新泰市2015年中考数学第二次模拟试题及答案(新课标人教版)
- 格式:doc
- 大小:447.00 KB
- 文档页数:14
A BC 6题图2015年中考数学二模试题第I 卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.32的相反数是 A .32 B .23 C .32- D .23- 2.如图,下面几何体的俯视图是3.下列计算正确的是A .a +a =a 2B .a ²a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+a 24.在平面直角坐标系中,点M (6,-3)关于x 轴对称的点在 A .第一象限 B .第二象限C .第三象限D .第四象限5.如图,直线PQ ∥MN ,点C 是MN 上一点,CE 交PQ 于点A ,CF 交PQ 于点B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为A .60°B .50°C .40°D .30°6.在正方形网格中,ABC △的位置如图所示,则sin∠BAC 的值为A .35B .34C .45D .437.已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为 A .-7 B .7 C .-5 D .5 8.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率A.大于12B.等于12C.小于15 D.无法确定9. 化简111a a a+--的结果为 A .-1 B .1 C .11a a +- D .11a a+- 10.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是2=0.65S 甲,2=0.55S 乙,2=0.50S 丙,2=0.45S 丁,则射箭成绩最稳定的是A .甲B .乙C .丙D .丁A B CEFPQ M N5题图A CDB 12题图 AEF O13题图 B 图1图2Q C B 15题图 11.目前,我国大约有1.3亿高血压病患者,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位.请你根据表格提供的信息,判断下列各组换算正确的是A .6kpa = 50mmHgB .16kpa = 110mmHgC .20kpa = 150mmHgD .22kpa = 160mmHg 12.在□ABCD 中,AC ⊥AD ,∠B =30°,AC =2,则□ABCD A .4+ B .8 C .8+ D .1613.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点,连接CE 、BF ,相交于点O .若△OEF 的面积为1,则△ABC 的面积为A .9B .10C .11D .1214.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(0.5,1),下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④(a +c )-b 2<0.其中正确的个数是A .1B .2C .3D .4 15.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE —ED —DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm /s.若点P 、Q 同时开始运动,设运动时间为t (s),△BPQ 的面积为y (cm 2).已知y 与t 的函数关系图象如图2,则下列结论错误的是A. AE =6cmB.sin ∠EBC =0.8C.当0<t ≤10时,y =0.4t 2D.当t =12s 时,△PBQ 是等腰三角形第Ⅱ卷(非选择题 共75分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题(本大题共6个小题,每小题3分,共18分.) 16.17.因式分解:3x 2-6x +3=_____________. 18.不等式3(x +2)≥7的解集为_____________.20题图1x 19.3D 打印技术日渐普及,打印出的高精密游标卡尺误差只有±0.000 063米.0.000 063这个数用科学记数法可以表示为_____________. 20.⊙M 的圆心在一次函数122y x =+图象上,半径为1.当⊙M 与y 轴相切时,点M 的坐标为_____________.21.如图,直线2y x =、12y x =分别与双曲线1y x =、2y x=在第一象限的分支交于A 、B 、C 、D 四点,则四边形ABCD 的面积为________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 22(1)(本小题满分3分)计算:221tan 60+︒22(2) (本小题满分4分)如图,直线121y x =-与22y kx =+相交于点A (1,a ).求k 的值.AB C D E 23题图1 B 23题图2 E24题图124题图2如图1,△ABC 为等腰三角形,AB =AC , BD 分别平分∠ABC ,CE 分别平分∠ACB ,过点A 分别作BD 、CE 的垂线段,垂足为D 、E .求证:AD =AE .23(2) (本小题满分4分)如图2, ⊙O 是△ABC 的内切圆,点D 、E 、F 为切点,点M 为优弧DEF 上任意一点,∠B =66°,∠C =37°,求∠M 的大小.24.(本小题满分8分)某校准备组织学生到“山青世界”开展素质拓展训练.活动前,针对“学生最喜欢的拓展项目”对部分学生进行了问卷调查.学生在A 手扎绳结、B 心理课程、C 登山抢险、D 军体五项、E 攀岩崖降五个项目中选出自己最喜欢的一项,根据调查情况绘制成如下两幅统计图 (尚不完整). ⑴本次接受问卷调查的学生共有 人;⑵补全条形统计图,并计算扇形统计图中C 部分所对应的圆心角度数;⑶若该校共有1200名学生参与活动,试估计大约有多少同学最喜欢“攀岩崖降”项目?27题备用图 AD F B C P 26题图2E ABC D F 26题图1E 27题图如图,小明将一根长为1.4米的竹条截为两段,并互相垂直固定,作为风筝的龙骨,制作成了一个面积为0.24米2的风筝.请你计算一下将竹条截成长度分别为多少的两段? 26.(本小题满分9分)如图,在等腰Rt△ABC 中,∠BAC =90°,AC = AB =2.在Rt△DEF 中,∠EDF =90°,cos∠DEF =35,EF =10.将△ABC 以每秒1个单位的速度沿DF 方向移动,移动开始前点A 与点D 重合.在移动过程中,AC 始终与DF 重合,当点C 、F 重合时,运动停止.连接DB ,过点C 作DB 的平行线交线段DE 于点P .设△ABC 移动时间为t (s),线段DP 的长为y .⑴t 为何值时,点P 与点E 重合?⑵当CP 与线段DE 相交时,求证:S △ADP -S △ABD =2; ⑶当PA ⊥BC 时,求线段PA 的长.27.(本小题满分9分)如图,抛物线239344y x x =--+与x 轴交于点A 、B ,与y 轴交于点C .经过A 、B 、C 三点的圆与y 轴的负半轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在抛物线对称轴上是否存在一点P 使得PB +PD 的值最小?如果存在,求出P 点的坐标;若不存在,请说明理由;(3)若圆心为点Q ,在平面内有一点E ,使得以D 、E 、P 、Q 为顶点的四边形为平行四边形.求出所有符合条件的E 点坐标.A B C DG E F H P 28题图如图,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论; (3)设AP 为x ,四边形EFGP 的面积为S .求出S 与x 的函数关系式.试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.数学试题参考答案与评分标准二、填空题 16. 317. 3(x -1)218. x ≥1319. 6.3³10 20. (1,52)或(-1,32) 21. 1 三、解答题22.解:⑴ 分=-()+分=1……………………………………………………………………………3分⑵ 将点A(1,a )代入y 1=2x -1,得a =2³1-1=1………………………………………………………………2分 ∴A(1,1)将点A(1,1)代入y 2=kx +2,得 1= k +2∴k =-1……………………………………………………………………………4分 23. 解: ⑴∵AB =AC∴∠ABC =∠ACB …………………………………………………………………1分 ∵BD 平分∠ABC ,CE 平分∠ACB∴∠ABD =12∠ABC ,∠ACE =12∠ACB∴∠ABD =∠ACE …………………………………………………………………1分∵AD ⊥BD 、AE ⊥CE∴∠D =∠E=90°在△ADB 与△AEC 中D E ABD ACE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (AAS )∴AD =AE . ………………………………………………………………………3分⑵连接OD 、OF∵E 、F 均为切点∴OD ⊥AB ,OF ⊥AC …………………………………………………………1分 ∵∠B =66°,∠C =37°∴∠A=180°-∠B-∠C=77°…………………………………………………2分∴∠O=360°-∠A-∠ADO-∠AFO=103°……………………………………3分∵弧DF=弧DF∴∠M=12∠O=51.5°.……………………………………………………………4分24. 解:⑴150……………………………………………………………………………2分⑵条形统计图略. …………………………………………………………………4分45÷150³360°=108°………………………………………………………………6分答:图中C部分所对应的圆心角度数为108°.⑶30÷150³1200=240(人)………………………………………………………8分答:大约有240名同学最喜欢“攀岩崖降”项目.25. 解:设将竹条截成长度分别为x米和(1.4-x)米的两段. ………………………………1分根据题意得12x(1.4-x)=0.48…………………………………………………………………4分解之,得x1=0.6 x2=0.8……………………………………………………6分当x1=0.6时,1-x=0.8当x2=0.8时,1-x=0.6………………………………………………………………8分答:将竹条截成长度分别为0.6米和0.8米的两段.26. 解:解:⑴在Rt△DEF中,DA=t.∵ cos∠DEF=35,EF=10∴DE=6 ………………………………………………………………1分当点P与点E重合,连接CE∵CE∥DB∴∠BDA=∠ECD∵∠BAD=∠EDC=90°∴△BDA∽△ECD∴DA ABDC DE=………………………………………………………………2分∴2 26 t t+ =∴t=1………………………………………………………………3分⑵∵CP∥DB∴∠BDA=∠PCD∵∠BAD=∠PDC=90°∴△BDA∽△PCD………………………………………………………………4分∴DA AB DC PD=∴24t DPt+=∵S△ADP=12AD³DP=12t²24tt+=t+2…………………………………………………5分AD F B CP 26题图2 E GS △ABD =12AD ³AB =t∴S △ADP -S △ABD =2;………………………………………………………………6分 ⑶延长PA 交BC 于G ∵等腰Rt△ABC ∴∠CAG =45°∴∠DAP =45°∴………………………………………………………………7分 ∴PD =AD∴24t t t+=∴t=1分 ∴分27. 解:(1) ∵当x =0时,y =3∴C (0,3) ………………………………………………………………1分∵当y =0时,2393044x x --+=解得x=-4或1∴A (-4,0),B (1,0) ……………………………………………3分 (2) 如图1,连接AD ,BC . ∵圆经过A 、B 、C 、D 四点 ∴∠ADO =∠CBO ∵∠AOD =∠COB =90°∴△AOD ∽△COB ∴OD OB OA OC = 由题意知,AO =4,BO =1,CO =3∴OD =43,∴D (0, -43) (4)设AD 的解析式为y =kx +b将A (-4,0) ,D (0, -43)代入解得k =-13, b =-43,∴y =-13,x -43 ………………………………………………………5分27题图1A BCD GEF H P M 28题图2由题意知,抛物线对称轴为x=32-∵A 、B 关于x=32-对称∴当x=32-时,y =56-,即P (32-,56-)时,PB +PD=PA +PD=PD 最短. ………………6分(3)A (-4,0),B (1,0),C (0,3),D (0, -43) ∴圆心的坐标为Q (32-,56)………………………………………………………………7分∴PQ =53若PQ 为平行四边形的边,∵PQ ∥y 轴,∴E 1(0, 13)或者E 2(0, 3-)………………8分若PQ 为平行四边形的对角线,PQ 的中点坐标为M (32-, 0),∴E 3(3-,43)……………9分28解:(1)∵PE=BE ,∴∠EBP=∠EPB .………………………………1分 又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .………………………………2分 又∵AD∥BC , ∴∠APB=∠PBC .∴∠APB=∠BPH .………………………………3分(2)△PHD 的周长不变,为定值 8.………………………………4分 证明:过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,∴△AB P ≌△QBP . ∴AP=QP , AB=BQ .又∵ AB=BC , ∴BC = BQ . 又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .……………………(5分) ∴CH=QH .∴△PHD 的周长为:PD+DH+PH =AP+PD+DH+HC =AD+CD =8. ……………………(6分) (3)过F 作FM ⊥AB ,垂足为M ,则FM BC AB ==. 又EF 为折痕, ∴EF ⊥BP . ∴90EFM MEF ABP BEF ∠+∠=∠+∠=︒, ∴EFM ABP ∠=∠. 又∵∠A=∠EMF=90°,∴△EFM ≌△BPA .∴EM AP ==x . ………………7分A B C D EF GH P Q∴在Rt△APE 中,222(4)BE x BE -+=. 解得,228x BE =+. ∴228x CF BE EM x =-=+-. 又四边形PEFG 与四边形BEFC 全等, ∴211()(4)4224x S BE CF BC x =+=+-⨯. 即:21282S x x =-+.……………8分 配方得,21(2)62S x =-+,∴当x =2时,S 有最小值6.………………9分。
