[推荐学习]九年级物理全册14.3电流的磁场教案新版北师大版
- 格式:doc
- 大小:17.22 KB
- 文档页数:3
《电流的磁场》教学目标:1、理解电磁铁的特性和工作原理。
2、理解电流是怎样控制电磁铁磁性的有无、强弱和极性的。
3、掌握电磁铁的基本应用。
4、培养学生动手实验能力,分析、观察能力。
教学重点:理解电磁铁的工作原理。
教学难点:实验方法的设计和对现象的分析和结论的界定。
教学过程:复习通电螺线管的性质:提问:要使螺线管的周围产生磁场,根据我们学过的知识,可采用什么方法?回答:给螺线管通电,它的周围就会产生磁场。
提问:如果要使通电螺线管的磁性增强,应该怎么办呢?学生讨论:演示实验:给螺线管通电,观察离螺线管较远处小磁针的偏转情况.再观察插入铁芯后,小磁针的偏转情况。
现象:无铁芯时,小磁针偏转不明显,加入铁芯小磁针偏转明显,说明插入铁芯磁场大大增加。
提问:为什么插入铁棒后,通电螺线管的磁性会增强呢?讨论:铁芯插入通电螺线管,铁芯被磁化,也要产生磁场,于是通电螺线管的周围既有电流产生的磁场,又有磁铁产生的磁场,因而磁场大大增强了。
一、电磁铁的定义从上面的实验中可以看出,铁芯插入螺线管,通电后能获得较强的磁场。
我们把插入铁芯的通电螺线管称为电磁铁。
电磁铁与永磁体相比,有些什么特点呢?它的磁性强弱与哪些因素有关呢?猜想:1、电磁铁的磁性是由螺线管通入电流后获得的,那么电磁铁的磁性有无是否与电流的有无有关?2、电磁铁的磁性是否与电流的大小有关?3、螺线管是由导线绕制成的,它的磁性强弱与线圈的匝数是否有关?实验设计:这个实验设计怎样的电路?应将电源、开关、滑动变阻器、电流表与电磁铁连成串联电路。
怎样来判断电磁铁的磁性强弱?通过观察电磁铁吸引大头针的多少来判断。
演示实验:(1)电磁铁的磁性与通电、断电的关系:通电有磁性、断电无磁性。
(2)电磁铁的磁性强弱与电流大小关系:电流强,磁性强。
用滑动变阻器改变电流大小观察磁性强弱,即吸大头针的多少。
(3)改变电磁铁的匝数着磁性强弱。
外形相同的螺线管匝数越多,它的磁性越强。
总结规律:二、通电螺线管的磁性由哪些因素决定。
三、电流的磁场解读论从课程标准的要求上看,还是从物理学知识的扩展上看,都具有“桥梁”般的重要作用。
知识与技能1.认识电流的磁效应。
2.知道通电导体周围存在着磁场;通电螺线管的磁场与条形磁体的磁场相似。
3.通过观察通电直导线电流的磁场和通电螺线管的磁场实验,进一新课导语【导入一】 (复习提问,引入新课)师:当把小磁针放在条形磁体的周围时,你会观察到什么现象?其原因是什么?生甲:观察到小磁针发生偏转。
生乙:因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。
师:同学们回答得很好,那么大家还想知道关于磁的哪些知识?生甲:小磁针只有放在磁体周围才会受到磁力的作用而发生偏转吗?生乙:还有什么物质能产生磁场?生丙:电现象和磁现象有联系吗?师:同学们提出的问题很好,说明大家都开动了脑筋作了深入的思考,在以后的学习中仍需要这样。
而你们提出的问题就是本节课需要探索的内容。
【导入二】 (实验引入新课)利用隐蔽的通电螺线管吸引小铁钉,让学生猜是什么物体对小铁钉产生了力的作用?磁体对进入其磁场的物体会发生作用,能否利用人工作用产生磁场、控制磁场呢?引入新课。
学点1 电流的磁场实验操作:实验1:如图S14-3-1(a)所示,在小磁针上方沿南北方向平行架设一根导线,观察导线通电时小磁针的偏转情况。
实验2:如图(b)所示,把小磁针放在通电螺线管的不同位置,包括螺线管的内部,闭合开关,观察小磁针N极在各个位置静止时的指向。
实验3:改变图(b)中通电导线中电流的方向,观察小磁针N极的偏转情况。
实验4: 如图(c)所示,在螺线管周围均匀撒上一些铁屑,闭合开关,给螺线管通电后,轻轻敲击白纸板,观察铁屑的排列情况。
图S14-3-1实验现象:(1)实验1中,接通电路,导线中__有__电流通过,小磁针__发生偏转__,说明了__通电导体周围存在磁场__。
