高中数学第十四章复数(实验修订版)
- 格式:doc
- 大小:231.15 KB
- 文档页数:3
2024-2025学年新教材高中数学第10章复数10.1.1复数的概念教案新人教B版必修第四册科目授课时间节次--年一月一日(星期---)第一节指导教师授课班级、授课课时授课题目(包括教材及章节名称)2024-2025学年新教材高中数学第10章复数10.1.1复数的概念教案新人教B版必修第四册教学内容本节课的教学内容来源于2024-2025学年新教材高中数学第10章复数10.1.1复数的概念,新人教B版必修第四册。
本节课的主要内容包括:1.复数的概念:引导学生理解复数的概念,包括实数和虚数的概念,以及复数的表示方法,如a+bi(a,b是实数,i是虚数单位,i2=-l)o2.复数的分类:讲解复数的分类,包括纯虚数、实数和虚数,以及它们之间的关系。
3.复数的几何表示:介绍复数在复平面上的表示,即复平面上的点与复数之间的对应关系。
4.复数的运算:讲解复数的四则运算规则,包括加法、减法、乘法和除法,以及它们在复平面上的几何意义。
5.复数的应用:举例说明复数在实际问题中的应用,如电路中的交流电、物理中的振动等。
核心素养目标本章节的教学旨在培养学生的数学核心素养,具体包括:1.知识与技能:使学生掌握复数的基本概念、分类和几何表示,以及复数的四则运算规则,并能应用于实际问题中。
2.过程与方法:通过探究复数的概念和运算规则,培养学生的逻辑思维能力、抽象思维能力和创新思维能力。
3.情感态度与价值观:激发学生对数学学科的兴趣和好奇心,培养学生的团队合作意识、自我探索精神和追求真理的态度。
教学难点与1.教学重点(1)复数的概念:实数和虚数的概念,以及复数的表示方法a+bi(a,b是实数,i是虚数单位,i2=-l)。
重点(2)复数的分类:纯虚数、实数和虚数的定义及它们之间的关系。
(3)复数的几何表示:复数在复平面上的表示,即复平面上的点与复数之间的对应关系。
(4)复数的运算:加法、减法、乘法和除法的基本规则,以及它们在复平面上的几何意义。
第十章复数10.1复数及其几何意义10.1.1复数的概念[课程目标] 1.在问题情境中了解数系的扩充过程,体会实际需求与数学知识体系内部的矛盾(数的运算规则、求方程的根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;2.理解复数的基本概念以及复数相等的充要条件.知识点一复数的概念及分类[填一填](1)复数的概念①为了使得方程x2=-1有解,人们规定i的平方等于-1,即i2=-1,并称i为虚数单位.②当a与b都是实数时,称a+b i为复数,复数一般用小写字母z 表示,即z=a+b i(a,b∈R).其中a称为z的实部,b称为z的虚部,分别记作Re(z)=a,Im(z)=b.(2)复数的分类所有复数组成的集合称为复数集,复数集通常用大写字母C表示,因此C={z|z=a+b i,a,b∈R}.任意一个复数都由它的实部与虚部唯一确定,虚部为0的复数实际上是一个实数.特别地,称虚部不为0的复数为虚数,称实部为0的虚数为纯虚数.[答一答]1.复数集与实数集的关系是怎样的?与已学过的有关数集的关系是怎样的?提示:实数集R 是复数集C 的真子集,即RC .至此,我们学过的有关数集的关系如下:复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧ 实数(b =0),虚数(b ≠0)⎩⎨⎧ 纯虚数(a =0),非纯虚数(a ≠0).知识点二 复数相等 [填一填]两个复数z 1与z 2,如果实部与虚部都对应相等,我们就说这两个复数相等,记作z 1=z 2.如果a ,b ,c ,d 都是实数,那么a +b i =c +d i ⇔a =c 且b =d .特别地,当a ,b 都是实数时,a +b i =0的充要条件是a =0且b =0.[答一答]2.怎样理解两复数相等的概念?提示:(1)两个实数可以比较大小,但两个不全是实数的复数就不能比较大小,只能说相等或不相等.如2+i 和3-i,2和i 之间就无大小可言.(2)虚数不能比较大小,有大小关系的两个数一定是实数.两个不全为实数的复数不能比较大小.(1)根据复数a+b i与c+d i相等的定义可知,在a=c,b=d两式中,只要有一个不成立,那么就有a+b i≠c+d i.(2)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.(3)实数之间的“<”(小于)关系,具有以下性质:①若a<b,b<c,则a<c;②若a<b,则对任意实数c,满足a+c<b+c;③若a<b,c>0,则ac<bc.如果我们要在复数之间引入一个“小于”关系,自然也应要求具有上述性质,但是,在复数之间具有上述性质的关系却是不存在的.类型一复数的概念[例1]判断下列说法是否正确.(1)当z∈C时,z2≥0;(2)若a∈R,则(a+1)i是纯虚数;(3)若a>b,则a+i>b+i.[分析]本题考查复数的基本概念和基本性质.[解](1)错误.当且仅当z∈R时,z2≥0成立.若z=i,则z2=-1<0.(2)错误.当a=-1时,(a+1)i=(-1+1)i=0·i=0∈R.(3)错误.两个虚数不能比较大小.1.虚数单位i 具有i 2=-1的性质.2.只有在两个复数都是实数时,才可以比较它们的大小.3.复数z 的平方未必为非负数.[变式训练1] 下列命题正确的是(1).(1)复数-i +1的虚部为-1.(2)若z 1,z 2∈C 且z 1-z 2>0,则z 1>z 2.(3)任意两个复数都不能比较大小.解析:(1)复数-i +1=1-i ,虚部为-1.正确.(2)若z 1,z 2不全为实数,则z 1,z 2不能比较大小.错误.(3)若两个复数都是实数,可以比较大小,错误.类型二 复数的分类[例2] 已知复数z =a 2-7a +6a 2-1+(a 2-5a -6)i(a ∈R ),试求实数a 分别取什么值时,z 分别为:(1)实数;(2)虚数;(3)纯虚数.[分析] 根据复数z 为实数、虚数及纯虚数的概念,利用它们的充要条件可分别求出相应的a 的值.[解] (1)当z 为实数时,⎩⎨⎧ a 2-1≠0,a 2-5a -6=0,∴⎩⎨⎧ a ≠±1,a =-1或a =6.∴当a =6时,z 为实数.(2)当z为虚数时,⎩⎨⎧a2-5a-6≠0,a2-1≠0,⎩⎪⎨⎪⎧a≠-1且a≠6,a≠±1.∴当a∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z为虚数.(3)当z为纯虚数时,⎩⎨⎧a2-7a+6a2-1=0,a2-5a-6≠0,∴⎩⎨⎧a=6,a≠-1且a≠6.∴不存在实数a,使得z为纯虚数.本题除要熟悉复数的实部、虚部的概念及复数为实数、虚数、纯虚数的充要条件外,还要注意“分式分母不为零”这个隐含条件.[变式训练2]实数m取什么值时,复数(m2-5m+6)+(m2-3m)i 是:(1)实数;(2)虚数;(3)纯虚数;(4)零.解:设z=(m2-5m+6)+(m2-3m)i.(1)要使z为实数,必须有m2-3m=0,得m=0或m=3,即m=0或m=3时,z为实数.(2)要使z为虚数,必须有m2-3m≠0,即m≠0且m≠3.故m≠0且m≠3时,z为虚数.(3)要使z为纯虚数,必须有⎩⎨⎧m2-3m≠0,m2-5m+6=0.∴⎩⎨⎧ m ≠3且m ≠0,m =3或m =2.∴m =2.∴m =2时,z 为纯虚数.(4)要使z =0时,依复数相等的充要条件有:⎩⎨⎧ m 2-5m +6=0,m 2-3m =0⇒⎩⎨⎧ m =2或m =3,m =0或m =3⇒m =3,∴当m =3时,复数z 为零.类型三 复数相等的应用[例3] (1)已知x 2-y 2+2xy i =2i ,求实数x 、y 的值.(2)关于x 的方程3x 2-a 2x -1=(10-x -2x 2)i 有实根,求实数a 的值.[分析] (1)复数a +b i =c +d i 的充要条件是什么?(⎩⎨⎧ a =c ,b =d )(2)利用复数相等解题的前提是什么?(a ,b ,c ,d ∈R )[解] (1)∵x 2-y 2+2xy i =2i ,∴⎩⎨⎧ x 2-y 2=0,2xy =2,解得⎩⎨⎧ x =1,y =1或⎩⎨⎧ x =-1,y =-1.(2)设方程的实数根为x =m ,则原方程可变为3m 2-a 2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧ 3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.1.