江西省2015年中考数学模拟试卷一、选择题:本大题共6个小题,每小题3分,共18分。
每小题只有一个正确选项。
1.化简的结果是()A. B.﹣ C.2015 D.﹣20152.下列计算正确的是()A.3m+2n=5mnB.(ab2)3=a3b5C.x5•x=x6D.y3÷y3=y3.如图,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.=B.∠B=∠DC.AD∥BCD.∠BAC=∠D4.如图,AB是⊙O的直径,点A是弧CD的中点,若∠B=25°,则∠AOC=()A.25°B.30°C.40°D.50°5.如图,顺次连接正方形ABCD各边的中点得到四边形EFGH,顺次连接四边形EFGH各边的中点得到四边形JKLM,若向正方形ABCD中随机撒一粒豆子,则它落在阴影部分的概率是()A. B. C. D.6.如图,点E是矩形ABCD边BC上一点,且cos∠DAE=,tan∠ADE=1,若△ABE的面积是2,那么△ECD的面积是()A.2B.4C.6D.12二、填空题:本大题共8小题,每小题3分,共24分。
7.(3分)(2015•岳阳)分解因式:x2﹣9= .8.等腰直角三角板如图所示放置在直尺上,若∠ABE=30°,则∠AHC=.9.已知三角形两边长分别为3cm,5cm,设第三边为xcm,则x的取值范围是.10.如图,已知AD是△ABC的角平分线,点E、F分别是边AC、AB的中点,连接DE、DF,要使四边形AEDF称为菱形,还需添加一个条件,这个条件可以是.11.如图是由棱长为1cm的小立方块组成的几何体的三视图,这个几何体的表面积是.12.已知一次函数y=﹣2x+a与y=x+b的图象如图所示,则关于x的不等式﹣2x+a≤x+b的解集是.13.今年六一儿童节,博雅学校六(1)班学生互赠贺卡(即每个同学要给班上的每位同学赠贺卡),共用去1560张贺卡,则六(1)班有名学生.14.如图,在直线上有A、B两点,AB=10cm,⊙A的半径是1cm,⊙B的半径是2cm,⊙A以3cm/s的速度向右运动,同时⊙B以1cm/s的速度向右运动.设运动时间为t秒,当⊙A与⊙B相切时,t的值是.三、本大题共4小题,每小题6分,共24分.15.(6分)已知△ABC,请用无刻度直尺画图.(1)在图1中,画一个与△ABC面积相等,且以BC为边的平行四边形;(2)在图2中,画一个与△ABC面积相等的正方形.16.(6分)计算:(2015﹣2016)0+()﹣2﹣+|﹣2|.17.(6分)在平面直角坐标系,点P(3n+2,4﹣2n)在第四象限,求实数n的取值范围.18.(6分)近两年房地产以开发电梯房为主,如图为某小区的电梯房,其中A楼为标志楼房,张华为测量A楼的高,站在距离A楼30米的B楼顶端,测得看A楼顶端的仰角为60°,看A楼底端的俯角为75°,请你帮张华求出A楼的高.(参考数据:sin75°=0.97,cos75°=0.26,tan75°=3.73,sin60°=0.87,cos60°=0.5,tan60°=1.73,结果精确到0.1米)四、本大题共4小题,每小题8分,共32分.19.(8分)某书店对一批数学活动书进行优惠销售,每本书定价15元,书店规定:当购买的数量小于30本时,每本书打7折;当购买数量不小于30本时,每本书打6折.(1)当购买量在30本以内时,超过多少本时比购买30本花钱还多?(2)某学校分两次购买了80本此书,共用去750元,问该校这两次分别购买了多少本书?20.我市准备对九年级学生的体育、物理实验操作、化学实验操作成绩实行等级制改革,成绩评定为A、B、C、D四个等级,现抽取这三种成绩共1000份数据进行统计分析,其中A、(2)我市共有50000名学生参加测试,试估计该市九年级学生化学实验操作合格及合格以上大约有多少人?(3)在这50000名学生中,体育成绩不合格的大约有多少人?21.(8分)如图,平行四边形ABCD与平行四边形ABEF有公共边AB,且∠D=∠F,BC=BE,连接AC、AE.(1)试说明AC=AE;(2)连接CE、DF,猜想四边形CDFE的形状,并说明理由.22.(8分)如图,点A、B是反比例函数第一象限图象上的两点,且坐标分别为(1,n),(n,),直线MN过点A且与x轴平行.(1)求该反比例函数的解析式;(2)以AB为对角线的正方形是否有一个顶点恰好落在直线MN上,若有请求出改点坐标;若没有请说明理由.五、本大题共1小题,每小题10分,共10分.23.(10分)如图,矩形ABCD的边长AB=2,BC=2+,正三角形EFG的边长是2.(1)如图1,当EF与AB重合时,求DG的长;(2)把正三角形EFG绕点F顺时针方向旋转度,点G落在BC上,如图2,求此时DE2的值;(3)在图2中,把正三角形EFG绕点G顺时针方向旋转度,点E落在DC上,请画出此时的△EFG,并求出在此旋转过程中线段DE的最小值.六、本大题1小题,共12分.24.(12分)如图,二次函数y=ax2﹣2amx﹣3am2(其中a、m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)直接写出关于此函数图象的两条性质;(2)用含m的代数式表示a;(3)试求AD:AE的值;(4)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.江西省2015年中考数学模拟试卷一、选择题:本大题共6个小题,每小题3分,共18分。
2015年中考数学模拟考试卷(二)(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.-15的倒数是( )A.5 B.-5 C.15D.-152.下列运算正确的是( )A.3a-2a=1 B.x8-x4=x2C.()222-=-=-2 D.-(2x2y)3=-8x6y33.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.如图,直线l1∥l2,则∠a为( )A.150°B.140°C.130°D.120°5.一个多边形的每个内角均为140°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形6.如图,在△ABC中,AE交BC于点D,∠C=∠E,AD=3,BD=5,DC=2,则DE的长等于( )A.152B.103C.65D.567.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分8.下列图中阴影部分的面积与算式2131242-⎛⎫-++⎪⎝⎭的结果相同的是( )9.在平面直角坐标系中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有( )A.1个B.2个C.3个D.4个10.对于正数x,规定f(x)=1xx+,例如f(3)=33134=+=,f(13)=1131413=+,计算f12014⎛⎫⎪⎝⎭+f12013⎛⎫⎪⎝⎭+f12012⎛⎫⎪⎝⎭+…+f13⎛⎫⎪⎝⎭+ f12⎛⎫⎪⎝⎭+f(1)+f(2)+f(3)+…+f(2012)+f(2013)+f(2014)的结果是( )A.2013 B.2013.5 C.2014 D.2014.5二、填空题(本大题共8小题,每小题3分,共24分)11.人的眼睛可以看见的红光的波长是0.000077 cm,请把这个数用科学记数法表示,其结果是_______cm.12.函数y=23xyx+=-中自变量x的取值范围是_______.13.分解因式:a3-2a2b+ab2=_______.14.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥的母线长为_______m.15.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的对应点B'的横坐标是2,则点B的横坐标是_______.16.如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于_______.17.已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则y=-abx2+(a+b)x的顶点坐标为_______.18.如图,图①为一个长方体,AD=AB=10,AE=6,M为所在棱的中点,图②为图①的表面展开图,则图②中△BCM的面积为_______.三、解答题(本大题共11小题,共76分) 19.(本题满分5分)计算:()()32cos60332π-︒--+---20.(本题满分5分)先化简()222211121a a a a a a +-÷++--+,然后a 在-1、1、2三个数中任选一个合适的数代入求值.21.(本题满分5分)求不等式组()3112323x x x ⎧+>-⎪⎨-+≥⎪⎩的整数解.22.(本题满分6分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2 km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5 min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1km/h ,参考数据:3≈1.73, sin76°≈0.97,cos76°0.24,tan76°≈4.01)23.(本题满分6分)如图,锐角三角形ABC 的两条高BE 、CD 相交于点O ,且OB =OC . (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.24.(本题满分6分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本题满分7分)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某果园组织30辆汽车装运A、B、C三种水果共84 t到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的汽车辆数不超过装运的A、C两种水果的汽车辆数之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并直接写出自变量x的取值范围;(2)设此次外销活动的利润为Q(百元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.26.(本题满分8分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于点P,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=23,求NQ的长.27.(本题满分8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A.B两点,与双曲线y=kx(x>0)交于点D,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为12.(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.28.(本题满分10分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA =2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,求OG的长;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与线段AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.29.(本题满分10分)企业的工业废料处理有两种方式:一种是运送到垃圾厂进行集中处理,另一种是通过企业的自身设备进行处理,某企业去年每月的工业废料均为120 t,由于垃圾厂处于调试阶段,处理能力有限,该企业采取两种处理方式同时进行.1至6月,该企业向垃圾厂运送的工业废料y1(t)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的工业废料y2(t)与月份x(7≤x≤12,且x取整数)之间满足y2=ax2+c(a ≠0),其图像如图所示.1至6月,垃圾厂处理每吨工业废料的费用z1(元)与月份x之间满足函数关系式:z1=60x,该企业自身处理每吨工业废料的费用z2(元)与月份x之间满足函数关系式:z2=45x-5x2;7至12月,垃圾厂处理每吨工业废料的费用均为120元,该企业自身处理每吨工业废料的费用均为90元.(1)请观察题中的表格和图像,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1、y2与x之间的函数关系式;(2)求该企业去年哪个月用于工业废料处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于企业的自身设备的全面运行,该企业决定扩大产能并将所有工业废料全部自身处理,估计扩大产能后今年每月的工业废料量都将在去年每月的基础上增加m%,同时每吨工业废料处理的费用将在去年12月份的基础上增加m%.为鼓励节能降耗,减轻企业负担,国家财政对该企业处理工业废料的费用进行了50%的补助,若该企业每月的工业废料处理费用为12150元,求m的值.参考答案1—10 BDCDC BCBDB11.7.7×10-512.x>313.a(a-b)214.615.-2.516.6.517.(3,92)18.50或8019.1 2720.31aa+-原式=5.21.-2<x≤32-1,0,1.22.(1)3km (2)40.6 km/h23.(1)略(2)点O在∠BAC的角平分线上24.(1)200(人).(2)60(人).(3)1 625.(1)92≤x≤10,且x为整数.(2)Q=-14x+636,此时应这样安排:A种水果用5辆车,B种水果用14辆车,C种水果用11辆车.26.(1)略(2)NQ=3.27.(1)k=12.(2)y=4 3 x28.(1)y=-56x2+136x+1.(2)1.(3)存在三个满足条件的点Q,即Q(2,2)或Q(1,73)或Q(125,75).29.y1=120x(1≤x≤6,且x取整数).y2=x2-30(7≤x≤12,且x取整数).(2)去年5月份用于污水处理的费用最多,最多费用是16800元.(3)50.。
