程部分的习题包括一阶和二阶常微分方程的求解,以及线性微分方程解的结构等内容。
在求解一阶常微分方程时,要掌握分离变量法、一阶线性方程的求解公式等方法。
对于二阶常微分方程,要能够根据方程的特征根来确定通解的形式,并通过给定的初始条件求出特解。
接下来,我们谈谈如何有效地解答这些课后习题。
第一步,认真审题。
仔细阅读题目,理解题目所考查的知识点和要求。
明确题目中的已知条件和未知量,以及它们之间的关系。
第二步,回顾相关知识。
根据题目所涉及的知识点,迅速在脑海中回顾所学的概念、定理和方法。
如果对某些知识点感到模糊,应及时查阅教材进行复习。
同济高等数学第七版下册1. 引言《同济高等数学第七版下册》是同济大学数学系编写的一本高等数学教材。
本教材是数学专业本科生的必修课程,主要涵盖了微分方程、多元函数积分学、曲线积分与曲面积分等内容。
本文将对该教材进行全面的介绍和评价。
2. 教材概述《同济高等数学第七版下册》共分为十个章节,分别是:1.微分方程初步2.二阶线性常微分方程3.欧拉方程和二阶齐次线性微分方程4.变量分离方程和一阶线性微分方程5.常系数齐次线性微分方程6.变系数线性微分方程7.高阶线性微分方程8.多元函数微分学初步9.多元函数的偏导数与全微分10.曲线积分与曲面积分每个章节都有详细的讲解和例题,并配有练习题供读者练习。
3. 教材特点《同济高等数学第七版下册》的特点主要体现在以下几个方面:3.1. 内容全面教材内容全面涵盖了微分方程、多元函数积分学、曲线积分与曲面积分等重要的数学知识点。
每个章节的讲解都循序渐进,结构清晰,易于理解。
3.2. 理论与实践相结合教材不仅讲解了理论知识,还通过大量的例题和习题来巩固和应用所学知识。
这种理论与实践相结合的方式有助于学生更好地理解难点和掌握解题技巧。
3.3. 题目分类明确教材中的习题按照题型和难度进行分类,有助于学生选择适合自己水平的习题进行巩固训练。
每个章节还配有习题的解答,方便学生自我检验和纠正。
4. 教材优势4.1. 知识点详尽在每个章节的讲解中,教材都对重要的知识点进行了详尽的讲解,包括基本概念、性质、定理和定律等。
学生通过学习教材,可以全面了解和掌握数学中的基本概念和知识。
4.2. 解题方法详细教材中的例题和习题都给出了详细的解题方法和步骤,对于学生来说非常有帮助。
通过学习教材,学生可以了解到不同类型题目的解题思路和技巧。
4.3. 知识扩展教材还提供了一些扩展知识和拓展阅读的内容,进一步丰富了教材的知识面。
这对于对数学有浓厚兴趣的学生来说,可以提供更多的学习资源和学习机会。
5. 教材不足虽然《同济高等数学第七版下册》在内容和讲解方面都有一定的优势,但也存在一些不足之处:5.1. 难度适应问题教材的难度适应的问题不够良好,有些章节的内容对于一些学生来说可能较难理解,而有些章节的内容又相对简单。
高等数学(第七版·下册)同济大学知识点一、多元函数微分学多元函数微分学是高等数学中的一个重要分支,研究的是多元函数的导数、微分以及应用。
在本章中主要介绍了以下几个知识点:1. 偏导数与全微分•偏导数:多元函数的偏导数是指函数在某一点上某个自变量的变化率。
•全微分:多元函数的全微分是在某一点上,函数值关于自变量的微小变化量。
2. 高阶偏导数与多元函数的泰勒展开式•高阶偏导数:多元函数的高阶偏导数是指对多个自变量进行重复求导的结果。
•多元函数的泰勒展开式:用多项式逐次逼近函数的方法,可以近似表示函数在某一点附近的取值。
3. 隐函数与参数方程的求导•隐函数求导:对于由方程定义的函数,可以通过偏导数求导的方法来求解其导数。
•参数方程求导:对于由参数方程定义的函数,可以通过链式法则将参数的导数转化为函数关于参数的导数。
4. 方向导数与梯度•方向导数:多元函数在某一点沿着给定方向的变化率。
•梯度:多元函数的梯度是一个向量,它的方向指向函数值增加最快的方向,模表示变化率最大的值。
5. 多元函数的极值与条件极值•多元函数的极值:函数取得的最大值或最小值。
•条件极值:在满足一定条件下,函数取得的最大值或最小值。
6. 格林公式与高斯公式•格林公式:二维平面上的曲线积分与这个曲线所围成的区域上的面积分之间的关系。
•高斯公式:三维空间中,某个闭合曲面上的散度与这个曲面所围成的空间区域内的体积分之间的关系。
二、多元函数积分学多元函数积分学是研究多元函数的积分以及应用的学科。
本章介绍了以下几个知识点:1. 二重积分•二重积分的概念:二重积分是将二元函数沿着某一平面区域上的小面积元素进行累加得到的量。
•二重积分的性质:二重积分具有线性性、可加性、保号性等性质。
2. 二重积分的计算方法•基本的计算方法:可以通过把二重积分化为累次积分的形式进行计算。
•坐标变换法:通过变换坐标系,使得被积函数的形式更简单,从而更容易计算。
高等数学同济第七版下册习题与答案完整版引言《高等数学同济第七版下册》是同济大学数学系编写的一本面向高等数学教育的教材。
本书作为高等数学的下册,涵盖了积分学、无穷级数、多元函数微分学等重要内容。