(2)实验2中,接通电路,小磁针静止时N极代表__磁场__的方向,连接不同小磁针的N极可得到多组闭合的曲线。
《电流的磁场》教材分析:本节课是在已有的电学知识和简单的磁现象知识基础上,将电和磁对立统一起来。
本节课是初中物理电磁学部分的一个重点,也是可持续发展的物理学习的必要基础。
内容主要包括三个重要的知识点:通过奥斯特实验明确通电导线周围存在磁场;通电螺线管的磁场;安培定则,是一节内容较多、信息量较大的课。
但是这节课的优点是知识结构上条理清晰、层次分明。
有两个实验,并且都有着直观的实验结果,相对较为生动,容易引发学生的学习积极性。
教学目标:【知识与能力目标】1.知道电流周围存在着磁场。
2.知道通电螺线管外部的磁场与条形磁铁相似。
3.会用安培定则判定相应磁体的磁极和通电螺线管的电流方向。
【过程与方法目标】1.通过观察和体验奥斯特实验,初步了解电和磁之间有某种联系。
2.通过实验得出通电螺线管外部的磁场方向,体验通电螺线管的磁场与条形磁体磁场的相似性。
【情感态度价值观目标】1.通过观察和体验奥斯特实验,初步了解电和磁之间有某种联系。
2.通过认识电与磁之间的相互联系,使学生乐于探索物理的奥秘。
教学重难点:【教学重点】奥斯特实验;通电螺线管外部的磁场。
【教学难点】安培定则判定相应磁体的磁极和通电螺线管的电流方向。
课前准备:1.教师研读课标、教材,撰写教学设计,制作多媒体课件。
2.学生预习本课内容,收集有关资料。
3.实验器材:干电池、开关、长导线、小磁针、螺线管、滑动变阻器、铁屑等。
教学过程:一、复习旧课:1.磁极间有什么作用规律?2.什么是磁场,它的方向如何定义的,它的强弱呢?3.什么是磁感线?它真正存在吗?二、激发学习动机:在历史上,人们最初认为电和磁是互不先关的两种现象。
同学们,通过我们已经学过的部分电学和磁现象的知识,有没有发现它们之间有一些相似的性质呢?学生回答:有,带电体能够吸引轻小物体,磁体能够吸引铁,钴,镍等制成的物品。
同种电荷相互排斥,异种电荷相互吸引;同名磁极相互排斥,异名磁极相互吸引。
提出问题:这是一种巧合还是它们之间存在一定的联系呢?三、讲授新知识:(一)奥斯特实验十九世纪初,一些哲学家和科学家开始认为自然界各种现象之间应该是互相联系的,基于这种思想,丹麦物理学家奥斯特开始用实验的方法寻找电和磁之间的联系。
《电流的磁场》本节课是在已有的电学知识和简单的磁现象知识的基础上,将电和磁对立统一起来。
本节课是电磁学部分的一个重点,也是可持续发展的物理学习的必要基础。
1、知识和技能(1)认识电流的磁效应。
(2)知道通电导体的周围存在磁场,通电螺线管的磁场与条形磁铁的磁场相似。
(3)会用安培定则确定相应磁体的磁极和螺线管的电流方向2、过程和方法(1)观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间有某种联系。
(2)探究通电螺线管外部磁场的方向。
3、情感、态度、价值观通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙。
1.重点:(1)奥斯特实验(2)通电螺线管的磁场(3)安培定则2.难点:安培定则的使用课件,一根硬直导线,干电池2~4节,小磁针,螺线管,开关,导线若干。
1.复习提问,引入新课(1)重做第一节课本上的图16-6的演示实验,提问:当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?(观察到小磁针发生偏转。
因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。
)(2)进一步提问引入新课小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。
2.进行新课(1)磁与电的关系;(利用多媒体演示并做说明)(2)奥斯特实验a.演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。
将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。