利用两个复数相等进行解题的依据是实部与虚部分别相等.2.在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R .忽略条件后,不能成立.因此在解决复数相等问题时,一定要把复数的实部与虚部分离出来,再利用复数相等的充要条件化复数问题为实数问题来解决.[变式训练3] 已知关于x 的方程x 2-(2i -1)x +3m -i =0有实数根,求实数m 的值.解:设方程的实根为x 0,则x 20-(2i -1)x 0+3m -i =0,因为x 0、m ∈R ,所以方程变形为(x 20+x 0+3m )-(2x 0+1)i =0,由复数相等得⎩⎨⎧ x 20+x 0+3m =0,2x 0+1=0,解得⎩⎪⎨⎪⎧ x 0=-12m =112,故m =112.1.复数1-i 的虚部是( B )A .1B .-1C .iD .-i解析:分清复数的实部、虚部是解题的关键.2.若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x 的值为( A )A .1B .-1C .±1D .以上全不对解析:由题意得⎩⎨⎧ x 2-1=0,x 2+3x +2≠0,∴x =1. 3.复数(2x 2+5x +2)+(x 2+x -2)i 为虚数,则实数x 满足( D ) A .x =-12B .x =-2或x =-12C .x ≠-2D .x ≠1且x ≠-2解析:由题意得x 2+x -2≠0,解得x ≠1且x ≠-2.4.已知z 1=m 2-3m +m i ,z 2=4+(5m +4)i ,其中m 为实数,i 为虚数单位,若z 1=z 2,则m 的值为-1.解析:由题意得m 2-3m +m i =4+(5m +4)i ,从而⎩⎨⎧ m 2-3m =4,m =5m +4,解得m =-1.。
高中数学总复习之基础知识要点目录01--知识要点:高三数学总复习—集合02--知识要点:高三数学总复习—函数03--知识要点:高三数学总复习—数列04--知识要点:高三数学总复习—三角函数05--知识要点:高三数学总复习—向量06--知识要点:高三数学总复习—不等式07--知识要点:高三数学总复习—直线和圆的方程08--知识要点:高三数学总复习—圆锥曲线方程09--知识要点:高三数学总复习—立体几何10--知识要点:高三数总总复习—排列组合11--知识要点:高三数学总复习—概率12--知识要点:高三数学总复习—极限(实验修订)13--知识要点:高三数学总复习—导数(实验修订版)14--知识要点:高三数学总复习—复数(实验修订版)高考复习科目:数学 高中数学总复习(一)复习内容:高中数学第一章-集合 复习范围:第一章 修订时间:总计第一次I. 基础知识要点 1. 集合中元素具有确定性、无序性、互异性. 2. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果BA⊆,同时AB⊆,那么A = B.如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0})③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真.②且21≠≠y x 3≠+y . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 例:若255 x x x 或,⇒.II. 竞赛知识要点1. 集合的运算.)()(C B A C B A ⋂⋂=⋂⋂)()()(C A B A C B A =De Morgan 公式 C u A ∩ C u B = C u (A ∪ B ) C u A ∪ C u B = C u (A ∩ B ) 2. 容斥原理:对任意集合AB 有B A B A B A -+=.CB AC B C A B A C B A C B A +++-++=)(.高三数学总复习高考复习科目:数学 高中数学总复习(二)复习内容:高中数学第二章-函数 复习范围:第二章 编写时间:2004-2修订时间:总计第一次 2005-5I. 基础知识要点 1. 函数的三要素:定义域,值域,对应法则.2. 函数的单调区间可以是整个定义域,也可以是定义域的一部分. 对于具体的函数来说可能有单调区间,也可能没有单调区间,如果函数在区间(0,1)上为减函数,在区间(1,2)上为减函数,就不能说函数在),(),(2110⋃上为减函数. 3. 反函数定义:只有满足y x −−→←唯一,函数)(x f y =才有反函数. 例:2x y =无反函数.函数)(x f y =的反函数记为)(1y f x -=,习惯上记为)(1x fy -=. 在同一坐标系,函数)(x f y =与它的反函数)(1x fy -=的图象关于x y =对称.[注]:一般地,3)f(x 3)(x f 1+≠+-的反函数. 3)(x f1+-是先f(x)的反函数,在左移三个单位.3)f(x +是先左移三个单位,在)f(x 的反函数.4. ⑴单调函数必有反函数,但并非反函数存在时一定是单调的.因此,所有偶函数不存在反函数. ⑵如果一个函数有反函数且为奇函数,那么它的反函数也为奇函数.⑶设函数y = f (x )定义域,值域分别为X 、Y . 如果y = f (x )在X 上是增(减)函数,那么反函数)(1x f y -=在Y 上一定是增(减)函数,即互为反函数的两个函数增减性相同. ⑷一般地,如果函数)(x f y =有反函数,且ba f =)(,那么ab f=-)(1. 这就是说点(b a ,)在函数)(x f y =图象上,那么点(a b ,)在函数)(1x f y -=的图象上.5. 指数函数:xay=(1,0≠a a ),定义域R ,值域为(+∞,0).⑴①当1 a ,指数函数:xay =在定义域上为增函数;②当10 a ,指数函数:xay=在定义域上为减函数.⑵当1a时,xa y =的a 值越大,越靠近y 轴;当10 a 时,则相反.6. 对数函数:如果a (1,0≠a a)的b次幂等于N ,就是Na b=,数b 就叫做以a 为底的N 的对数,A B A A A B A A ==)(,)(y记作bN a=log(1,0≠a a ,负数和零没有对数);其中a 叫底数,N 叫真数.⑴对数运算:()na n a a a cbab b aNana anaaaaaaaa a a a a cb a N N NaMnM Mn MNM N MNM N M n a1121loglog ...loglog1logloglog loglog log log 1log loglog log loglog loglog )(log 32log )12)1(=⋅⋅⋅⇒=⋅⋅===±=-=+=⋅-推论:换底公式:(以上10且...aa ,a 1,c 0,c 1,b 0,b 1,a 0,a 0,N 0,Mn21≠≠≠≠ )注⑴:当0, b a 时,)log()log()log(b a b a -+-=⋅. ⑵:当0M 时,取“+”,当n 是偶数时且0 M 时,0nM,而0 M ,故取“—”.例如:x x x aaalog2(log 2log2≠中x >0而2logx a中x ∈R ).⑵xa y =(1,0≠a a )与x y alog =互为反函数.当1a时,x y alog=的a 值越大,越靠近x 轴;当10 a 时,则相反.7. 奇函数,偶函数: ⑴偶函数:)()(x f x f =-设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. 偶函数的判定:两个条件同时满足①定义域一定要关于y 轴对称,例如:12+=xy 在)1,1[-上不是偶函数.②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1)()(=-x f x f .⑵奇函数:)()(x f x f -=-设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时,1)()(-=-x f x f .8. 对称变换:①y = f (x ))(轴对称x f y y -=−−−→− ②y =f (x ))(轴对称x f y x -=−−−→− ③y =f (x ))(原点对称x f y --=−−−→−9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:22122212122222121)()()(bx bx x x x x bx bx x f x f x ++++-=+-+=-)(在进行讨论.10. 