中考数学二模试卷一、选择题(本大题共12小题,共48.0分)1.在-、-、-|-2|、-这四个数中,最大的数是()A. -B. -C. -|-2|D. -2.下列运算正确的是()A. x2+x3=x5B. (x-2)2=x2-4C. (3x3)2=6x6D. x-2÷x-3=x3.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()A. 正方体B. 圆柱C. 圆锥D. 球4.刘主任乘公共汽车从昆明到相距60千米的晋宁区办事,然后乘出租车返回,出租车的平均速度比公共汽车快20千米/时,回来时路上所花时间比去时节省了小时,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A. =×B. =×C. +=D. =-5.已知关于x的一元二次方程(2-a)x2-2x+1=0有两个不相等的实数根,则整数a的最小值是()A. 1B. 2C. 3D. 46.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. B. C. 4 D. 57.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A. 20°B. 35°C. 15°D. 45°8.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=35°,则∠2的度数是()A. 35°B. 30°C. 25°D. 55°9.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A. -2B. 0C. 1D. 310.在同一平面直角坐标系中,一次函数y=kx-2k和二次函数y=-kx2+2x-4(k是常数且k≠0)的图象可能是()A. B.C. D.11.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是()A. 2.5B. 2C.D. 412.如图,A(8,0)、B(0,6)分别是平面直角坐标系xOy坐标轴上的点,经过点O且与AB相切的动圆与x轴、y轴分别相交与点P、Q,则线段PQ长度的最小值是()A. B. 5 C. 4.8 D. 4.75二、填空题(本大题共6小题,共24.0分)13.把多项式3a3-12a2+12a分解因式的结果是______.14.截止到2019年3月31日24:00,电影《流浪地球》的票房已经达到46.52亿元,数据46.52亿可以用科学记数法表示为______.15.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为______海里.(结果保留根号)16.如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A、B为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的周长是______.17.若用一张直径为20cm的半圆形铁片做一个圆锥的侧面,接缝忽略不计,则所得圆锥的高为______.18.如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形(1),(2),(3),(4)…,则三角形(2019)的直角顶点的坐标为______.三、解答题(本大题共7小题,共78.0分)19.先化简,再求代数式÷(a-2-)的值.其中a=2sin60°-3tan45°.20.自我省深化课程改革以来,铁岭市某校开设了:A.利用影长求物体高度,B.制作视力表,C.设计遮阳棚,D.制作中心对称图形,四类数学实践活动课.规定每名学生必选且只能选修一类实践活动课,学校对学生选修实践活动课的情况进行抽样调查,将调查结果绘制成如下两幅不完整的统计图.根据图中信息解决下列问题:(1)本次共调查______名学生,扇形统计图中B所对应的扇形的圆心角为______度;(2)补全条形统计图;(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.21.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于点A、B,与y轴交于点C.过点A作AD⊥x轴于点D,AD=2,∠CAD=45°,连接CD,已知△ADC的面积等于6.(1)求一次函数和反比例函数的解析式;(2)若点E是点C关于x轴的对称点,求△ABE的面积.22.春节期间,根据习俗每家每户都会在门口挂灯笼和对联,某商店看准了商机,购进了一批红灯笼和对联进行销售,已知每幅对联的进价比每个红灯笼的进价少10元,且用480元购进对联的幅数是用同样金额购进红灯笼个数的6倍.(1)求每幅对联和每个红灯笼的进价分别是多少?(2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300幅对联和200个红灯笼,已知对联售价为6元一幅,红灯笼售价为24元一个,销售一段时间后,对联卖出了总数的,红灯笼售出了总数的,为了清仓,该店老板对剩下的对联和红灯笼以相同的折扣数进行打折销售,并很快全部售出,求商店最低打几折可以使得这批货的总利润率不低于90%?23.在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.(1)若CD=6,AF=3,求△ABF的面积;(2)求证:BE=AG+CE.24.如图,抛物线y=x2+bx+c与x轴交于A(1,0),B(-3,0),与y轴交于C.(1)求该抛物线的解析式,并写出抛物线的对称轴;(2)设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=,求点E的坐标;(3)若P是直线y=x+1上的一点,P点的横坐标为,M是第二象限抛物线上的一点,当∠MPD=∠ADC时,求M点的坐标.25.如图,在△ABC中,AD平分∠BAC交BC于点D,F为AD上一点,且BF=BD.BF的延长线交AC于点E.(1)求证:AB•AD=AF•AC;(2)若∠BAC=60°.AB=4,AC=6,求DF的长;(3)若∠BAC=60°,∠ACB=45°,直接写出的值.答案和解析1.【答案】B【解析】解:->->->-|-2|,∴在-、-、-|-2|、-这四个数中,最大的数是-.故选:B.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】D【解析】解:A、原式不能合并,不符合题意;B、原式=x2-4x+4,不符合题意;C、原式=9x6,不符合题意;D、原式=x,符合题意,故选:D.各项计算得到结果,即可作出判断.此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.3.【答案】C【解析】解:A、主视图、俯视图都是正方形,故A不符合题意;B、主视图、俯视图都是矩形,故B不符合题意;C、主视图是三角形、俯视图是圆形,故C符合题意;D、主视图、俯视图都是圆,故D不符合题意;故选:C.根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上面看得到的图形是俯视图.4.【答案】C【解析】解:设公共汽车的平均速度为x千米/时,则出租车的平均速度为(x+20)千米/时,根据题意得出:+=.故选:C.根据公共汽车的平均速度为x千米/时,得出出租车的平均速度为(x+20)千米/时,再利用回来时路上所花时间比去时节省了小时,得出分式方程即可.此题主要考查了由实际问题抽象出分式方程,本题的关键是把握题意,利用回来时路上所花时间比去时节省了小时,得出方程是解题关键.【解析】解:∵关于x的一元二次方程(2-a)x2-2x+1=0有两个不相等的实数根,∴△=4-4(2-a)>0,且2-a≠0,解得a>1,且a≠2,则a的最小整数值是3.故选:C.若一元二次方程有两不等实数根,则根的判别式△=b2-4ac>0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0,最后确定最小整数值.考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.【答案】C【解析】解:设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选:C.设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BDN 中,根据勾股定理可得关于x的方程,解方程即可求解.考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.7.【答案】A【解析】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°-70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°-180°=40°,∴∠DBC==20°,故选:A.先根据圆周角∠ABD的度数求出的度数,求出和的度数,即可求出的度数,即可得出答案.本题考查了圆心角、弧、弦之间的关系和圆周角定理,能求出各个弧的度数是解此题的关键.【解析】解:如图,∵m∥n,∴∠1=∠3=35°,∵∠ABC=60°,∴∠2+∠3=60°,∴∠2=25°,故选:C.利用平行线的性质求出∠3即可解决问题.本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】B【解析】解:由关于y的不等式组,整理得,∵该不等式组解集无解,∴2a+4≥-2,即a≥-3,又∵,解得x=,而关于x的分式方程有负数解∴a-4<0且,∴a<4且a≠2,于是-3≤a<4,且取a≠2的整数∴a=-3、-2、-1、0、1、3则符合条件的所有整数a的和为-2.故选:B.解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.10.【答案】C【解析】解:A、由一次函数图象可知,k>0,∴-k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴-k<0,,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴-k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=-4k >0,故C选项符合题意;D、由一次函数图象可知,k<0,∴-k>0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=-4k >0,故D选项不合题意;故选:C.根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.本题主要考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.11.【答案】B【解析】【分析】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,难点在于作辅助线构造出直角三角形.连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半可求解.【解答】解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF==4,∵H是AF的中点,∴CH=AF=×4=2.故选B.12.【答案】C【解析】解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、OF、OD,则FD⊥AB.∵A(8,0)、B(0,6),∴AO=8,BO=6,∴AB=10,∴∠AOB=90°,FO+FD=PQ,∴FO+FD≥OD,当点F、O、D共线时,PQ有最小值,此时PQ=OD,∴OD=BC•AC÷AB=4.8.故选:C.设QP的中点为F,圆F与AB的切点为D,连接FD,连接OF,OD,则有FD⊥AB;由勾股定理的逆定理知,△ABO是直角三角形,FO+FD=PQ,由三角形的三边关系知,FO+FD≥OD;只有当点F、O、D共线时,FO+FD=PQ有最小值,最小值为OD的长,即当点F在直角三角形ABO的斜边AB的高OD上时,PQ=OD有最小值,由直角三角形的面积公式知,此时OD=BC•AC÷AB=4.8.本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.13.【答案】3a(a-2)2【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=3a(a2-4a+4)=3a(a-2)2,故答案为:3a(a-2)2.14.【答案】4.652×109【解析】解:数据46.52亿可以用科学记数法表示为4.652×109.故答案为:4.652×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.【答案】40【解析】解:作PC⊥AB于C,在Rt△PAC中,∵PA=80,∠PAC=30°,∴PC=40海里,在Rt△PBC中,PC=40,∠PBC=∠BPC=45°,∴PB=40海里,故答案为:40.作PC⊥AB于C,由已知条件易求PC的长,在Rt△PBC中,PC=40,∠PBC=∠BPC=45°,则PB可求出.本题考查方位角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.16.【答案】8-4+π【解析】解:∵AC=BC=4,∠ACB=90°,∴AB=4,又点D是AB中点,∴AD=BD=2,由题意知∠A=∠B=45°,AD=AE=BD=BF=2,则阴影部分周长为2×(4-2+)=8-4+π,故答案为:8-4+π.利用勾股定理求得AB=4,由题意知∠A=∠B=45°,AD=AE=BD=BF=2,再根据阴影部分周长=2×(EC+弧DE的长)计算可得.本题考查弧长的计算、等腰直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】5cm【解析】解:设这个圆锥的底面半径为rcm,根据题意得2πr=,解得r=5.所以这个圆锥的高==5(cm).故答案为5cm.设这个圆锥的底面半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,解得r=5,然后利用勾股定理计算这个圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.【答案】(8076,0)【解析】解:∵A(-3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∴△ABC的周长=3+4+5=12,∵△OAB每连续3次后与原来的状态一样,∵2019=3×673,∴三角形2019与三角形1的状态一样,∴三角形2019的直角顶点的横坐标=673×12=8076,∴三角形2016的直角顶点坐标为(8076,0).