为了帮助学生更好地理解和学习这些知识点,本文档整理了该教材下册的所有习题及其答案,以供学生参考和练习。
目录•第一章积分学•第二章无穷级数•第三章多元函数微分学第一章积分学积分学是高等数学的重要分支,它研究函数的积分与定积分等相关概念和性质。
本章的习题主要围绕定积分、不定积分和定积分的应用展开。
习题11.计算定积分 $\\int_0^1 (3x^2 - 2x + 1) dx$。
答案:$\\frac{2}{3}$2.计算不定积分 $\\int (x^3 - 2x^2 + x - 1) dx$。
答案:$\\frac{1}{4}x^4 - \\frac{2}{3}x^3 + \\frac{1}{2}x^2 - x + C$习题21.计算定积分 $\\int_1^e \\frac{dx}{x}$。
答案:12.计算不定积分 $\\int \\frac{1}{x} dx$。
答案:$\\ln|x| + C$…第二章无穷级数无穷级数是数列求和的一种常见方法,它在数学和物理等领域中有广泛的应用。
本章的习题主要涉及级数的概念、级数的性质和级数的求和等内容。
习题11.判断级数$\\sum_{n=1}^{\\infty} \\frac{1}{n^2}$ 的敛散性。
答案:该级数收敛。
2.计算级数 $\\sum_{n=0}^{\\infty} \\frac{1}{2^n}$ 的和。
答案:该级数的和为2。
…习题21.判断级数$\\sum_{n=1}^{\\infty} \\frac{n!}{n^n}$ 的敛散性。
答案:该级数收敛。
2.计算级数 $\\sum_{n=1}^{\\infty} (-1)^{n+1} \\frac{1}{n}$ 的和。
第七章:微分方程第一类:(可分离变量型——包括一阶齐次线性微分方程)方程可以化为dy y g dx x f )()(=形式,用分离变量微分法;第二类:(非线性齐次型)方程可以化为)(x y dx dy ϕ=的形式,用u xy =替换法;一种较特殊的方程c b a y x c by ax dx dy 111++++=(*)在不同情况下可经过不同的变化来属于第一、二类微分方程1.01==c c 时,(1111x y x y x y b a yx by ax dx dy b a b a ϕ=++=++=属于第二类微分方程;2.01≠⋅c c 时,首先考虑b a ba 11=(&)成不成立;(1)不成立:根据此时的(*)并不属于第二类,可以重新构造分子、分母,来使得新形成的常数都为零,为了计算简便,引入的新参数必须与x、y 齐次,故设m X x +=、n Y y +=,这样就确保了dX dx =、dY dy =,故c b a b a c b a n m Y X cbn am bY aX y x c by ax dx dy dX dY 11111111++++++++=++++==,为了使这个式子属于第二类微分方程,则必须像 1.一样,常数都为零,即0111=++=++c b a n m c bn am (A ),因为(&)不成立,所以011≠-ab a b ,故可解得⎪⎪⎩⎪⎪⎨⎧--=--=b ba c cb b a a ac a b m a b c n 11111111,则此时就有)(1111111X Y X Y X Y ba Y X bY aX y x c by ax dx dy dX dYb a b ac b a ϕ=++=++=++++==,属于第二类微分方程;(2)成立:由(1)中叙述可知,当(&)式成立时,方程组(A )无解,则(2)中的方法不可行,故考虑整体替换,即设λ==b a b a 11,c b a b a c b a y x c y x y x c by ax dx dy 11111111)(++++=++++=λ,再令y x u b a 11+=,此时⇒=+++=⇒++=-=)(1111111u g u c u dx du u c u dx du dx dy a c b c b a λλduu g dx x f )()(=(1)(=x f ),属于属于第一类微分方程;第三类:(可降阶微分型)1.),(y x f y '=''型[y 的二阶微分方程中不含y 型],用p y ='替换法;2.),(y y f y '=''型[y 的二阶微分方程中不含x 型],用p y ='替换法;第四类:(一阶非齐次线性微分型)方程可化为)()(x Q y x p dxdy =+的形式,用背公式或者常数变易法;公式:一阶非齐次线性微分方程的通解(简称“非通”)y =e e dx x p dx x p dxx Q C ⎰⎰+⎰)()()(【背诵口诀:C+Q(X)积分含e 的P(x)积分方,再除以e 的P(x)积分方】;常数变易法:第一步:先求一阶齐次微分方程(即一阶非齐次微分方程右端为零时的方程)的通解(运用第一类微分方程的解法);第二步:令第一步求得的通解中的常数C 为u ,求出y ';第三步:将第二步得到的⎩⎨⎧='=y y 代入一阶非齐次微分方程中得到一个关系式(只引入了一个参数u ,一个关系式足矣),消掉y '、y 后(第一、二步都是为这个消掉y '、y 做准备),解得u ',再利用积分求得u ;第四步:将u 代入第二步替换后的通解中,即求得一阶非齐次微分方程的通解;一种较特殊的方程y n x Q y x p dxdy )()(=+(伯努力方程)(*)在不同情况下可经过不同的变化来属于第一、四类微分方程1.