15.3.2整式的除法单(多)项式除以单项式
- 格式:ppt
- 大小:378.50 KB
- 文档页数:16
鸡西市第四中学2012-2013年度上学期初三数学导学案第二十一章第三节整式的除法编制人:孟珊珊复核人:使用日期:2012.12.3 编号:34 【学习目标】单项式除以单项式的运算法则及其应用和它们的运算算理。
【学习重点】单项式除以单项式的运算法则及其应用。
【学习难点】探索单项式与单项式相除的运算法则的过程【思维导航】1、单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2、多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
【引入新知】问题:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.•你知道木星的质量约为地球质量的多少倍吗?列式为: .【探索新知】知识点一单项式除以单项式1、根据单项式乘以单项法则及除法与乘法两种运算互逆计算:()▪2a=8a3;8a3÷2a=( )3xy▪( )=5x3y ;5x3y÷3xy=( )( )▪3ab2=12a3b2x312a3b2x3÷3ab2=( )2、归纳法则:单项式相除,(1)系数相除,作为;(2)同底数幂相除,作为商的;(3)对于只在被除式里含有的字母,连同它的作为。
【运用新知】例1 计算:(1)28x4y2÷7x3y (2)-5a5b3c÷15a4b(3)(2x2y)3·(-7xy2)÷14x4y3(4)5(2a+b)4÷(2a+b)2【探索新知】知识点二多项式除以单项式1、根据多项式乘以单项法则及除法与乘法两种运算互逆计算:m▪()= am+bm ;(am+bm)÷m=()()▪a= a2+ab ; (a2+ab)÷a=()2xy▪()=4x2y+2xy2 (4x2y+2xy2)÷2xy=( ).2、归纳法则:多项式除以多项式,先把这个多项式的,再把所得的商。
整式的除法(基础)【要点梳理】要点一、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点二、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化.【典型例题】类型一、单项式除以单项式1、计算:(1)342222(4)(2)x y x y ÷;(2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭; (3)22[()()]()()x y x y x y x y +-÷+÷-;(4)2[12()()][4()()]a b b c a b b c ++÷++.【思路点拨】(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算.【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=.(2)2137323m n m m n x y z x y x y z +⎛⎫÷÷- ⎪⎝⎭ 21373211()()()3m m m n n x x x y y y z z +⎡⎤⎛⎫=÷÷-÷÷÷÷÷ ⎪⎢⎥⎝⎭⎣⎦ 21432n xy z -=-. (3)22[()()]()()x y x y x y x y +-÷+÷- 222()()()()x y x y x y x y =+-÷+÷-2()()x y x y x y =-÷-=-.(4)2[12()()][4()()]a b b c a b b c ++÷++ 2(124)[()()][()()]a b a b b c b c =÷+÷++÷+3()33a b a b =+=+.【总结升华】(1)单项式的除法的顺序为:①系数相除;②相同字母相除;③被除式中单独有的字母,连同它的指数作为商的一个因式.(2)注意书写规范:系数不能用带分数表示,必须写成假分数.举一反三:【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷; (3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯. 【答案】 解:(1)33202153(153)()()55a b ab a a b b a b a ÷=÷÷÷==.(2)532252323553(53)()()3x y z x y x x y y z x yz -÷=-÷÷÷=-. (3)22222201111()()332626a b c ab a a b b c ab c ac ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-÷÷== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (4)63633(1010)(210)(102)(1010)510⨯÷⨯=÷÷=⨯.2、金星是太阳系九大行星中距离地球最近的行星,也是人在地球上看到的天空中最漂亮的一颗星.金星离地球的距离为4.2×107千米,从金星射出的光到达地球需要多少时间?(光速为3.0×105千米/秒)【答案与解析】解:t=秒,答:从金星射出的光到达地球需要1.4×102秒.【总结升华】本题考查了同底数幂的除法法则,关键是利用时间=路程÷速度这一公式,此题比较简单,易于掌握.类型二、多项式除以单项式 3、计算(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ ; (2)()()32271833x x x x -+÷-.【思路点拨】直接利用多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加计算.【答案与解析】 解:(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ 54325242323211224111124424482x x x x x x x x x x x x x⎛⎫=++÷ ⎪⎝⎭=÷+÷+÷=++ (2)()()32271833x x x x -+÷- ()()()32227318333961x x x x x x x x =÷--÷-+÷-=-+-【总结升华】本题考查多项式除以单项式的运算,熟练掌握运算法则是解题的关键,要注意符号的处理.4、计算:(1)324(67)x y x y xy -÷;(2)42(342)(2)x x x x -+-÷-;(3)22222(1284)(4)x y xy y y -+÷-;(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭. 【答案与解析】解:(1)32432423(67)(6)(7)67x y x y xy x y xy x y xy x y x -÷=÷+-÷=-.(2)42(342)(2)x x x x -+-÷- 42[(3)(2)][4(2)][(2)(2)]x x x x x x =-÷-+÷-+-÷-33212x x =-+. (3)22222(1284)(4)x y xy y y -+÷-222222212(4)(8)(4)4(4)x y y xy y y y =÷-+-÷-+÷-2321x x =-+-(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭ 22322432110.3(0.5)(0.5)(0.5)36a b a b a b a b a b a b ⎛⎫⎛⎫=÷-+-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭ 22321533ab a b =-++. 【总结升华】(1)多项式除以单项式是转化为单项式除以单项式来解决的.(2)利用法则计算时,不能漏项.特别是多项式中与除式相同的项,相除结果为1.(3)运算时要注意符号的变化.举一反三:【变式1】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷.【答案】解: (1)原式223239421922792x y x x x y y x y ⎛⎫=-÷ ⎪⎝⎭ 52510428(927)93x y x y x y x xy =-÷=-.(2)原式2222[44(2)]6x y x xy y x =-+-+÷ 2222(4484)6x y x xy y x =-+-+÷2(58)6x xy x =-÷5463x y =-. 【变式2】计算:[(3a+b )2﹣b 2]÷3a . 解:[(3a+b )2﹣b 2]÷3a ,=(9a 2+6ab+b 2﹣b 2)÷3a ,=(9a 2+6ab )÷3a ,=3a+2b。