故答案为:(8076,0).【分析】先利用勾股定理计算出AB,从而得到△ABC的周长为12,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于2019=3×673,于是可判断三角形2019与三角形1的状态一样,然后计算673×12即可得到三角形2019的直角顶点坐标.本题考查了坐标与图形变化-旋转,规律型问题,解决本题的关键是确定循环的次数.19.【答案】解:÷(a-2-)=÷(-)=÷=×=.当a=2sin60°-3tan45°=2×-3×1=-3时,原式===.【解析】先把分式化简后,再把分式中未知数对应的值代入求出分式的值.本题主要考查了分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.20.【答案】解:(1)60,144;(2)A类别人数为60×15%=9(人),则D类别人数为60-(9+24+12)=15(人),补全条形图如下:(3)画树状图为:共有12种等可能的结果数,其中所抽取的两人恰好是1名女生和1名男生的结果数为8,所以所抽取的两人恰好是1名女生和1名男生的概率为=.【解析】解:(1)本次调查的学生人数为12÷20%=60(名),则扇形统计图中B所对应的扇形的圆心角为360°×=144°.故答案为:60,144°;(2)见答案;(3)见答案.【分析】(1)用C类别人数除以其所占百分比可得总人数,用360°乘以B类别人数占总人数的比例即可得;(2)总人数乘以A类别的百分比求得其人数,用总人数减去A,B,C的人数求得D类别的人数,据此补全图形即可;(3)画树状图展示12种等可能的结果数,再找出所抽取的两人恰好是1名女生和1名男生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【答案】解:(1)∵AD⊥x轴于点D,设A(a,2),∴AD=2,∵∠CAD=45°,∴∠AFD=45°,∴FD=AD=2,连接AO,∵AD∥y轴,∴S△AOD=S△ADC=6,∴OD=6,∴A(6,2),将A(6,2)代入,得m=12,∴反比例函数解析式为y=;∵∠OCF=∠CAD=45°,在△COF中,OC=OF=OD-FD=6-2=4,∴C(0,-4),将点A(6,2),点C(0,-4)代入y=kx+b,可得,∴,∴一次函数解析式为y=x-4;(2)点E是点C关于x轴的对称点,∴E(0,4),∴CE=8,解方程组,得或,∴B(-2,-6),∴.【解析】(1)依据S△AOD=S△ADC=6,可得A(6,2),将A(6,2)代入,得m=12,即可得到反比例函数解析式为y=;将点A(6,2),点C(0,-4)代入y=kx+b,可得一次函数解析式为y=x-4;(2)依据E(0,4),可得CE=8,解方程组,即可得到B(-2,-6),进而得出△ABE的面积.本题考查的是反比例函数图象与一次函数图象的交点问题,轴对称的性质以及待定系数法的运用,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.22.【答案】解:(1)设每幅对联的进价为x元,则每个红灯笼的进价为(x+10)元,依题意,得:=6×,解得:x=2,经检验,x=2是原分式方程的解,且符合题意,∴x+10=12.答:每幅对联的进价为2元,每个红灯笼的进价为12元.(2)设剩下的对联和红灯笼打y折销售,依题意,得:300××6+200××24+300×(1-)×6×+200×(1-)×24×-300×2-200×12≥(300×2+200×12)×90%,解得:y≥5.答:商店最低打5折可以使得这批货的总利润率不低于90%.【解析】(1)设每幅对联的进价为x元,则每个红灯笼的进价为(x+10)元,根据数量=总价÷单价结合用480元购进对联的幅数是用同样金额购进红灯笼个数的6倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设剩下的对联和红灯笼打y折销售,根据总利润=销售收入-成本结合总利润率不低于90%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.【答案】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=S△ABE=••62=.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠FAH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=RC+AG.【解析】(1)证明AF=EF,可得S△ABF=S△ABE解决问题.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.利用全等三角形的性质证明EC=AF,EF=AG即可解决问题.本题考查平行四边形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.【答案】解:(1)∵A(1,0),B(-3,0)关于直线x=-1对称,∴抛物线的对称轴为x=-1.抛物线的解析式为y=(x-1)(x+3)=x2+2x-3.(2)设点E(m,m2+2m-3).∵AD=2,OC=3,∴S△ACD=×AD•OC=3.∵S△ACE=,∴S△ACE=10.设直线AE的解析式为y=kx-b.把点A和点E的坐标代入得:,解得:.∴直线AE的解析式为y=(m+3)x-m-3.∴F(0,-m-3).∵C(0,-3),∴FC=-m-3+3=-m.∴S△EAC=×FC×(1-m)=10,即-m(1-m)=20,解得:m=-4或m=5(舍去).∴E(-4,5).(3)如图所示:过点D作DN⊥DP,交PM的延长线与点N,过点N作NL⊥x轴,垂足为L,过点P作PE⊥x轴,垂足为E.∵∠MPD=∠ADC,∠NDP=∠DOC,∴△NPD∽△CDO.∴=,∴==3.又∵△NLD∽△DEP,∴===3,∴NL=7,DL=7,∴N(-8,7).∴直线PN的解析式为y=-x-3.联立y=x2+2x-3与y=-x-3,解得:x=(舍去)或x=-4.∴M(-4,5).【解析】(1)由抛物线的对称性可得到抛物线的对称轴,由题意可知a=1,然后依据抛物线与x轴的交点坐标可得到抛物线的解析式;(2)设点E(m,m2+2m-3),依据题意可求得S△ACE=10,设直线AE的解析式为y=kx-b.把点A和点E的坐标代入可得打直线AE的解析式为y=(m+3)x-m-3.于是可得到F(0,-m-3).,则FC=-m,然后依据S△EAC=×FC×(1-m)可得到关于m的方程,从而可求得m的值,于是可得到点E的坐标;(3)过点D作DN⊥DP,交PM的延长线与点N,过点N作NL⊥x轴,垂足为L,过点P作PE⊥x轴,垂足为E,然后证明△NPD∽△CDO,△NLD∽△DEP,依据相似三角形的性质可求得NL=7,DL=7,从而可求得点N的坐标,于是可求得PN的解析式,最后求得PN与抛物线的交点坐标即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的性质、相似三角形的性质和判定、三角形的面积公式,掌握本题的辅助线的作法是解题的关键.25.【答案】解:(1)∵AD平分∠BAC∴∠BAF=∠DAC又∵BF=BD∴∠BFD=∠FDB∴∠AFB=∠ADC∴△AFB∽△ADC∴.∴AB•AD=AF•AC(2)作BH⊥AD于H,作CN⊥AD于N,则BH=AB=2,CN=AC=3∴AH=BH=2,AN=CN=3,∴HN=∵∠BFD=∠BDF=∠CDN∴△BHD∽△CND∴∴HD=又∵BF=BD,BH⊥DF∴DF=2HD=(3)由(1)得①,易证△ABD,△AEF,△BFD均为顶角为30°的等腰三角形∴AB=AD,AE=AF,BF=BD易证△ABD∽△AEF∴②∴①×②得==,过F作FG⊥AB于G,设FG=x,则AF=2x,BF=x,AG=x,BG=x∴AB=(+1)x,∴==4-2【解析】此题主要考查相似三角形的性质,含30°角的直角三角形.灵活运用相似三角形的边的比例关系是解题的关键.(1)证△AFB∽△ADC即可(2)作BH⊥AD于H,作CN⊥AD于N,则BH=AB=2,CN=AC=3,再证△BHD∽△CND即可(3)易证△ABD,△AEF,△BFD均为顶角为30°的等腰三角形,即可根据△ABD∽△AEF 和(1)中△AFB∽△ADC得==,即可求.。
2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。
(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
新泰市2015年初中学业第二次模拟考试数学试题(满分120分时限120分钟)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1、-2-2的倒数等于()A. - 4B. 4C. -41D.412、下列计算正确的是().A、a2·a3=a6B、y3÷y3=yC、3m+3n=6mnD、(x3)2=x63、右图中几何体的左视图是()4、据统计,2015年5月1日黄金周的第一天,泰山门票收益达到24万元,这个数据用科学计数法表示为()万元。
A. 41024⨯ B. 5104.2⨯ C. 610240⨯⋅ D.2.4×105、如图,在△ABC中,∠A=90°,点D在AC边上,DE//BC,若∠1=155°,则∠B的度数为。
A 45°B 55°C 65°D 75°6、下列图形中,只有两条对称轴的图形是A.B. C.D.7、如图,为安全起见,某游乐园拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB 的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是()A.2B.2C.3D.3m8、把一个半径为12,圆心角为150°的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是()A.13 B.5 C.129D.1199、如图所示,FE∠=∠,B C∠=∠,AE AF=,以下结论:①FAN EAM∠=∠;②EM FN=;③ACN ABM△≌△;④CD DN=.其中正确的有()A.1个 B.2个 C.3个 D.4个10、下列条件中,可以确定△ABC和△A′B′C′全等的是()A. BC=BA ,B′C′=B′A′,∠B=∠B′B. ∠A=∠B′,AC=A′B′,AB=B′C′C. ∠A=∠A′,AB=B′C′,AC=A′C′D. BC=B′C′,AC=A′B′,∠B=∠C′11、在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.第5题图第7题图第9题图若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为( ) A.4 B. 6 C.12 D.16 12、如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A .3B .3.5C .2.5D .2.813、青云超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x 元,根据题意列方程得( ).A .1200)220)(40(=+-x xB .1200)20)(40(=+-x xC .1200)220)(50(=+-x xD .1200)220)(90(=+-x x14、如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )15、关于x 的不等式组23324x x x a <⎧⎪⎨+>+⎪⎩(x-3)+1有四个整数解,则a 的取值范围是( ) A .-<a≤- B .-≤a<- C .-≤a≤- D .-<a <-16、一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A .90°B .100°C .130°D .180°17、如图,同心圆O 中,大圆半径OA 、OB 分别交小圆于D 、C ,OA ⊥OB,若四边形ABCD 的面积为50,则图中阴影部分的面积为( )14题图A. 75B. 50πC. 75πD. 752 18、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD≌△AEB; ②点B 到直线AE 的距离为;③EB⊥ED; ④S △APD +S △APB =1+;⑤S正方形ABCD =4+.其中正确结论的序号是( )A . ①③④B . ①②⑤C . ③④⑤D . ①③⑤19、二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( )A .B .C .D . 20、二次函数c bx ax y ++=2的图象如图所示.有下列结论:①0a b c -+=;②4a+b=0;③当y=2时,x 等于0.④42-=++c bx ax 有两个不相等的实数根。