当n=1时,dx x p x Q ydy y x Q y x p dx dy )]()([)()(-=⇒=+,属于第一类微分方程;2.当n=0时,)()(x Q y x p dx dy =+,属于第四类微分方程;3.当n 1,0≠时,方程变形得)()(1x Q x p dx dy y y n n =+--,令C z dy dz dxdz dx dy y y n y n n n n +=⇒=⇒=-----1)1()1(,取y n z -=1,则有)1(n dx dz dx dy y n -=-代入y n x Q y x p dx dy )()(=+后变形得)()1()()1(x Q n z x p n dx dz -=-+,令)()()1(2x x p n p =-,)()()1(2x x Q n Q =-)()(22x z x dx dz Q p =+⇒,属于第四类微分方程;第五类:(二阶非齐次线性微分型)方程可化为)()()(x f y x Q y x p y =+'+''的形式,用背公式或者常数变易法(过程与第四类中的常数变易法类似)--------用【已知“齐通找非齐特”,或者“已知齐一特”法】;公式:对于二阶非齐次线性微分方程的通解(简称“非通”)y 等于该非齐次方程对应的齐次方程的通解加上该非齐次方程的一个特解,即非通-非特=齐通【容易证明,对于n 阶非齐次线性微分方程都有这个结论】常数变易法:第一步:已知二阶齐次微分方程(即二阶非齐次微分方程右端为零时的方程——第六类方程)的通解;第二步:令第一步求得的通解中的常数C1、C2分别为u u 21,,求出y '、y '';第三步:将第二步得到的⎪⎩⎪⎨⎧=''='=y y y 代入二阶非齐次微分方程中得到一个关系式①(两个引入参数u u 21,,一个关系式不够,还需要得到一个关系式,而且得到的这个关系式为了求出u u 21,,故为了最简单地求解出这两个参数,就不允许在y ''中出现u u ''''21,,而又因为u u 21,均不为常数,故在y '定会出现u u ''21,,而要划线部分同时成立,则必须在y '中将u u ''21,抵消掉,而y u y u y u y u y '''+'++='22112211,故令02211='+'y u y u ②,为了更方便的求解,所以需要得到更简单的①式,所以将②式在第二步中就运用,这样得到的①式为)(2211x f y u y u =''+''②,联立①②就可解得u u ''21,),再利用积分求得u u 21,;第四步:将u u 21,代入第二步替换后的通解中,即求得二阶非齐次微分方程的通解。
一:多元函数概念1.空间:R n 称为n 维空间。
2.邻域:),(000y x P 是二维空间(平面xoy )上一个点,δ为某一正数,则与点P 0的距离小于δ的点R P y x P 2),,(∈全体,称为P 0的δ邻域。
记作),(0δP U ,即),(0δP U }|||{0δ<=P P P ,几何意义为,以点P 0为圆心,δ为半径的圆内所有点,当该领域不包括圆心P 0时,就称为为P 0的去心δ邻域,记为),(0δP U。
3.点与点集关系:(1)内点:若),(y x P 是空间上一个点,点集E ,存在),(y x P 的某个邻域)(P U ,使得E P U ⊂)(,则),(y x P 为点集E 的一个内点。
证:有),(y x P 是空间上一个点,点集E ,存在),(y x P 的某个邻域)(P U ,使得E P U ⊂)(,假设),(y x P 不是点集E 的内点,此时假设),(y x P 是点集E 的外点,则对于),(y x P 的任意邻域)(P U 都不可能满足E P U ⊂)(,因为该邻域中至少有一点【例如:邻域中心),(y x P 】就不属于该点集,故),(y x P 不是点集E 的外点,若),(y x P 是点集E 的边界点,则P 的δ邻域),(δP U (无论δ多么小),都会使得该邻域有不属于点集E 的部分(除非0=δ),综合上述:),(y x P 既不是点集E 的外点,也不是边界点,所以),(y x P 是点集E 的内点,而此时能找到),(y x P 的某个邻域)(P U 满足题意。
(2)外点:若),(y x P 是空间上一个点,点集E ,存在),(y x P 的某个邻域)(P U ,使得∅=⋂E P U )(,则),(y x P 为点集E 的一个外点。
证明从上,用反证法能得出结论。
(3)边界点:若),(y x P 是空间上一个点,点集E ,),(y x P 的任意邻域)(P U ,使得⎩⎨⎧⊄∅≠⋂E P U E P U )()(,则),(y x P 为点集E 的一个边界点。