外层函数的定义域是内层函数的值域. 例如:已知函数f (x )= 1+xx -1的定义域为A ,函数f [f (x )]的定义域是B ,则集合A 与集合B 之间的关系是 .解:)(x f 的值域是))((x f f 的定义域B ,)(x f 的值域R ∈,故R B ∈,而A {}1|≠=x x ,故A B ⊃. 11. 常用变换:①)()()()()()(y f x f y x f y f x f y x f =-⇔=+.证:)()(])[()()()()(y f y x f y y x f x f x f y f y x f -=+-=⇔=-②)()()()()()(y f x f y x f y f x f yxf +=⋅⇔-=证:)()()()(y f yx f y yx f x f +=⋅=12. ⑴熟悉常用函数图象: 例:||2x y =→||x 关于y 轴对称. |2|21+⎪⎭⎫⎝⎛=x y →||21x y ⎪⎭⎫⎝⎛=→|2|21+⎪⎭⎫⎝⎛=x y|122|2-+=x xy →||y 关于x 轴对称.⑵熟悉分式图象: 例:372312-+=-+=x x x y ⇒定义域},3|{R x x x ∈≠,值域},2|{R y y y ∈≠→值域≠x前的系数之比.四川师大附中高2006届高三数学总复习(三)§3. 数 列 知识要点A B ⊃1. ⑴等差、等比数列:⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n n a a a (2≥n ,011≠-+n n n a a a )①注①:i. ac b =,是a 、b 、c 成等比的双非条件,即acb=、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要.iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0 ac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③nn cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n xa log}(1 x )成等比数列.⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件).②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛=+=22122→2d 可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件.③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ②若等差数列的项数为2()+∈Nn n ,则,奇偶nd SS=-1+=n naa SS 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇得到所求项数到代入12-⇒n n .3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒nn a ; 5,55,555,…()11095-=⇒nn a .4. 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a nn +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为nr a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--mmmmm m mr r ar x rr x r a x r x r x r x r a5. 数列常见的几种形式: ⑴nn n qa paa +=++12(p 、q 为二阶常数)→用特证根方法求解.具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设n n n xc x c a 2211.+=,若21x x =可设nn x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑵rPaa n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为nn n qa Paa +=++12的形式,再用特征根方法求n a ;④121-+=n n Pc c a (公式法),21,c c 由21,a a 确定.①转化等差,等比:1)(11-=⇒-+=⇒+=+++P r x x Px Pa a x a P x a n n n n .②选代法:=++=+=--r r PaP rPaa n n n )(21xPx a P r P P r a a n n n -+=---+=⇒--1111)(1)1(r r Pa Pn n +++⋅+=--Pr 211.③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Paan n nn 111+n a 1111-+--+=⇒-=-n n n n nn Paa P a PaPaa )(.④由选代法推导结果:Pr PP r a c Pc aP r a c Pr c n n n-+-+=+=-+=-=--111111112121)(,,.6. 几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0 d 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法: 一是求使0,01 +≥n n a a ,成立的n 值;二是由nd a nd S n )2(212-+=利用二次函数的性质求n 的值.⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211nn -⋅⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.高三数学总复习高考复习科目:数学 高中数学总复习(四)复习内容:高中数学第四章-三角函数 复习范围:第四章 编写时间:2004-7修订时间:总计第三次 2005-4I. 基础知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90|ββ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180|ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180|ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=180360kS IN \C O S 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 3. 三角函数的定义域:4. 三角函数的公式: (一)基本关系公式组二 公式组三xx k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππxx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-公式组四 公式组五 公式组六xx x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππxx x x x x xx c o t )2c o t (t a n )2t a n (c o s )2c o s (s i n )2s i n (-=--=-=--=-ππππxx x x x x xx c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααc o s s i n 22s i n =βαβαβαsin sin cos cos )cos(+=- ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-=βαβαβαsin cos cos sin )sin(+=+ ααα2t a n 1t a n 22t a n -=βαβαβαsin cos cos sin )sin(-=- 2c o s 12s i nαα-±=βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cosαα+±=公式组一s in x ·c sc x =1ta n x =xx c o s sin s in 2x +c o s 2x =1c o s x ·s e c x x =xx sin c o s 1+ta n 2x =s e c 2xta n x ·c o t x =11+c o t 2x =c sc 2x=1βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan12tan2sin 2ααα+=2tan12tan1cos 22ααα+-=2tan12tan2tan 2ααα-=42675cos 15sin -==,42615cos 75sin+==,3275cot 15tan-==,3215cot 75tan+==.5. 