山东省泰安市2015年中考数学模拟试题二一、选择题(满分60分)1.下列计算正确的是()A. B. C.D.2.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限 B.第三象限 C.第二象限 D.第一象限3.已知﹣4x a y+x2y b=﹣3x2y,则a+b的值为()A.1 B.2 C.3 D.44.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣25.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.6.一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11 B.11或12 C.13 D.11和137.如图是一个几何体的三视图,则这个几何体的表面积为()A.50π B.100πC.150πD.175π8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④ B.②③ C.①④ D.①②③9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率10.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x <kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<011.如图,已知AB是半圆O的直径,∠BAC=32°,D是的中点,那么∠DAC的度数是()A.25° B.29° C.30° D.32°12.两圆的半径之比为2:3,当两圆内切时,圆心距为4.则当两圆外切时,圆心距为()A.5 B.11 C.14 D.2013.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒14.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为()A.B. C.3 D.15.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:4,则的值为()A.2 B.4 C. D.16.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18 15 24 27桂圆棒冰(枝)30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁17.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.18.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62° B.38° C.28° D.26°19.如图1,水平地面上有一面积为30π平方厘米的灰色扇形OAB,其中OA的长度为6厘米,且与地面垂直.若在没有滑动的情况下,将图1的扇形向右滚动至OB垂直地面为止,如图2所示,则O 点移动()厘米.A.20 B.24 C.10π D.30π20.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2二、填空题(满分12分)21.已知y=y1+y2,y1与x2成正比例,y2与x﹣1成反比例,且当x=0时,y=1;当x=﹣1时,y=2,则当x=时,y的值是.22.关于x的一元二次方程x2﹣mx+2m=0的一个根为1,则方程的另一根为.23.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是.24.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2的长为.三、解答题(满分48分)25.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.26.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间1小时左右1.5小时左右2小时左右2.5小时左右人数50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)27.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?28.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P 在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.29.已知:如图一次函数y=x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.2015年山东省泰安市中考数学模拟试卷(二)参考答案与试题解析一、选择题(满分60分)1.下列计算正确的是()A. B. C.D.【考点】二次根式的乘除法;二次根式的性质与化简.【分析】根据二次根式的化简、开平方及二次根式的乘法法则,分别进行各项的判断即可.【解答】解:A、=2,原式计算错误,故本选项错误;B、=2,原式计算正确,故本选项正确;C、=2,原式计算错误,故本选项错误;D、×=,原式计算错误,故本选项错误;故选B.【点评】本题考查了二次根式的乘法及二次根式的化简运算,属于基础题,掌握基本的运算法则是关键.2.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限 B.第三象限 C.第二象限 D.第一象限【考点】点的坐标.【专题】计算题.【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选C.【点评】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.已知﹣4x a y+x2y b=﹣3x2y,则a+b的值为()A.1 B.2 C.3 D.4【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:由已知﹣4x a y+x2y b=﹣3x2y,可知﹣4x a y与x2y b是同类项,可知a=2,b=1,即a+b=3,故选C.【点评】本题考查了合并同类项,理解同类项的概念,正确地进行合并同类项是解题的关键.4.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是()A.3 B.﹣1 C.﹣3 D.﹣2【考点】根与系数的关系;一元二次方程的解.【分析】根据根与系数的关系可得出两根的积,即可求得方程的另一根.【解答】解:设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【点评】熟练掌握一元二次方程根与系数的关系是解答此类题的关键.5.下面四个图形每个都是由六个相同的正方形组成,将其折叠后能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,B,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:C.【点评】只要有“田”和“凹”字格的展开图都不是正方体的表面展开图.6.一个三角形的两边长为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11 B.11或12 C.13 D.11和13【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:由(x﹣2)(x﹣4)=0解得x=2或4,由三角形三边关系定理得6﹣3<x<6+3,即3<x<9,因此,本题的第三边应满足3<x<9,所以x=4,即周长为3+4+6=13.故选C.【点评】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.7.如图是一个几何体的三视图,则这个几何体的表面积为()A.50π B.100πC.150πD.175π【考点】由三视图判断几何体.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,判断出几何体的形状,再根据三视图的数据,求出几何体的表面积即可.【解答】解:根据三视图可得这个几何体是圆柱,底面积=π×52所=25π,侧面积为=10π•10=100π,则这个几何体的表面积=25π×2+100π=150π;故选:C.【点评】此题考查了由三视图判断几何体,用到的知识点是三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键.8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④ B.②③ C.①④ D.①②③【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.【点评】二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率【考点】利用频率估计概率.【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;B、从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是: =≈0.33;故此选项正确;C、掷一枚硬币,出现正面朝上的概率为,故此选项错误;D、任意写出一个整数,能被2整除的概率为,故此选项错误.故选:B.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.10.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x <kx+b<0的解集为()A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<0【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.【解答】解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.11.如图,已知AB是半圆O的直径,∠BAC=32°,D是的中点,那么∠DAC的度数是()A.25° B.29° C.30° D.32°【考点】圆周角定理;圆内接四边形的性质.【分析】连接BC,根据圆周角定理及等边对等角求解即可.【解答】解:连接BC,∵AB是半圆O的直径,∠BAC=32°,∴∠ACB=90°,∠B=90°﹣32°=58°,∴∠D=180°﹣∠B=122°(圆内接四边形对角互补),∵D是的中点,∴∠DAC=∠DCA=(180°﹣∠D)÷2=29°,故选B.【点评】本题利用了圆内接四边形的性质,直径对的圆周角是直角求解.12.两圆的半径之比为2:3,当两圆内切时,圆心距为4.则当两圆外切时,圆心距为()A.5 B.11 C.14 D.20【考点】圆与圆的位置关系.【分析】只需根据两圆的半径比以及两圆外切时,圆心距等于两圆半径之和,列方程求得两圆的半径;再根据两圆内切时,圆心距等于两圆半径之差求解.【解答】解:设大圆的半径为R,小圆的半径为r,则有r:R=2:3;又∵R﹣r=4,解得R=12,r=8,∴当它们外切时,圆心距=12+8=20.故选D.【点评】此题考查了两圆的位置关系与数量之间的联系.解题的关键是正确的求出两个半径.13.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ上A处距离O点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为()A.12秒B.16秒C.20秒D.24秒【考点】点与圆的位置关系.【专题】应用题.【分析】过点A作AC⊥ON,求出AC的长,当火车到B点时开始对A处有噪音影响,直到火车到D 点噪音才消失.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.【点评】本题考查的是点与圆的位置关系,根据火车行驶的方向,速度,以及它在以A为圆心,200米为半径的圆内行驶的BD的弦长,求出对A处产生噪音的时间,难度适中.14.如图,在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为()A.B. C.3 D.【考点】勾股定理.【分析】根据题意作出图形,设CD=x,在直角三角形ACD中,根据勾股定理表示出AC的长,再在直角三角形ABC中,根据勾股定理求出x的值,从而可得AC的长.【解答】解:如图:设CD=x,在Rt△ACD中,AC2=22﹣x2;在Rt△ACB中,AC2+BC2=AB2,即22﹣x2+(2+x)2=(2)2,解得x=1.则AC==.故选:A.【点评】本题考查了解直角三角形,利用勾股定理是解题的关键,正确设出未知数方可解答.15.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:4,则的值为()A.2 B.4 C. D.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】首先过点N作NG⊥BC于G,由四边形ABCD是矩形,易得四边形CDNG是矩形,又由折叠的性质,可得四边形AMCN是菱形,由△CDN的面积与△CMN的面积比为1:4,根据等高三角形的面积比等于对应底的比,可得DN:CM=1:4,然后设DN=x,由勾股定理可求得MN的长,继而求得答案.【解答】解:过点N作NG⊥BC于G,∵四边形ABCD是矩形,∴四边形CDNG是矩形,AD∥BC,∴CD=NG,CG=DN,∠ANM=∠CMN,由折叠的性质可得:AM=CM,∠AMN=∠CMN,∴∠ANM=∠AMN,∴AM=AN,∴四边形AMCN是平行四边形,∵AM=CM,∴四边形AMCN是菱形,∵△CDN的面积与△CMN的面积比为1:4,∴DN:CM=1:4,设DN=x,则AN=AM=CM=CN=4x,AD=BC=5x,CG=x,∴BM=x,GM=3x,在Rt△CGN中,NG==x,在Rt△MNG中,MN==2x,∴=2.故选D.【点评】此题考查了折叠的性质、矩形的判定与性质、菱形的判定与性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意折叠中的对应关系,注意数形结合与方程思想的应用.16.甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝)18 15 24 27桂圆棒冰(枝)30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁【考点】一次函数的应用.【专题】压轴题.【分析】题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.【解答】解:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.【点评】本题考查了一次函数的应用,读懂题意,找好题中的等量关系是解题的关键.17.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.如图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()A.B.C.D.【考点】概率公式;专题:正方体相对两个面上的文字.【专题】压轴题.【分析】让朝上一面上的数恰好等于朝下一面上的数的的情况数除以总情况数即为朝上一面上的数恰好等于朝下一面上的数的的概率.【解答】解:根据图看出只有6和3是对面,1和4是对面,2和5是对面;并且只有3在上面时6在下面,朝上一面上的数恰好等于朝下一面上的数的,抛掷这个立方体,朝上一面上的数恰好等于3的概率是.故选A.【点评】本题考查了统计与概率中概率的求法,要善于观察把图折成立方体时各个面是什么数字.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF=()A.62° B.38° C.28° D.26°【考点】等腰直角三角形;全等三角形的判定与性质;直角三角形斜边上的中线.【分析】主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE.∴Rt△BDF≌Rt△ADE(SAS).∴∠DBF=∠DAE=90°﹣62°=28°.