利用多媒体重复演示提问:观察到什么现象?(观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。
)进一步提问:通过这个现象可以得出什么结论呢?师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用。
结论:通电导线和磁体一样,周围也存在着磁场。
教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。
《磁场》教学目标:知识与技能1、通过实验探究,了解磁体特性、感知磁场。
2、知道磁感线,初建模型思想。
3、知道地球周围有磁场以及地磁场的南北极。
过程与方法1、通过观察物理现象的过程,能简单描述物理现象的主要特征,有初步的观察能力。
2、通过参与科学探究活动,初步认识科学研究方法的重要性。
情感态度与价值1、培养学生事实求是,尊重自然规律的科学态度。
2、让学生在探究问题的过程中有克服困难的信心和决心。
教学重点:感知磁场,建立磁场模型。
教学难点:探究磁感线的形状。
教学过程:一、复习提问1、什么是磁性?磁体?2、什么是磁极?磁极间的相互作用规律是怎样的?二、进行新课1、磁场演示磁极间的相互作用。
提问:两个磁体并没有相互接触,它们怎么能发生相互作用呢?讲解:原来在磁体的周围存在着一种物质,能使磁针偏转。
这种物质看不见,摸不着,我们把它叫做磁场。
磁场的基本性质:磁场对放入其中的磁体产生力的作用。
在今后的学习中,我们还会发现,在物理学中,许多看不见、摸不着的物质,可以通过它对其它物体的作用来认识。
如空气的流动、电流等。
像磁场这种物质,我们用实验可以感知它,所以它是确确实实存在的。
想想做做:一根条形磁体外面包一块布放在桌面上,它的N极在哪端?用一只小磁针来探测一下。
2、磁场的方向如果把几只小磁针放在条形磁铁和蹄形磁铁的周围不同的地方,磁针所指的方向相同吗?通过实验认识小磁针在磁场中各点的指向不同的,这是因为磁场是有方向的。
在物理学中,把小磁针静止时北极所指的方向用为那点磁场的方向。
如果在磁体周围放许多小磁针,这些小磁针在磁场的作用下会排列起来,这样我们就能知道磁体周围各点的磁场方向了。
3、磁感线磁场是看不见、摸不着的,如何形象地表示磁场呢?演示:(用铁粉演示磁场的分布)在玻璃板上均匀地撒一些铁粉,然后把条形(或蹄形)磁铁放在玻璃板下方,轻轻敲击玻璃板,观察铁粉的排列情况。
分析讨论观察到的现象:铁粉被磁化后变成了一个个小磁针,它在磁场中的排列情况,反映了磁场的分布情况。
《电流的磁场》本节课是在已有的电学知识和简单的磁现象知识的基础上,将电和磁对立统一起来。
本节课是电磁学部分的一个重点,也是可持续发展的物理学习的必要基础。
1、知识和技能(1)认识电流的磁效应。
(2)知道通电导体的周围存在磁场,通电螺线管的磁场与条形磁铁的磁场相似。
(3)会用安培定则确定相应磁体的磁极和螺线管的电流方向2、过程和方法(1)观察和体验通电导体与磁体之间的相互作用,初步了解电和磁之间有某种联系。
(2)探究通电螺线管外部磁场的方向。
3、情感、态度、价值观通过认识电与磁之间的相互联系,使学生乐于探索自然界的奥妙。
1.重点:(1)奥斯特实验(2)通电螺线管的磁场(3)安培定则2.难点:安培定则的使用课件,一根硬直导线,干电池2~4节,小磁针,螺线管,开关,导线若干。
1.复习提问,引入新课(1)重做第一节课本上的图16-6的演示实验,提问:当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?(观察到小磁针发生偏转。
因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。
)(2)进一步提问引入新课小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。