正弦、余弦、正切、余切函数的图象的性质:注意:①x y sin -=与x y sin =的单调性正好相反;x y cos -=与x y cos =的单调性也同样相反.一般地,若)(x f y =在],[b a 上递增(减),则)(x f y -=在],[b a 上递减(增).②xysin =与xycos =的周期是π.()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2cos 2sin 2sin sin βαβαβα-+=+2sin 2cos2sin sin βαβαβα-+=-2cos 2cos2cos cos βαβαβα-+=+2sin2sin2cos cos βαβαβα-+-=-αααααααsin cos 1cos 1sin cos 1cos 12tan-=+=+-±=ααπsin )21cos(-=+ααπcos )21sin(=+ααπcot )21tan(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-③)sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期ωπ2=T .2tanx y =的周期为2π(πωπ2=⇒=T T,如图,翻折无效).④)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心(0,πk );)c o s (ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心(0,21ππ+k );)t a n (ϕω+=x y 的对称中心(0,2πk ).xx y x y 2cos )2cos(2cos -=--=−−−→−=原点对称⑤当αtan ·,1tan =β)(2Z k k ∈+=+ππβα;αtan ·,1tan -=β)(2Z k k ∈+=-ππβα.⑥x y cos =与⎪⎭⎫ ⎝⎛++=ππk x y 22sin 是同一函数,而)(ϕω+=x y 是偶函数,则 )cos()21sin()(x k x x y ωππωϕω±=++=+=.⑦函数x y tan =在R 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,x y tan =为增函数,同样也是错误的].⑧定义域关于原点对称是)(x f 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:)()(x f x f =-,奇函数:)()(x f x f -=-)奇偶性的单调性:奇同偶反. 例如:x y tan =是奇函数,)31tan(π+=x y 是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若x ∈0的定义域,则)(x f 一定有0)0(=f .(x ∉0的定义域,则无此性质)⑨x y sin =不是周期函数;x y sin =为周期函数(π=T );xy cos =是周期函数(如图);x y cos =为周期函数(π=T );212cos +=x y 的周期为π(如图),并非所有周期函数都有最小正周期,例如:R k k x f x f y ∈+===),(5)(.⑩ab ba b a y =+++=+=ϕϕαβαcos )sin(sin cos 22 有y b a ≥+22.II. 竞赛知识要点一、反三角函数.1. 反三角函数:⑴反正弦函数x y arcsin =是奇函数,故x x arcsin )arcsin(-=-,[]1,1-∈x (一定要注明定义域,若()+∞∞-∈,x ,没有x 与y 一一对应,故x y sin =无反函数)注:x x =)sin(arcsin,[]1,1-∈x ,⎥⎦⎤⎢⎣⎡-∈2,2arcsinππx . ⑵反余弦函数x y arccos =非奇非偶,但有ππk x x 2)arccos()arccos(+=+-,[]1,1-∈x . 注:①x x =)cos(arccos,[]1,1-∈x ,[]π,0arccos∈x .y =|c o s 2x +1/2|图象②x y cos =是偶函数,x y arccos =非奇非偶,而x y sin =和x y arcsin =为奇函数. ⑶反正切函数:x y arctan =,定义域),(+∞-∞,值域(2,2ππ-),x y a r c t a n =是奇函数,xx arctan )arctan(-=-,∈x ),(+∞-∞.注:x x =)tan(arctan ,∈x ),(+∞-∞.⑷反余切函数:x arc y cot =,定义域),(+∞-∞,值域(2,2ππ-),x a r c y c o t =是非奇非偶.ππk x arc x arc 2)cot()cot(+=+-,∈x ),(+∞-∞.注:①x x arc =)cot cot(,∈x ),(+∞-∞.②x y arcsin =与)1arcsin(x y -=互为奇函数,x y arctan =同理为奇而x y arccos =与xarc ycot =非奇非偶但满足]1,1[,2)cot(cot ]1,1[,2arccos )arccos(-∈+=-+-∈+=+-x k x arc x arc x k x x ππππ.⑵ 正弦、余弦、正切、余切函数的解集:a的取值范围 解集a的取值范围 解集①a x =sin 的解集 ②a x =cos 的解集a >1 ∅ a >1 ∅a=1 {}Z k a k x x ∈+=,arcsin 2|π a=1 {}Z k a k x x ∈+=,arccos 2|πa<1(){}Zk a k x x k∈-+=,arcsin 1|πa<1 {}Z k a k x x ∈±=,arccos |π③a x =tan 的解集:{}Z k a k x x ∈+=,arctan |π ③a x =cot 的解集:{}Z k a k xx ∈+=,cot arc |π二、三角恒等式. 组一 组二∏===nk nnnk12sin2sin 2cos8cos4cos2cos2cosααααααα∑=++=+++++=+nk dnd x d n nd x d x x kd x 0sin )cos())1sin(()cos()cos(cos )cos(∑=++=+++++=+nk dnd x d n nd x d x x kd x 0sin )sin())1sin(()sin()sin(sin )sin(αγγββαγβαγβαγβαtan tan tan tan tan tan 1tan tan tan tan tan tan )tan(----++=++组三 三角函数不等式xsin <x <)2,0(,tanπ∈x xxx x f sin )(=在),0(π上是减函数若π=++CB A ,则Cxy B xz A yz z y x cos 2cos 2cos 2222++≥++ααααααcos 3cos43cos sin 4sin 33sin 33-=-=()()αββαβαβα2222cos cos sin sin sinsin-=-+=-ααααααsin 22sin 2cos ...4cos 2cos cos 11++=n n n高三数学总复习高考复习科目:数学 高中数学总复习(五)复习内容:高中数学第五章-平面向量 复习范围:第五章 编写时间:2004-7修订时间:总计第三次 2005-41. 