整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。
下面就让我们一起来深入了解整式乘除的相关知识点。
一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。
例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。
整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a m n n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数【注意】(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数 相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要 注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a a p p ≠=≠=-(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
一、选择(每题2分,共24分) 1.下列计算正确的是( ).A .2x 2·3x 3=6x 3B .2x 2+3x 3=5x 5C .(-3x 2)·(-3x 2)=9x 5D .54x n ·25x m =12x m+n2.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1 B .5y 3-3y 2-2y -6 C .5y 3+3y 2-2y -1 D .5y 3-3y 2-2y -1 3.下列运算正确的是( ).A .a 2·a 3=a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 6-a 2=a 4 4.下列运算中正确的是( ).A.12a+13a=15a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0二、填空(每题2分,共28分)6.-xy2的系数是______,次数是_______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时, 若坐飞机飞行这么远的距离需_________.10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2(a-b)2+______=(a+b)211.若x2-3x+a是完全平方式,则a=_______.12.多项式5x2-7x-3是____次_______项式.三、计算(每题3分,共24分)13.(2x2y-3xy2)-(6x2y-3xy2)14.(-32ax4y3)÷(-65ax2y2)·8a2y17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)19.(ab+1)2-(ab-1)2四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203五、先化简,再求值(每题4分,共8分)22.(x+4)(x-2)(x-4),其中x=-1.23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1 25.六、解答题(每题4分,共12分)24.已知2x+5y=3,求4x·32y的值.25.已知a2+2a+b2-4b+5=0,求a,b的值.幂的运算一、同底数幂的乘法(重点)1.运算法则:同底数幂相乘,底数不变,指数相加。
初中数学复习 第四讲——整式与分式一、知识结构说明:在本部分,代数式分为整式和分式讨论。
在实数范围内,代数式分为有理 式和无理式,有理式分为整式和分式,整式分为单项式和多项式。
二、知识点梳理1.代数式:用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式。
用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结 果叫做代数式的值。
2.单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独 一个数也是单项式);单项式中的数字因数叫做这个单项式的系数(包 括符号);一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.多项式:由几个单项式的和组成的代数式叫做多项式;在多项式中的每个单项 式叫做多项式的项,不含字母的项叫做常数项;次数最高项的次数就 是这个多项式的次数。
4.整式:单项式、多项式统称为整式。
5.分式:两个整式A 、B 相除,即A ÷B 时,可以表示为A B.如果B 中含有字母, 那么A B叫做分式,A 叫做分式的分子,B 叫做分式的分母。
6.同类项:所含的字母相同,且相同的字母的指数也相同的单项式叫做同类项。
把多项式中的同类项合并成一项,叫做合并同类项;一个多项式合并 后含有几项,这个多项式就叫做几项式。
合并同类项的法则:把同类 项的系数相加的结果作为合并后的系数,字母和字母的指数不变(合 并同类项,法则不能忘,只求系数代数和,字母指数不变样)。
7.整式的加减:整式的加减就是单项式、多项式的加减,可利用去括号法则和合 并同类项来完成整式的加减运算。
去括号法则:括号前面是“+” 号,去掉“+”号和括号,括号里的各项不变号;括号前面是“—” 号,去掉“—”号和括号,括号里的各项都变号。
(括号前面是“+” 代数式分式整式 分式的意义 分式的基本性质 分式的运算(加、减、乘、除) 整数指数幂的运算 整式的有关概念 整式的运算(加、减、乘、除、乘方) 因式分解号,去掉括号不变号;括号前面是“—”号,去掉括号都变号。
解析《整式的运算》知识点一、代数式与有理式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、整式和分式统称为有理式。
3、含有加、减、乘、除、乘方运算的代数式叫做有理式。
二、整式和分式1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
2、有除法运算并且除式中含有字母的有理式叫做分式。
三、单项式与多项式1、没有加减运算的整式叫做单项式。
(数字与字母的积---包括单独的一个数或字母)2、几个单项式的和,叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。