故选C.【点评】熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半.19.如图1,水平地面上有一面积为30π平方厘米的灰色扇形OAB,其中OA的长度为6厘米,且与地面垂直.若在没有滑动的情况下,将图1的扇形向右滚动至OB垂直地面为止,如图2所示,则O 点移动()厘米.A.20 B.24 C.10π D.30π【考点】弧长的计算;旋转的性质.【专题】应用题.【分析】点O移动的距离为扇形的弧长,根据弧长公式计算即可.【解答】解:点O移动的距离为扇形的弧长,根据面积公式求出弧长,即30π=×l×6,解得l=10π.故选C.【点评】此题考查了旋转的性质,弧长的计算,关键是理解点O移动的距离为扇形的弧长,然后根据面积公式求出弧长即可.20.观察下列数表:1 2 3 4…第一行2 3 4 5…第二行3 4 5 6…第三行4 5 6 7…第四行根据数表所反映的规律,第n行第n列交叉点上的数应为()A.2n﹣1 B.2n+1 C.n2﹣1 D.n2【考点】规律型:数字的变化类.【分析】由数表中数据排列规律可知第n行第n列交叉点上的数正好是对角线上的数,它们分别是连续的奇数.【解答】解:根据分析可知第n行第n列交叉点上的数应为2n﹣1.故选:A.【点评】此题考查了数字的排列规律,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.二、填空题(满分12分)21.已知y=y1+y2,y1与x2成正比例,y2与x﹣1成反比例,且当x=0时,y=1;当x=﹣1时,y=2,则当x=时,y的值是2﹣.【考点】待定系数法求反比例函数解析式.【分析】根据题意设出y1=k1x2,y2=,(k1≠0,k2≠0),再表示出函数解析式y=k1x2+,然后利用待定系数法把当x=0时,y=1;当x=﹣1时,y=2代入,计算出k1,k2的值,进而得到解析式,算出y的值.【解答】解:∵y1与x2成正比例,y2与x﹣1成反比例,∴设y1=k1x2,y2=,(k1≠0,k2≠0),∴y=k1x2+,当x=0时,y=1;当x=﹣1时,y=2时,,解得:,∴y=x2﹣,当x=时,y=3﹣﹣1=2﹣.故答案为:2﹣.【点评】此题主要考查了待定系数法求函数解析式,关键是理清正比例与反比例函数解析式的表示方法.22.关于x的一元二次方程x2﹣mx+2m=0的一个根为1,则方程的另一根为﹣2 .【考点】根与系数的关系.【分析】将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出另一根的值.【解答】解:设方程的另一根为x1,又∵x=1,则,解方程组可得.故答案为:﹣2.【点评】本题考查了一元二次方程根与系数的关系,列方程组时要注意各系数的正负,避免出错.23.某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是150×80%﹣x=20 .【考点】由实际问题抽象出一元一次方程.【专题】应用题.【分析】首先理解题意找出题中存在的等量关系:售价﹣成本=利润,根据等量关系列方程即可.【解答】解:设这种服装的成本价为每件x元,则实际售价为150×80%元,根据实际售价﹣成本=利润,那么可得到方程:150×80%﹣x=20.故答案为:150×80%﹣x=20.【点评】本题以经济中的打折问题为背景,主要考查根据已知条件构建方程的能力,其中把握等量关系“售价﹣成本=利润”是关键.24.已知⊙O1和⊙O2的半径分别为2和3,两圆相交于点A、B,且AB=2,则O1O2的长为2±.【考点】相交两圆的性质.【专题】压轴题.【分析】利用连心线垂直平分公共弦的性质,构造直角三角形利用勾股定理及有关性质解题.【解答】解:如图,∵⊙O1与⊙O2相交于A、B两点,∴O1O2⊥AB,且AD=BD;又∵AB=2,∴AD=1,∵⊙O1和⊙O2的半径分别为2和3,∴在Rt△AO1D中,根据勾股定理知O1D==;在Rt△AO2D中,根据勾股定理知O2D==2,∴O1O2=O1D+O2D=+2;同理知,当小圆圆心在大圆内时,解得O1O2=2﹣.故答案是:2±.【点评】本题主要考查了圆与圆的位置关系,勾股定理等知识点.注意,解题时要分类讨论,以防漏解.三、解答题(满分48分)25.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【考点】菱形的判定;线段垂直平分线的性质;平行四边形的判定.【专题】证明题.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF 是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.【点评】本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.26.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间1小时左右1.5小时左右2小时左右2.5小时左右人数50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)【考点】加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.【专题】压轴题;图表型.【分析】(1)先求出喝红茶的百分比,再乘总数.(2)先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.【解答】解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;(2)补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)有两个等量关系:帐篷件数+食品件数=320,帐篷件数﹣食品件数=80,直接设未知数,列出二元一次方程组,求出解;(2)先由等量关系得到一元一次不等式组,求出解集,再根据实际含义确定方案;(3)分别计算每种方案的运费,然后比较得出结果.【解答】解:(1)设该校采购了x件小帐篷,y件食品.根据题意,得,解得.故打包成件的帐篷有120件,食品有200件;(2)设甲种货车安排了z辆,则乙种货车安排了(8﹣z)辆.则,解得2≤z≤4.则z=2或3或4,民政局安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;。
人 教 版 中 考 全 真 模 拟 测 试数 学 试 卷一、选择题(每题3分,共30分) 1. 3-2的绝对值是( ) A. 23-B. 32-C. 3D. 1 2. 下列运算正确的是( )A. 224x x x +=B. 235a a a =C. ()2236x x =D. ()()54mn mn mn ÷= 3. 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.4. 如果点(),2m m -在双曲线k y x =上,那么双曲线k y x =的图像在第( )象限 A. 一、二 B. 三、四 C. 一、三D. 二、四 5. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A. B. C.D. 6. 如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A. 45︒B. 60︒C. 70︒D. 40︒7. 如图,在Rt ABC 中,CD 是斜边AB 上的中线,已知 1.52CD BC ==,,则cos B 的值是( )A.23B.32C.34D.438. 如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=( )A. 70°B. 110°C. 120°D. 140°9. 如图,在ABC中,点D,E分别为AB,AC边上的点,且//DE BC,CD、BE相较于点O,连接AO 并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是()A.AD AEAB EC= B.AG AEGF BD= C.OD AEOC AC= D.AG ACAF EC=10. 如图,2020D次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x之间的关系用图象描述大致是()A. B. C. D.二、填空题(每题3分,共30分)11. 禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为_____.12. 在函数3||3xyx-=+中,自变量x的取值范围是________.13. 化简计算:12842-=_______. 14. 分解因式:33327a b ab -=_________.15. 不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩的整数解的个数是_________.16. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是_____________.17. 一个扇形的半径为2cm ,面积为22cm π,则此扇形的圆心角为________.18. 纸片ABC 中,60,16,14B AB cm AC m ∠=︒==,将它折叠使B 与C 重合,折痕MN 交AB 于点M ,则线段AM 的长为________.19. 如图,O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交O 于点E ,连结EC .若8AB =,CD =2,则EC 的长为_______.20. 如图,在ABC 中,60C ∠=°,D E 、分别在边BC AC 、上,,AD AB EAB EBA =∠=∠,23AB =,1DE =,则线段AE 的长为______.三、解答题(21、22题各7分,23、24题各8分,25-27题各10分,共计60分) 21. 先化简,再求值:(1﹣x+31x +)÷2441x x x +++,其中x=tan45°+(12)﹣1. 22. 如图,在106⨯的正方形网格中,每个小正方形的边长均为1,线段AB 、线段EF 的端点均在小正方形的项点上. (1)在图中以AB 为边画Rt ABC ,使点C 在小正方形的顶点上,且90BAC ∠=︒,2tan 3ACB ∠=;(2)在(1)的条件下,在图中画以EF 为边且面积为3的DEF ,使点D 在小正方形的顶点上,且45CBD ∠=︒,连结CD ,直接写出线段CD 的长.23. 为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随杋抽取了x 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表 节目人数(名) 百分比 最强大脑a 10% 朗读者15 %b 中国诗词大会c 40% 出彩中国1020%根据以上提供的信息,解答下列问题:(1)x =______,a =_____,b =____;(2)补全上面条形统计图;(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.24. 已知点F 是平行四边形ABCD 的边CD 的中点,BD 是对角线,AG BD 交CB 的延长线于G ,连接DG 交AB 于点E .(1)如图1,求证:BF GE =;(2)如图2,当四边形AGBD 是矩形时,请你确定四边形BEDF 的形状并说明.25. 某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.26. 已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且222EH BE DH =+,求CAG ∠的度数;(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =,求圆O 半径.27. 在平面直角坐标系中,抛物线27287y ax x a =-+-经过原点O ,交x 轴正半轴于点A ,顶点为D ,对称轴交x 轴于点B .(1)如图1,求点D 的坐标;(2)如图2,点P为抛物线在第一象限上一点,连接OP交对称轴于点E,设点P的横坐标为t,DE的长为d,求d与t之间的函数解析式,不要求写出自变量的取值范围;、,(3)如图3,在(2)的条件下,点F为BD上一点,连接OF,点G为OF上一点,连接EG BG=,若BG=P横坐标t的值.∠+∠=︒,EG EOBOF BGE60答案与解析一、选择题(每题3分,共30分) 1. 3-2的绝对值是( ) A. 23-B. 32-C. 3D. 1【答案】A【解析】【分析】 根据差的绝对值是大数减小数,可得答案.【详解】3-2的绝对值是2-3.故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.2. 下列运算正确的是( )A. 224x x x +=B. 235a a a =C. ()2236x x =D. ()()54mn mn mn ÷= 【答案】B【解析】【分析】 根据合并同类项,同底数幂的乘除以及积的乘方逐一计算即可.【详解】A. 2222x x x += ,此选项错误;B. 235·a a a = ,此选项正确;C. ()2239x x = ,此选项错误;D. ()()544mn mn m n ÷=,此选项错误.故选B【点睛】本题考查了合并同类项,同底数幂的乘除,积的乘方,熟练掌握运算法则是解题的关键. 3. 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4. 如果点(),2m m -在双曲线k y x =上,那么双曲线k y x =的图像在第( )象限 A. 一、二B. 三、四C. 一、三D. 二、四 【答案】D【解析】【分析】将点代入,可判定k <0,然后再判定双曲线的图像位置【详解】∵点(m ,-2m)在双曲线上,代入得:k=22m -≤0∵k≠0∴k <0∴双曲线经过二、四象限故选:D【点睛】本题考查双曲线图像的性质,解题关键是判定出k 的符号5. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A. B. C. D.试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B .考点:简单组合体的三视图.6. 如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A. 45︒B. 60︒C. 70︒D. 40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导 7. 