2.进行新课(1)磁与电的关系;(利用多媒体演示并做说明)(2)奥斯特实验a.演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。
将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。
利用多媒体重复演示提问:观察到什么现象?(观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。
)进一步提问:通过这个现象可以得出什么结论呢?师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用。
结论:通电导线和磁体一样,周围也存在着磁场。
教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。
北师大版九年级物理第十四章第三节《电流的磁场》教学设计【教材分析】《电流的磁场》是北师大版九年级物理第十四章第三节的内容,它设计的内容有:通电导体周围的磁场、通电螺线管周围的磁场及安培定则。
它是学习电磁现象的重要基础,首次揭示电和磁之间关系,是对磁场的性质进一步加深理解的延续,也为后面学习电磁铁奠定基础,起到承上启下的作用。
另外,奥斯特实验、运用右手螺旋定则判断螺线管的磁极是历年中考的热点,因此,本节内容在九年级物理教学中具有不容忽视的重要地位。
【教学法分析】(一)教法物理是一门以实验为基础,培养人的实验动手能力、观察能力和分析问题的能力的重要学科。
因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。
我们在以师生既为主体,又为客体的原则下,展现获取理论知识、解决实际问题方法的思维过程。
考虑到我校九年级年级学生的现状,我主要采取学案导学、实验、小组合作探究等的教学方法,让学生真正的参与活动,并在活动中得到认识和体验,产生践行的愿望。
培养学生将课堂教学和自己的行动结合起来,充分引导学生全面的看待发生在身边的现象,发展思辩能力,注重学生的心理状况。
(二)学法我们常说:“现代的文盲不是不懂字的人,而是没有掌握学习方法的人”,因而,我在教学过程中特别重视学法的指导。
让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。
这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:分组合作学习法、观察法、分析归纳法、总结反思法。
【教学目标】1.知识与技能:(1)知道通电导体周围存在着磁场,并初步认识通电导体周围的磁场方向与电流的方向有关。
(2)知道通电螺线管的外部磁场与条形磁体的外部磁场相似,会画通电螺线管外部的磁感线。
(3)会应用安培定则判断通电螺线管外部磁场的方向。
2.过程与方法:(1)在探究“通电导体的周围存在磁场”的过程中,让学生认识转换法在其中的应用;(2)在观察“通电螺线管周围磁场”的过程,让学生认识实验观察在物理学习过程中的重要性。
物理初三北师大版14.3电流的磁场教案课题第三节电流的磁场教学目标1、明白电流周围存在磁场、2、掌握通电螺线管的磁场和安培定那么.3、会用安培定那么确定相应磁体的磁极和螺线管的电流方向、4、明白奥斯特实验验证了电流周围存在磁场、5.学习实验的方法,提高分析实验现象总结实验规律的能力、6进展学生的空间想象能力.重点奥斯特实验、通电线管的磁场、安培定那么难点安培定那么的运用教具主要教学过程带电体和磁体有一些相似的性质,这些相似是一种巧合呢?依旧它们之间存在着某些联系呢?科学家们基于这种想法,一次又一次地查找电与磁的联系.1820年丹麦物理学家奥斯特终于用实验证实通电导体的周围存在着磁场.