长度相等且方向相同的两个向量是相等的量. 注意:①若b a,为单位向量,则ba=. (⨯) 单位向量只表示向量的模为1,并未指明向量的方向. ②若ba =,则a∥b. (√)2.①()aμλ=()aλμ②()aa aμλμλ+=+③()ba b aλλλ+=+④设()()Ry x b y x a∈==λ,,,,2211()2121,y y x x b a ++=+()2121,y y x x b a --=-()21,y x a λλλ=2121y y x x b a +=⋅2121y x a +=(向量的模,针对向量坐标求模) ⑤平面向量的数量积:θcos b a b a ⋅=⋅⑥ab b a⋅=⋅ ⑦()()()ba b a baλλλ⋅=⋅=⋅⑧()cb c a c b a⋅+⋅=⋅+注意:①()()cb a cb a⋅⋅=⋅⋅不一定成立;cb ba⋅=⋅ca =.②向量无大小(“大于”、“小于”对向量无意义),向量的模有大小.③长度为0的向量叫零向量,记0,0与任意向量平行,0的方向是任意的,零向量与零向量相等,且00=-.④若有一个三角形ABC ,则0;此结论可推广到n 边形.⑤若an a m=(R n m ∈,),则有nm =. (⨯) 当a等于0时,0==a n am ,而n m ,不一定相等. ⑥a ·a =2||a,||a=2a(针对向量非坐标求模),||b a⋅≤||||b a⋅.⑦当0≠a 时,由0=⋅b a不能推出0≠b ,这是因为任一与a垂直的非零向量b,都有a·b=0.⑧若a ∥b ,b ∥c ,则a ∥c (×)当b 等于0时,不成立.3. ①向量b与非零向量....a共线的充要条件是有且只有一个实数λ,使得a bλ=(平行向量或共线向量).当a ,0 λ与b 共线同向:当,0 λa 与b 共线反向;当b 则为0,0与任何向量共线.注意:若b a ,λ= (×)若c 是a 的投影,夹角为θ,则c a =⋅θcos,=⋅θcos (√) ②设a=()11,y x ,()22,y x b =a ∥b⇔=-⇔01221y x yx b a b a =⋅⇔=λa⊥b01221=+⇔=⋅⇔y y x x b a③设()()()332211,,,,,y x C y x B y x A ,则A 、B 、C 三点共线⇔∥⇔=λ(0≠λ)⇔(1212,y y x x --)=λ(1313,y y x x --)(0≠λ)⇔(12x x -)·(13y y -)=(13x x -)·(12y y -) ④两个向量a、b 的夹角公式:222221212121cos yxy x y y x x +⋅++=θ⑤线段的定比分点公式:(0≠λ和1-)设P 1P=λP P 2 (或2λ11),且21,,P P P 的坐标分别是),(),,(,,2211y x y x y x )(,则推广1:当1=λ时,得线段21P P 的中点公式:推广2λ=MB则λλ++=1PB PA PM(λ对应终点向量).三角形重心坐标公式:△ABC 的顶点()()()332211,,,,,y x C y x B y x A ,重心坐标()y x G ,:注意:在△ABC 中,若0为重心,则0=++OC OB OA ,这是充要条件. ⑥平移公式:若点P ()y x ,按向量a=()k h ,平移到P‘()'',yx,则⎪⎩⎪⎨⎧+=+=ky y hx x ''4. ⑴正弦定理:设△ABC 的三边为a 、b 、c ,所对的角为A 、B 、C ,则RCc Bb Aa 2si n si n si n ===.⑵余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+=-+=Cab a b c B ac ca b A bc cb a cos 2cos 2cos 2222222222⑶正切定理:2tan2tan B A B A ba ba -+=-+⑷三角形面积计算公式:设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .⎪⎪⎩⎪⎪⎨⎧++=++=33321321y y y y x x x x ⎪⎪⎩⎪⎪⎨⎧+=+=222121x x x y y y ⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121x x x y yy AB①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R ④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式]⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.如图:图1中的I 为S △ABC 的内心, S △=PrI 为S △ABC 的一个旁心,S △(b+c-a )r a图1图2图3图4附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c [注:s 为△ABC 的半周长,即2cb a ++]则:①AE=a s -=1/2(b+c-a ) ②BN=b s -=1/2(a+c-b ) ③FC=c s -=1/2(a+b-c )综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt △ABC ,c 为斜边,则内切圆半径r =cb a ab cb a ++=-+2(如图3). ⑹在△ABC 中,有下列等式成立CB AC B A tan tan tan tan tan tan =++.证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以CBA B A tan tan tan 1tan tan -=-+,∴结论!⑺在△ABC 中,D 是BC 上任意一点,则DCBD BCBCAB BD ACAD ⋅-+=222.证明:在△ABCD 中,由余弦定理,有B BD AB BDABAD cos 2222⋅⋅-+=①在△ABC 中,由余弦定理有BCAB ACBC ABB ⋅-+=2cos 222②,②代入①,化简可得,DC BD BCBCAB BD ACAD⋅-+=222(斯德瓦定理)①若AD 是BC 上的中线,2222221acbm a -+=;②若AD 是∠A 的平分线,()a p p bc cb t a-⋅+=2,其中p 为半周长;B b I AB C D EF IABCDEFr ar ar abca abc C DACB图5③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c<⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c>⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π附:证明:abcb a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos cb ac b a C +⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.)2=四川师大附中高2006届高三数学总复习(六)§6. 不 等 式 知识要点1. ⑴平方平均≥算术平均≥几何平均≥调和平均(a 、b为正数):2112a b a b+≥+(当a = b 时取等)特别地,222()22a b a b a b ++≤≤(当a = b 时,222()22a b a b a b ++==)),,,(332222时取等c b a R c b a c b a cba==∈⎪⎭⎫⎝⎛+++≥++⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++⑵含立方的几个重要不等式(a 、b 、c 为正数): ①3322a b a b a b +≥+②3332223()()a b c a b c a b c a b c a b a c b c ++-=++++---⇒3333a b ca b c ++≥(等式即可成立0 c b a++,时取等或0=++==c b a c b a);3a b c++≤⇒33a b c a b c ++⎛⎫≤ ⎪⎝⎭3333a b c ++≤2)(31c b a ac ba ab +++≤++(时取等c b a==)⑶绝对值不等式:123123(0)a a aa aaa b a b a b a b ++≤++-≤-≤+≥时,取等⑷算术平均≥几何平均(a 1、a 2…an 为正数):12na a an+++≥(a 1=a 2…=a n 时取等)⑸柯西不等式:设),,,2,1(,n i R b a i i =∈则))(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++等号成立当且仅当nnb ab ab a ===2211时成立.