如图,在Rt ABC 中,CD 是斜边AB 上的中线,已知 1.52CD BC ==,,则cos B 的值是( )A. 23B. 32C. 34D. 43【答案】A根据CD是Rt△ABC的中线,可得AD=DB=DC,进而得到斜边AB的长,已知BC,可直接求出cosB的大小【详解】∵CD是Rt△ABC斜边上的中线,CD=1.5∴AD=DB=DC=1.5,∴AB=3∵BC=2∴cosB=2 3故选:A【点睛】本题考查锐角三角函数,解题关键是利用直角三角形斜边中线是斜边长一半来求解8. 如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=( )A. 70°B. 110°C. 120°D. 140°【答案】D【解析】【分析】作AB所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【详解】解:作AB所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半9. 如图,在ABC 中,点D ,E 分别为AB ,AC 边上的点,且//DE BC ,CD 、BE 相较于点O ,连接AO 并延长交DE 于点G ,交BC 边于点F ,则下列结论中一定正确的是( )A. AD AE AB EC =B. AG AE GF BD =C. OD AE OC AC =D. AG AC AF EC= 【答案】C【解析】【分析】由//DE BC 可得到DEO ∽CBO ,依据平行线分线段成比例定理和相似三角形的性质进行判断即可.【详解】解:A.∵//DE BC , ∴AD AE AB AC= ,故不正确; B. ∵//DE BC , ∴AG AE GF EC = ,故不正确; C. ∵//DE BC ,∴ADE ∽ABC ,DEO ∽CBO ,DE AE BC AC ∴=,DE OD BC OC= . OD AE OC AC∴= ,故正确; D. ∵//DE BC , ∴AG AE AF AC = ,故不正确; 故选C .【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键.10. 如图,2020D 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )A. B. C. D.【答案】A【解析】【分析】火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变; 火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化二、填空题(每题3分,共30分)11. 禽流感病毒的形状一般为球形,直径大约为0.000000102m ,将0.000000102用科学记数法表示为_____.【答案】71.0210⨯﹣ 【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000102=1.02×10-7. 故答案为1.02×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12. 在函数3||3x y x -=+中,自变量x 的取值范围是________. 【答案】3x ≠-【解析】【分析】分式的分母不能为0【详解】函数要想有意义,则分式的分母不能为0,即:x+3≠0∴x≠-3故答案为:x≠-3【点睛】本题考查求函数自变量的取值,通常关注3个点:(1)分数(式)分母不为0;(2)二次根式内的式子非负;(3)符合生活实际13. 化简计算:-=_______.【答案】【解析】【分析】先化简二次根式,然后同类项合并【详解】原式=故答案为:【点睛】本题考查二次根式的减法计算,解题过程中,我们一般先将二次根式化为最简二次根式,然后再进行后续计算14. 分解因式:33327a b ab -=_________.【答案】3(3)( 3 )ab a b a b -+【解析】【分析】先提取公因式,然后利用平方差公式进一步分解【详解】原式=22223ab(a -9b )=3ab[a -(3b)]=3(3)( 3 )ab a b a b -+故答案为:3(3)( 3 )ab a b a b -+【点睛】本题考查因式分解,因式分解常见的方法有:(1)提取公因式;(2)利用乘法公式分解因式;(3)十字相乘法分解因式(4)分组法分解因式15. 不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩的整数解的个数是_________.【答案】7【解析】【分析】分别求解两个不等式,得到不等式组的解集,判断解集内整数的个数 【详解】解不等式131722x x -≤-得:x≤4 解不等式523(1)x x +>-得:x >52- ∴52-<x≤4 ∴整数解有:-2、-1、0、1、2、3、4共7个故答案为:7【点睛】本题考查求不等式的整数解,解答过程和解不等式是完全相同的过程,最后只需分析解集中的整数解即可16. 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是_____________. 【答案】23; 【解析】试题解析:列表得:所有等可能的情况有12种,其中之和为奇数的情况有8种, 则82.123P == 故答案为:2.317. 一个扇形的半径为2cm ,面积为22cm π,则此扇形的圆心角为________.【答案】180︒【解析】【分析】设圆心角为n°,直接代入求扇形面积公式可得到【详解】设扇形的圆心角为n°则扇形面积为:222360n ππ︒=︒ 解答:n=180故答案为:180°【点睛】本题是扇形面积公式的考查,该公式可理解为圆的面积乘扇形圆心角与圆周角的比例18. 纸片ABC 中,60,16,14B AB cm AC m ∠=︒==,将它折叠使B 与C 重合,折痕MN 交AB 于点M ,则线段AM 的长为________.【答案】6或10【解析】【分析】如下图,过点A 作BC 垂线交BC 于点D ,△ABD 是含有30°的直角三角形,已知AB ,则可得到AD 的长;根据折叠的性质,可得△BCM 是正三角形,设MB=x ,则可得到DC=x-8;在Rt △ADC 中,利用勾股定理可得到一个关于x 的方程,解得结果即为BM 长,进而得出MA 长【详解】情况一:如下图,△ABC 是锐角三角形,过点A 作BC 垂线交BC 于点D∵∠B=60°,AB=16,AD ⊥BC∴在Rt △ABD 中,BD=8,AD=3∵△MCN 是△MBN 折叠得到,∴∠MCB=∠B=60°∴△MBC 为正三角形,∴MB=BC设MB=x ,则BC=x ,DC=x-8∵AC=14∴在Rt △ADC 中,222AD DC AC +=,即()()22283814x +-= 解得:x=6(舍)或x=10,∴AM=6情况二:如下图,当△ABC 是钝角三角形,过点A 作BC 垂线交BC 于点D同理,BD=8,AD=83,△MBC正三角形设MB=x ,则BC=x ,CD=8-x∵AC=14 ∴在Rt △ADC 中,222AD DC AC +=,即()()22283814x +-= 解得:x=6或x=10(舍),∴AM=10综上得:AM=10或AM=6故答案为:6或10 【点睛】本题考查勾股定理和折叠的性质,解题的关键是设未知边为x ,寻找直角三角形,利用勾股定理建立等式方程19. 如图,O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交O 于点E ,连结EC .若8AB =,CD =2,则EC 的长为_______.【答案】13【解析】如下图,连接EB.根据垂径定理,设半径为r ,在Rt △AOC 中,可求得r 的长;△AEB ∽△AOC ,可得到EB 的长,在Rt △ECB 中,利用勾股定理得EC 的长【详解】如下图,连接EB∵OD ⊥AB ,AB=8,∴AC=4设O 的半径为r∵CD=2,∴OC=r-2在Rt △ACO 中,222AC OC AO +=,即()22242r r +-=解得:r=5,∴OC=3∵AE 是O 的直径,∴∠EBA=90° ∴△OAC ∽△EAB ∴EB AE OC AO =,∴EB=6 在Rt △CEB 中,222BC BE CE +=,即22246CE +=解得:CE=213故答案为:213【点睛】本题考查垂径定理、相似和勾股定理,需要强调,垂径定理中五个条件“知二推三”,本题知道垂直和过圆心这两个条件20. 如图,在ABC 中,60C ∠=°,D E 、分别在边BC AC 、上,,AD AB EAB EBA =∠=∠,23AB =,1DE =,则线段AE 的长为______.7【解析】如下图,构造△ABC的外接圆,利用圆周角与圆心角的关系,求得∠AHF=30°,从而得到△AGH与△AGF 是含有30°的直角三角形,进而得到三角形各边长;然后证△AHE≌△ADE,在△AEH中利用余弦定理可求得AE长【详解】如下图,作△ABC的外接圆,圆心为点O,过点E作AB的垂线,交AB于点F,交O于点G,反向延长EF交O于点H,连接AG、BG、AH∵∠ABE=∠BAE,EF⊥AB,23AB∴3O在AB的垂直平分线上,即点O在GH上∴GH是O的直径,点G是AB的中点∴∠HAG=90°∵∠C=60°∴∠AHG=30°∴∠AGH=60°在Rt△AGF中,∵3∴GF=1,AG=2∴在Rt△AGH中,GH=4,AH=23∴AH=AD设∠ABD=∠ADB=x根据AB=AD和∠ABE=∠BAE可推导得:∠BAD=180-2x,∠DAE=x-60,∠AEB=2x-60,∠ABE=∠BAE=120-x,∠EBC=2x-120∴∠HAE=∠HAG-∠GAF-∠BAD-∠DAE=x-60∴∠HAE=∠DAE在△AHE与△ADE中60AH AD HAE DAE x AE AE ⎧==⎪∠=∠=-⎨⎪=⎩∴△AHE ≌△ADE∴EH=ED=1∵EH=1,GF=1,HG=4,∴FE=2∴在Rt △AEF 中,故答案【点睛】本题考查了等腰三角形的性质、圆心角与圆周角之间的关系、全等的证明,解题关键是构造出△ABC 的外接圆,然后寻找全等三角形三、解答题(21、22题各7分,23、24题各8分,25-27题各10分,共计60分)21. 先化简,再求值:(1﹣x+31x +)÷2441x x x +++,其中x=tan45°+(12)﹣1. 【答案】-15【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x 的值,最后代入计算可得. 【详解】原式=(21311x x x -+++)÷()221x x ++ =()()()2221·12x x x x x +-+++ =22x x-+, 当x=tan45°+(12)﹣1=1+2=3时,原式=231235-=-+. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序、特殊角的三角函数值、负指数幂的运算是解题的关键.22. 如图,在106⨯的正方形网格中,每个小正方形的边长均为1,线段AB 、线段EF 的端点均在小正方形的项点上.(1)在图中以AB 为边画Rt ABC ,使点C 在小正方形的顶点上,且90BAC ∠=︒,2tan 3ACB ∠=; (2)在(1)的条件下,在图中画以EF 为边且面积为3的DEF ,使点D 在小正方形的顶点上,且45CBD ∠=︒,连结CD ,直接写出线段CD 的长.【答案】(1)画图见解析;(2)画图见解析;26CD =. 【解析】【分析】 (1)根据90BAC ∠=︒,2tan 3ACB ∠=,确定点C 的位置,进而画出Rt ABC ,即可; (2)根据45CBD ∠=︒,以EF 为边且面积为3的DEF ,确定出点D 的位置,即可画出DEF .【详解】(1)如图,Rt ABC 即为所求;(2)如图,DEF 即为所求,221526CD =+=.【点睛】本题主要考查直角三角形的定义以及锐角三角函数的定义,掌握锐角三角函数的定义,是解题的关键.23. 为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随杋抽取了x 名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表节目 人数(名) 百分比最强大脑a 10% 朗读者15 %b 中国诗词大会c 40% 出彩中国10 20%根据以上提供的信息,解答下列问题:(1)x =______,a =_____,b =____;(2)补全上面的条形统计图;(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.【答案】(1)50530x a b ===,,;(2)补全条形统计图见解析;(3)2000人.【解析】【分析】(1)读取“出彩中国”的数据,可得到样本容量x 的值,再利用样本容量×百分比=人数的公式,分别计算a 、b 、c 的值;(2)根据求出的c 的值绘制图形;(3)诗词大会百分比×总人数即可【详解】(1)读取“出彩中国”的数据,10人对应的比例为20%∴样本容量x=10÷20%=50人 a=50×10%=5人;b%=15÷50=30%,b=30c=50×40%=20人(2)图形如下:(3)喜爱《中国诗词大会》的人数约为:5000×40%=2000人【点睛】本题考查调查统计,解题关键是通过残缺图表信息,先求解出样本容量,后续再根据题干要求相应求解24. 已知点F是平行四边形ABCD的边CD的中点,BD是对角线,AG BD交CB的延长线于G,连接DG交AB于点E.;(1)如图1,求证:BF GE(2)如图2,当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明.【答案】(1)见解析;(2)菱形【解析】【分析】(1)证四边形ADBG是平行四边形,得到BG=AD=BC,得点B是GC中点,证BF是△CDG的中位线即可;(2)先证四边形BFDE是平行四边形,在利用矩形ADBG对角线相等的性质证BE=ED即可【详解】(1)∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD∵AG∥BD,∴四边形ADBG是平行四边形,GE=ED∴BG=AD=BC∴点B是CG的中点∵点F是CD的中点∴BF是△CDG的中位线∴BF=GE(2)∵四边形ABCD是平行四边形,∴EB∥FD根据(1)知,BF ∥GD∴四边形BFDE 是平行四边形∵四边形ADBG 是矩形∴AB=DG ,BE=ED∴平行四边形BEDF 是菱形【点睛】本题考查了平行四边形、矩形的性质,并利用性质证明菱形.常见解题思路是先得到平行四边形,再利用菱形的特点证平行四边形是菱形25. 某服装加工厂甲、乙两个车间共同加工一款休闲装,且每人每天加工的件数相同,甲车间比乙车间少10人,甲车间每天加工服装400件,乙车间每天加工服装600件.(1)求甲、乙两车间各有多少人;(2)甲车间更新了设备,平均每人每天加工的件数比原来多了10件,乙车间的加工效率不变,在两个车间总人数不变的情况下,加工厂计划从乙车间调出一部分人到甲车间,使每天两个车间加工的总数不少于1314件,求至少要从乙车间调出多少人到甲车间.