这一重大发明轰动了科学界,使电磁学进入一个新的进展时期、【一】奥斯特实验演示实验:将直导线与小磁针平行并放在小磁针的上方、观看:1、当直导线通电时产生什么现象〔小磁针发生偏转〕、2、断电后发生什么现象〔小磁针转回到原来指南北的方向〕、3、改变通电电流的方向后发生什么现象〔小磁针发生偏转、其N极所指方向与1、时相反〕提问:〔1〕通过实验,你观看到哪些物理现象、物理现象:通电时小磁针发生偏转;断电时小磁针转回到指南北的方向;通电电流方向相反,小磁针偏转方向也相反、〔2〕通过这些物理现象你能总结出什么规律、规律:①通电导线周围存在磁场、②磁场方向与电流方向有关、总结奥斯特实验:现象:导线通电,周围小磁针发生偏转;通电电流方向改变,小磁针偏转方向相反、规律:通电导线周围存在磁场;磁场方向与电流方向有关、【二】通电螺线管的磁场演示通电螺线管的磁场:观看铁屑的分布和小磁针的指向、如图:在板上均匀撒满铁屑在螺线管两端各放一个小磁针,通电后观看小磁针的指向、轻轻敲板,观看铁屑的排列、改变电流方向再观看一次、提问:〔1〕通电前小磁针如何指向,通电后发生什么现象、〔原指南北,通电后磁针偏转〕〔2〕通电后,轻轻敲板,铁屑什么原因会产生规那么排列?铁屑的排列与什么现象一样、〔铁屑磁化变成“小磁针”,轻敲使铁屑可自由转动、使铁屑按磁场进行排列、其排列与条形磁体的排列相同,通电螺线管相当于条形磁体〕〔3〕改变通电方向,小磁针的指向有什么不同,说明什么?〔小磁针指向相反,说明通电螺线管两端的极性与通电电流有关〕【三】通电螺线管的极性和电流关系——安培定那么、通电螺线管相当于一个条形磁体,其极性和电流方向的关系符合安培定那么——右手螺旋定那么、用右手握螺线管,让四指弯向螺线管电流的方向,那么大拇指所指的那端确实是螺线管的北极、【四】小结1、奥斯特实验:说明电流周围存在磁场.2、安培定那么:说明如何由线圈电流方向确定螺线管的极性.典型例题例1如下图的图中,两个线圈,套在一根光滑的玻璃管上,导线柔软,可自由滑动,开关S 闭合后,那么〔〕A、两线圈左右分开;B、两线圈向中间靠拢;C、两线圈静止不动;D、两线圈先左右分开,然后向中间靠拢.例2在所示图中,标出通电螺线管的N极和S极例3如下图,螺线管的左端是N极,应如何绕.习题精选1、如下图,甲、乙两个螺线管靠特别近,串联在同一电路中,〔1〕标出螺线管甲的N极和S极.〔2〕假设使两螺线管互相排斥,试在图中画出螺线管乙的绕线方法.2、标出图中各螺线管的南北极,和磁感线的方向,以及电流方向.。
14.3 电流的磁场
(一)教学目的
1.知识目标:了解磁体、磁极以及磁极间的相互作用;感知磁体周围存在磁场并会用磁感线表示磁场的方向和强弱;初步了解地磁场。
2、技能目标:培养学生用磁感线形象描述磁场这一抽象概念的思维能力。
3、情感态度价值观:通过了解我国古代的磁文明,激发学习热情;通过介绍我国近代“磁文明的衰落”提升学生的人文素养.
(二)教具一根硬直导线,干电池2~4节,小磁针,铁屑,螺线管,开关,导线若干。
(三)教学过程
1.复习提问,引入新课
重做第二节课本上的演示实验,提问:
当把小磁针放在条形磁体的周围时,观察到什么现象?其原因是什么?
(观察到小磁针发生偏转。
因为磁体周围存在着磁场,小磁针受到磁场的磁力作用而发生偏转。
)
进一步提问引入新课
小磁针只有放在磁体周围才会受到磁力作用而发生偏转吗?也就是说,只有磁体周围存在着磁场吗?其他物质能不能产生磁场呢?这就是我们本节课要探索的内容。
2.进行新课
(1)演示奥斯特实验说明电流周围存在着磁场
演示实验:将一根与电源、开关相连接的直导线用架子架高,沿南北方向水平放置。
将小磁针平行地放在直导线的上方和下方,请同学们观察直导线通、断电时小磁针的偏转情况。
提问:观察到什么现象?
(观察到通电时小磁针发生偏转,断电时小磁针又回到原来的位置。
)
进一步提问:通过这个现象可以得出什么结论呢?
师生讨论:通电后导体周围的小磁针发生偏转,说明通电后导体周围的空间对小磁针产生磁力的作用,由此我们可以得出:通电导线和磁体一样,周围也存在着磁场。
教师指出:以上实验是丹麦的科学家奥斯特首先发现的,此实验又叫做奥斯特实验。
这个实验表明,除了磁体周围存在着磁场外,电流的周围也存在着磁场,即电流的磁场,本节课我们就主要研究电流的磁场。
板书:第四节电流的磁场
一、奥斯特实验
1.实验表明:通电导线和磁体一样,周围存在着磁场。
提问:我们知道,磁场是有方向的,那么电流周围的磁场方向是怎样的呢?它与电流的方向有没有关系呢?