(约定0=i a 时,0=i b )例如:22222()()()a c b d a b c d +≤++.⑹常用不等式的放缩法:①21111111(2)1(1)(1)1n n n n n nn n n n-==-≥++--1)2n nn n ==≥+-2. 常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)124(1)()223279x x x y x x yy --=-⇒=≤=⇒≤类似于22s in c o s s in (1s in)y x x x x ==-③111||||||()2x x x xxx+=+≥与同号,故取等四川师大附中高2006届高三数学总复习(七)实验修订版§7. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα≤≤. 注:①当90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线.附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.3. ⑴两条直线平行:1l ∥212kk l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21CC ≠)推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l .⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件)4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当90≠θ时21121tan kk k k +-=θ.⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是⎝⎛⎥⎦⎤2,0π,当 90≠θ,则有21121tan k k kk +-=θ. 5. 过两直线⎩⎨⎧=++=++0:0:22221111Cy Bx Al C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有22BA CByAxd +++=.⑵两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有2221BAC C d +-=.7. 关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等. 若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.注:①曲线、直线关于一直线(b x y +±=)对称的解法:y 换x ,x 换y. 例:曲线f (x ,y )=0关于直线y =x –2对称曲线方程是f (y +2 ,x –2)=0.②曲线C: f (x ,y )=0关于点(a ,b)的对称曲线方程是f (a – x , 2b – y )=0. 二、圆的方程.1. ⑴曲线与方程:在直角坐标系中,如果某曲线C 上的 与一个二元方程0),(=y x f 的实数建立了如下关系:①曲线上的点的坐标都是这个方程的解.②以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).⑵曲线和方程的关系,实质上是曲线上任一点),(y x M 其坐标与方程0),(=y x f 的一种关系,曲线上任一点),(y x 是方程0),(=y x f 的解;反过来,满足方程0),(=y x f 的解所对应的点是曲线上的点. 注:如果曲线C 的方程是f(x ,y)=0,那么点P 0(x 0 ,y)线C 上的充要条件是f(x 0 ,y 0)=0 2. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.注:特殊圆的方程:①与x 轴相切的圆方程222)()(b b y a x =±+- )],(),(,[b a b a b r -=或圆心 ②与y 轴相切的圆方程222)()(a b y a x =-+±)],(),(,[b a b a a r -=或圆心③与x 轴y 轴都相切的圆方程222)()(a a y a x =±+± )],(,[a a a r ±±=圆心 3. 圆的一般方程:022=++++F Ey Dx y x .当0422F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫ ⎝⎛--2,2E D C ,半径2422F E D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422F E D -+时,方程无图形(称虚圆). 注:①圆的参数方程:⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数).②方程022=+++++F Ey Dx CyBxy Ax表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.③圆的直径或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A (用向量可征). 4. 点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x -+-⇔ ②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x -+-⇔ 5. 直线和圆的位置关系:设圆圆C :)0()()(222 r r b y a x =-+-; 直线l :)0(022≠+=++B A C By Ax ;圆心),(b a C 到直线l 的距离22BACBb Aa d +++=.①r d =时,l 与C 相切;附:若两圆相切,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为公切线方程.②r d 时,l 与C 相交; 附:公共弦方程:设有两个交点,则其公共弦方程为0)()()(212121=-+-+-F F y E E x D D . ③r d 时,l 与C 相离.附:若两圆相离,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为圆心21O O 的连线的中与线方程.由代数特征判断:方程组⎪⎩⎪⎨⎧=++=-+-0)()(222C Bx Ax rb y a x 用代入法,得关于x (或y )的一元二次方程,其判别式为∆,则:l ⇔=∆0与C 相切; l ⇔∆0 与C 相交; l ⇔∆0 与C 相离.注:若两圆为同心圆则011122=++++F y E x D y x ,022222=++++F y E x D y x 相减,不表示直线. 6. 圆的切线方程:圆222r y x =+的斜率为k 的切线方程是r k kx y 21+±=过圆022=++++F Ey Dx y x上一点),(00y x P 的切线方程为:02200=++++++F y y Ex x Dy y x x .①一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0 – b)=R 2. 特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200ry y x x =+.②若点(x 0 ,y 0)不在圆上,圆心为(a,b)则⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y ,联立求出⇒k 切线方程. 7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图:ABCD 四类共圆. 