重做上面的实验,请同学们观察当电流的方向改变时,小磁针N极的偏转方向是否发生变化。
提问:同学们观察到什么现象?这说明什么?
(观察到当电流的方向变化时,小磁针N极偏转方向也发生变化,说明电流的磁场方向也发生变化。
)
板书:2.电流的磁场方向跟电流的方向有关。
当电流的方向变化时,磁场的方向也发生变化。
提问:奥斯特实验在我们现在看来是非常简单的,但在当时这一重大发现却轰动了科学界,这是为什么呢?
学生看书讨论后回答:
因为它揭示了电现象和磁现象不是各自孤立的,而是紧密联系的,从而说明表面上互不相关的自然现象之间是相互联系的,这一发现,有力推动了电磁学的研究和发展。
(2)研究通电螺线管周围的磁场
奥斯特实验用的是一根直导线,后来科学家们又把导线弯成各种形状,通电后研究电流的磁场,其中有一种在后来的生产实际中用途最大,那就是将导线弯成螺线管再通电。
那么,通电螺线管的磁场是什么样的呢?请同学们观察下面的实验:
演示实验:按课本图11—13那样在纸板上均匀地撒些铁屑,给螺线管通电,轻敲纸板,请同学们观察铁屑的分布情况,并与条形磁体周围的铁屑分布情况对比。
提问:同学们观察到什么现象?
学生回答后,教师板书:
二、通电螺线管的磁场
1.通电螺线管外部的磁场和条形磁体的磁场一样。
提问:怎样判断通电螺线管两端的极性呢?它的极性与电流的方向有没有关系呢?
演示实验:将小磁针放在螺线管的两端,通电后,请同学们观察小磁针的N极指向,从而引导学生判别出通电螺线管的N、S极。
再改变电流的方向,观察小磁针的N极指向有没有变化,从而说明通电螺线管的极性与电流的方向有关。
引导学生讨论后,教师板书:
2.通电螺线管两端的极性跟螺线管中电流的方向有关。
当电流的方向变化时,通电螺线管的磁性也发生改变。
提问:采用什么办法可以很简便地判定通电螺线管的磁性与电流方向的关系呢?同学们看书、讨论,弄清安培定则的作用和判定方法。
板书:
三、右手螺旋定则
1.作用:可以判定通电螺线管的磁性与电流方向的关系。
2.判定方法:用右手握住螺线管,让四指弯向螺线管中电流的方向,则大拇指所指的那端就是螺线管的北极。
教师演示具体的判定方法。
练习:如附图所示的几个通电螺线管,用安培定则判定它们的两极。
可以引导学生分别按上图将导线在铅笔上绕成螺线管,先弄清螺线管中电流的指向,再用安培定则判定出两端的极性。
通过以上练习,强调:螺线管的绕制方向不同,螺线管中电流的方向也不同。
作业:
1.最先发现电流周围存在着磁场的科学家是丹麦的______,最早发现电磁感应现象的科学家是英国的_______.
2、在图中画出磁铁的绕线并连接电路,使开关闭合后,电磁铁旁的小磁针能静止在图中位置,并在图中标出电磁铁的N、S
板书设计:
14.3 电流的磁场
一.奥斯特实验
二.螺线管
[教学反思]
在整个教学过程中,老师创设情景引导思考,学生积极思考,发挥主体作用,因此进行得顺利,流畅,学生学有所获,按照“引、导、探、研”的指导思想教好地完成教学任务。
在知识,技能要求的范围内,合理调整教学的方式和先后顺序.第一个调整是将奥斯特实验作为了探究实验,让学生动手完成。
第二个调整将对螺线管的探究作为老师的演示实验,并且是先学习通电螺线管周围的磁场分布情况,再学习判断通电螺线管的磁极。
整体设计注意一环扣一环,上下衔接自然流畅,前后呼应,过渡内容设计使整个课堂的完整性得以充分体现。
在营造课堂的氛围方面,要注意语速和语调,根据具体的情况来处理教学的进程和教学的方式。