已知O Θ的方程022=++++F Ey Dx y x …① 又以ABCD 为圆为方程为2))(())((kb x yy a xx x AA =--+--…②4)()(222b ya xR AA-+-=…③,所以BC 的方程即③代②,①②相切即为所求.高三数学总复习高考复习科目:数学 高中数学总复习(八):0:222222111221=++++=++++F y E x D y x C F y E x D y xC B C )复习内容:高中数学第八章-圆锥曲线方程 复习范围:第八章 编写时间:2004-7修订时间:总计第三次 2005-4I. 基础知识要点一、椭圆方程.1. 椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F FF a PFPFF F a PF PF F F a PF PF ==+=+=+⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax=+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay=+.②一般方程:)0,0(122B A ByAx=+.③椭圆的标准参数方程:12222=+by ax 的参数方程为⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ).⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2ba c c FF -==.⑤准线:cax 2±=或cay 2±=.⑥离心率:)10( e ac e =.⑦焦点半径:i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,FF 为左、右焦点,则由椭圆方程的第二定义可以推出. ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,FF 为上、下焦点,则由椭圆方程的第二定义可以推出. 由椭圆第二定义可知:)0()(),0()(0002200201x a ex x cae pFx ex a cax e pF-=-=+=+=归结起来为“左加右减”.注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222abc ab d -=和),(2abc⑶共离心率的椭圆系的方程:椭圆)0(12222 b a by ax =+的离心率是)(22ba c ac e -==,方程t t by ax (2222=+是大于0的参数,)0 b a 的离心率也是ac e =我们称此方程为共离心率的椭圆系方程.⑸若P 是椭圆:12222=+by ax 上的点.21,FF 为焦点,若θ=∠21PF F ,则21FPF ∆的面积为2tan2θb (用余弦定理与a PFPF221=+可得). 若是双曲线,则面积为2cot2θ⋅b .二、双曲线方程.⇒-=+=0201,ex a PFex a PF ⇒-=+=0201,ey a PFey a PFa s in α,)s in α)N 的轨迹是椭圆。
复数知识内容一、复数的看法1.虚数单位i:(1)它的平方等于 1 ,即i2 1 ;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律依旧建立.(3) i 与- 1 的关系 :i 就是1的一个平方根,即方程21 的一个根,方程21 的另一个根是 -i .x x(4) i 的周期性:i 4n 1i , i 4n 2 1 , i 4n 3i , i 4 n 1 .实数 a( b0)2.数系的扩大:复数a bibi( b0)纯虚数 bi( a0)虚数 a非纯虚数 a bi( a0)3.复数的定义:形如 a bi( a ,b R ) 的数叫复数, a 叫复数的实部,b叫复数的虚部.全体复数所成的会集叫做复数集,用字母 C 表示4.复数的代数形式 :平时用字母 z 表示,即z a bi (a ,b R) ,把复数表示成 a bi 的形式,叫做复数的代数形式.5.复数与实数、虚数、纯虚数及0 的关系:关于复数 a bi ( a ,b R) ,当且仅当 b0时,复数 a bi( a ,b R) 是实数a;当 b 0 时,复数z a bi 叫做虚数;当a0 且 b0 时, z bi 叫做纯虚数;当且仅当 a b 0 时,z就是实数 06.复数集与其他数集之间的关系:N 苘Z Q 苘 R C7.两个复数相等的定义:假如两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,假如a,a,b,d,c ,d R ,那么 a bi c di a c ,b d二、复数的几何意义1.复平面、实轴、虚轴:复数 z a bi( a ,b R ) 与有序实数对 a ,b是一一对应关系.建立一一对应的关系.点 Z 的横坐标是 a ,纵坐标是b,复数z a bi( a ,b R ) 可用点 Z a ,b 表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数.2..关于虚轴上的点要除原点外,因为原点对应的有序实数对为0 ,0 ,它所确立的复数是z 0 0i 0 表示是实数.除了原点外,虚轴上的点都表示纯虚数.3.复数 z a bi一一对应复平面内的点 Z (a ,b)这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.三、复数的四则运算1.复数z1与z2的和的定义:z1z2 a bi c di a c b d i2.复数z1与z2的差的定义:z1 z2 a bi c di a c b d i3.复数的加法运算满足交换律: z1z2z2z14.复数的加法运算满足联合律: ( z1z2 )z3z1(z2 z3 )5.乘法运算规则:设 z1 a bi , z2c di ( a、b、c、d R )是任意两个复数,那么它们的积 z1 z2 a bi c di ac bd bc ad i其实就是把两个复数相乘,近似两个多项式相乘,在所得的结果中把i 2换成1,而且把实部与虚部分别合并.两个复数的积依旧是一个复数.6.乘法运算律:(1) z1 z2 z3z1 z2 z3(2) (z1 z2 ) z3z1 ( z2 z3 )(3) z 1 z 2 z 3z 1 z 2 z 1 z 37. 复数除法定义:满足 c di x yia bi 的复数 x yi ( x 、 y R )叫复数 abi 除以复数 cdi 的商,记为:(a bi)c di 也许abic di8. 除法运算规则:设复数 a bi ( a 、 b R ) ,除以 c di ( c , d R ),其商为 x yi ( x 、 yR ) ,即 ( a bi) c dixyi ∵ xyi c dicx dydx cy i∴ cxdydx cy i a bix ac bdcx dy ac 2d 2由复数相等定义可知,解这个方程组,得dxcyb bc,yadc 2d 2于是有 : (a bi)cdi ac bdbc adi2 222cdcd ②利用c di c di c 22abi的分母有理化得:d 于是将 c di原式a bi (abi)( c di) [ ac bi ( di)] (bc ad)ic di (cdi)( cdi)c2d2(acbd ) (bc ad)i ac bd bc adc 2d 2 c 2 d 2 c 2d 2 i .∴ ( (abi)c di ac bd bc adc 2d 22d 2ic评论 : ①是惯例方法,②是利用初中我们学习的化简无理分式时,都是采纳的分母有理化思想方法,而复数 c di 与复数 c di ,相当于我们初中学习的3 2 的对偶式 3 2 ,它们之积为1是有理数,而 c di c dic 2d 2 是正实数.所以可以分母实数化.把这类方法叫做分母实数化法.9. 共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。
高三数学总复习(十四)实验修订版
§14. 复 数 知识要点
1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=. ⑵复数及其相关概念:
① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ;
④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i.
⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义:
00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且.
⑷两个复数,如果不全是实数,就不能比较大小.
注:①若21,z z 为复数,则 1若021 z z +,则21z z - .(×)[21,z z 为复数,而不是实数]
2若21z z ,则021 z z -.(√)
②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-,
0)
(,1)
(2
2
=-=-a c c b 时,上式成立)
2. ⑴复平面内的两点间距离公式:21z z d -=.
其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00 r r z z =-. ⑵曲线方程的复数形式:
①00z r z z 表示以=-为圆心,r 为半径的圆的方程. ②21z z z z -=-表示线段21z z 的垂直平分线的方程.
③212121202Z Z z z a a a z z z z ,)表示以且( =-+-为焦点,长半轴长为a 的椭圆的方程(若
212z z a =,此方程表示线段21Z Z ,).
④),(2121202z z a a z z z z =---表示以2
1Z
Z ,为焦点,实半轴长为a 的双曲线方程(若
212z z a =,此方程表示两条射线).
⑶绝对值不等式:
设21z z ,是不等于零的复数,则 ①212121z z z z z z +≤+≤-.
左边取等号的条件是),且(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. ②212121z z z z z z +≤-≤-.
左边取等号的条件是),(012 λλλR z z ∈=,右边取等号的条件是),(012 λλλR z z ∈=. 注:n n n A A A A A A A A A A 11433221=++++- . 3. 共轭复数的性质:
z z = 2121z z z z +=+
a z z 2=+,i 2
b z z =-(=z a + b i ) 22||||z z z z ==⋅
2121z z z z -=- 2121z z z z ⋅=⋅ 2121z z
z z =⎪⎪⎭
⎫ ⎝⎛(02≠z ) n n z z )(=
注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]
4. ⑴①复数的乘方:)(...+
∈⋅⋅=N n z z z z z n
n
②对任何z ,21,z z C ∈及+∈N n m ,有
③n n n n m n m n m n m z z z z z z z z z 2121)(,)(,⋅=⋅==⋅⋅+
注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如1,14
2=-=i i 若由
11)(21
21
4
2
===i i 就会得到11=-的错误结论.
②在实数集成立的2||x x =. 当x 为虚数时,2||x x ≠,所以复数集内解方程不能采用两边平方法. ⑵常用的结论:
1,,1,,143
42
41
42
=-=-==-=+++n
n n n i
i i
i
i i
i
)(,03
2
1Z n i
i
i i n n n n
∈=++++++ i i
i i i
i i i -=+-=-+±=±11,
11,
2)1(2
若ω是1的立方虚数根,即i 2
32
1±
-
=ω,则 . 5. ⑴复数z 是实数及纯虚数的充要条件: ①z z R z =⇔∈.
②若0≠z ,z 是纯虚数0=+⇔z z .
⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零. 注:||||z z =.
)(0,01,1
,,12
1223Z
n n n n ∈=++=++===++ωωωωωω
ωωωω
6. ⑴复数的三角形式:)sin (cos θθi r z +=. 辐角主值:θ适合于0≤θ<π2的值,记作z arg . 注:①z 为零时,z arg 可取)2,0[π内任意值. ②辐角是多值的,都相差2π的整数倍. ③设,+∈R a 则ππ
π2
3)arg(,2
arg ,)arg(,0arg =
-==-=ai ai a a .
⑵复数的代数形式与三角形式的互化:
)sin (cos θθi r bi a +=+,2
2
b
a
r +=
,r
b r
a =
=
θθsin ,cos .
⑶几类三角式的标准形式:
)]sin()[cos()sin (cos θθθϑ-+-=-i r i r )]sin()[cos()sin (cos θπθπθθ+++=+-i r i r )]sin()[cos()sin cos (θπθπθθ-+-=+-i r i r )]2
sin(
)2
[cos(
)cos (sin θπ
θπ
θθ-+-=+i r i r
7. 复数集中解一元二次方程:
在复数集内解关于x 的一元二次方程)0(02≠=++a c bx ax 时,应注意下述问题: ①当R c b a ∈,,时,若∆>0,则有二不等实数根a
b x 22,1∆
±
-=;若∆=0,则有二相等实数根a
b x 22,1-
=;
若∆<0,则有二相等复数根a i
b x 2||2,1∆±
-=
(2,1x 为共轭复数).
②当c b a ,,不全为实数时,不能用∆方程根的情况.
③不论c b a ,,为何复数,都可用求根公式求根,并且韦达定理也成立. 8. 复数的三角形式运算:
)]sin()[cos()sin (cos )sin (cos 212121222211θθθθθθθθ+++=+⋅+i r r i r i r )]sin()[cos()
sin (cos )sin (cos 21212
1222211θθθθθθθθ-+-=++i r r i r i r
棣莫弗定理:)sin (cos )]sin (cos [θθθθn i n r i r n n +=+.。