【答案】(1)甲车间有20人,乙车间有30人;(2)从乙车间至少调12人到甲车间.【解析】【分析】(1)设甲车间x 人,则乙车间(x+10)人,根据等量关系:甲车间每人生产件数=乙车间每人生产件数得到分式方程;(2)设调a 人到甲车间,则不等关系为:(甲车间原人数+a)×生产效率+(乙车间原人数-a)×生产效率≥1314,列写不等式求解即可【详解】(1)解:设甲车间有x 人,乙车间有()10x +人; 则:40060010x x =+ 解得:20x ,经检验:20x 是原分式方程的解.x+10=30(人).答:甲车间有20人,乙车间有30人.(2)设从乙车间调a 人到甲车间; 则:400400(20)10(30)13142020a a ⎛⎫+⨯++-⨯≥ ⎪⎝⎭, 解得:11.4a ≥.因为a 为正整数,所以a 的最小值为12.答:从乙车间至少调12人到甲车间.【点睛】本题考查分式方程和不等式的应用,应用题解题关键是通过题干抽取出等量(不等)关系,根据这个关系列写方程即可26. 已知ABD △内接于圆O ,点C 为弧BD 上一点,连接BC AC AC 、,交BD 于点E ,CED ABC ∠=∠.(1)如图1,求证:弧AB =弧AD ;(2)如图2,过B 作BF AC ⊥于点F ,交圆O 点G ,连接AG 交BD 于点H ,且222EH BE DH =+,求CAG ∠的度数;(3)如图3,在(2)的条件下,圆O 上一点M 与点C 关于BD 对称,连接ME ,交AB 于点N ,点P 为弧AD 上一点,PQ BG ∥交AD 于点Q ,交BD 的延长线于点R ,AQ BN =,ANE 的周长为20,52DR =O 半径.【答案】(1)见解析;(2)∠CAG=45°;(3)r=2【解析】【分析】(1)证∠ABD=∠ACB 可得;(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合,证△ALE ≌△AHE ,利用勾股定理逆定理推导角度;(3)如下图,延长QR 交AB 于点T ,分别过点N 、Q 作BD 的垂线,交于点V ,I ,取QU=AE ,过点U 作UK 垂直BD.先证△AEN ≌△QUD ,再证△NVE ≌△RKU ,可得到NV=KR=DK ,进而求得OB 的长.【详解】(1)∵∠CED 是△BEC 的外角,∴∠CED=∠EBC+∠BCA∵∠ABC=∠ABD+∠EBC又∵∠CED=∠ABC∴∠ABD=∠ACB∴弧AB=弧AD(2)如下图,△AHD 绕点A 旋转至△ALE 处,使得点D 与点B 重合∵△ALB是△AHD旋转所得∴∠ABL=∠ADB,AL=AH设∠CAG=a,则∠CBG=a∵BG⊥AC∴∠BCA=90°-a,∴∠ADB=∠ABD=90°-a∴在△BAD中,BAE+∠HAD=180-a-(90°-a)-(90°-a)=a∴∠LAE=∠EAH=a∵LA=AH,AE=AE∴△ALE≌△AHE,∴LE=EH∵HD=LB,222EH BE DH=+∴△LBE为直角三角形∴∠LBE=(90°-a)+(90°-a)=90°,解得:a=45°∴∠CAG=45°(3)如下图,延长QR交AB于点T,分别过点N、Q作BD的垂线,交于点V,I,取QU=AE,过点U作UK垂直BD由(2)得∠BAD=90°∴点O在BD上设∠R=n ,则∠SER=∠BEC=∠MEB=90°-n ∴∠AEN=2n∵SQ ⊥AC∴∠TAS=∠AQS=∠DQR ,AN=QD∵QU=AE∴△AEN ≌△QUD∴∠QUD=∠AEN=2n∴UD=UR=NE ,∵△ANE 的周长为20∴QD+QR=20在△DQR 中,QD=7∵∠ENR=∠UDK=∠R=n∴△NVE ≌△RKU∴NV=KR=DK=522 ∴BN=5∴BD=122,OB=62r =【点睛】本题考查了圆的证明,涉及到全等、旋转和勾股定理,解题关键是结合图形特点,适当构造全等三角形27. 在平面直角坐标系中,抛物线27287y ax x a =-+-经过原点O ,交x 轴正半轴于点A ,顶点为D ,对称轴交x 轴于点B .(1)如图1,求点D 的坐标;(2)如图2,点P 为抛物线在第一象限上一点,连接OP 交对称轴于点E ,设点P横坐标为t ,DE 的长为d ,求d 与t 之间的函数解析式,不要求写出自变量的取值范围;(3)如图3,在(2)的条件下,点F 为BD 上一点,连接OF ,点G 为OF 上一点,连接EG BG 、,60BOF BGE ∠+∠=︒,EG EO =,若23BG =,求点P 横坐标t 的值. 【答案】(1)(27,7)D -;(2)77d t =-;(3)4347t =+. 【解析】【分析】(1)代入点(0,0),先求出a 的值,然后将二次函数配成顶点式,求出点D 坐标;(2)过点P 作x 轴垂线,交x 轴于点K ,ED 交x 轴于点B ;设点21,74P t t t ⎛⎫- ⎪⎝⎭,△PKO ∽△EBO ,可得到EB 的长,加上BD 的长即为ED 的长;(3)如下图,连接AG 、AE ,过点B 、G 分别作AG 、x 轴垂线,交于点M 、N.先利用Rt △BGM 求得BM 、GM 的长,在利用Rt △ABM 得到tan ∠BAG ,然后结合Rt △ANG 得到AN 、GN 的长,从而推导出ON 的长,接着便可证△OGB 是直角三角形,从而推导出∠EOB=30°,得出结论【详解】(1)∵抛物线过点(0,0),代入抛物线得:0=0-0+28a-7,解得:14a =则抛物线为:222211117=(7(728(27)4444)4)747y x x x x x -=--=+---= ∴(27,7)D -(2)如下图,过点P 作x 轴垂线,交x 轴于点K ,ED 交x 轴于点B设21,74P t t t ⎛⎫ ⎪⎝⎭∴PK=2174t t -,OK=t ∵7,7)D -∴(27,0)B∴OB=27∵PK∥EB,∴△PKO∽△EBO∴PK EB OK OB=,即:217427t tt-=解得:714EB t=-∴771477d EB BD t t=+=-+=-(3)如下图,连接AG、AE,过点B、G分别作AG、x轴垂线,交于点M、N 设,60BGE BOFαα∠=∠=︒-则,∠GEA=120°α-∵EB是AO的垂直平分线,∴EA=EO,∴EA EO EG==∴在△GEA中,∠EGA=∠EAG=()1180120302αα⎡⎤︒-︒-=︒+⎣⎦∴∠BGA=30°∵抛物线解析式为:2174y x x=可得:77∵3Rt△BGM中,3GM=3∴在Rt△ABM中,MA=5∴3tan BAG∠=∵AG=3+5=8∴在Rt△AGN中,421207∴NB=AN-AB=7,∴ON=OB-BN=7 ∴在Rt △ONG 中,OG=4∴在△OGB 中,三边满足勾股定理逆定理,即∠BGO=90°∴EOG 90α∠=︒-,EOA 30∴∠=︒∵14EB =-,,∠EOB=30°解得:t =+ 【点睛】本题是二次函数和三角函数的综合,解题关键是利用二次函数的性质,得到线段的长度,然后利用三角函数和勾股定理推导求得。
新泰市2015年初中学业第二次模拟考试数学试题(满分120分 时限120分钟)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1、-2-2的倒数等于( ) A. - 4 B. 4 C. -41 D. 41 2、下列计算正确的是( ).A 、a 2·a 3=a 6B 、y 3÷y 3=yC 、3m +3n =6mnD 、(x 3)2=x 63、右图中几何体的左视图是( )4、据统计,2015年5月1日黄金周的第一天,泰山门票收益达到24万元,这个数据用科学计数法表示为( )万元。
A. 41024⨯B. 5104.2⨯C. 610240⨯⋅D.2.4×105、如图,在△ABC 中,∠A=90°,点D 在AC 边上,DE//BC ,若∠1=155°,则∠B 的度数为 。
A 45°B 55°C 65°D 75°6、下列图形中,只有两条对称轴的图形是A. B. C. D. 7、如图,为安全起见,某游乐园拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB 的长为3m ,点D 、B 、C 在同一水平地面上,那么加长后的滑梯AD 的长是( )A .2B .2C .3D .3m8、把一个半径为12,圆心角为150°的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是( )A.13 B.5 C.129 D.1199、如图所示,F E ∠=∠,B C ∠=∠,AE AF =,以下结论:①FAN EAM ∠=∠;②EM FN =;③ACN ABM △≌△;④CD DN =.其中正确的有( )A .1个B .2个C .3个D .4个第5题图第7题图 第9题图10、下列条件中,可以确定△ABC 和△A ′B ′C ′全等的是( )A. BC=BA ,B ′C ′=B ′A ′,∠B=∠B ′B. ∠A=∠B ′,AC=A ′B ′,AB=B ′C ′C. ∠A=∠A ′,AB=B ′C ′,AC=A ′C ′D. BC=B ′C ′,AC=A ′B ′,∠B=∠C ′11、在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为( ) A.4 B. 6 C.12 D.1612、如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A .3B .3.5C .2.5D .2.813、青云超市某服装专柜在销售中发现:进货价为每件50元,销售价为每件90元的某品牌童装平均每天可售出20件.为了迎接“六一”,商场决定采取适当的降价措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要想平均每天销售这种童装盈利1200元,同时又要使顾客得到较多的实惠,设降价x 元,根据题意列方程得( ).A .1200)220)(40(=+-x xB .1200)20)(40(=+-x xC .1200)220)(50(=+-x xD .1200)220)(90(=+-x x14、如图,直角梯形AOCD 的边OC 在x 轴上,O 为坐标原点,CD 垂直于x 轴,D (5,4),AD=2.若动点E 、F 同时从点O 出发,E 点沿折线OA→AD→DC 运动,到达C 点时停止;F 点沿OC 运动,到达C 点是停止,它们运动的速度都是每秒1个单位长度.设E 运动秒x 时,△EOF 的面积为y (平方单位),则y 关于x 的函数图象大致为( )14题图-<a≤- B-≤a<- C-≤a≤- D-<-16、一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()A.90°B.100°C.130°D.180°17、如图,同心圆O中,大圆半径OA、OB分别交小圆于D、C,OA⊥OB,若四边形ABCD的面积为50,则图中阴影部分的面积为()A. 75B. 50πC. 75πD. 75218、已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD +S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()④19、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=与y=bx+c在同一直角坐标系内的大致图象是()B20、二次函数c bx ax y ++=2的图象如图所示.有下列结论:①0a b c -+=;②4a+b=0;③当y=2时,x 等于0.④42-=++c bx ax 有两个不相等的实数根。
其中正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,满分12分。
只要求填写最后结果,每小题填对得3分) 21、化简÷+x 的结果为22、“每天锻炼一小时,健康生活一辈子”.新泰市自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生3000人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表所示.小时及以上的约有 人.23、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P ,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )24、在很小的时候,我们就用手指练习过数数.一个小朋友按上图所示的规则练习数数,数到2015时对应的指头是 (填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).三、解答题(本大题共5小题,满分48分。
解答应写出必要的文字说明、证明过程或推演步骤)20题图25、(8分))为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?26.(8分)如图,反比例函数y= 2k x和一次函数y=2x-1,其中一次函数的图象经过(a ,b)、(a+1,b+k)两点.(1).求反比例函数的解析式;(2).若点A 坐标是(1,1),请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的点P 的坐标都求出来;若不存在,请说明理由;(3).在(2)的条件下,请直接写出x 取何值时,反比例函数值大于一次函数的值。
27.(10分)正方形ABCD 中,点P 是对角线AC 上一点,PE ⊥CD 于E,PF ⊥AD 于F.(1)求证:EF=PB(2)当点P 在线段AC (点P 不与A 、C 重合)上运动时,EF 的长度在发生变化,这个长度有最大值还是最小值?当AB=4时,运用(1)中结论求出这个值 F EDC28.(11分)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP 绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P ′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.29.(11分)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.A B C新泰市2015年初中学业第二次模拟考试数学试题答题纸(满分120分时限120分钟)21、;22、;23、;24、。
25、26、27、FEDC28、29、A B C参考答案:1、A;2、D;3、C;4、B;5、C;6、A;7、C;8、D;9、C;10、B;11、A;12、C;13、A;14、C;15、B;16、B;17、C;18、D;19、B;20、C21、x2 ;22、300;23、;24、中指25、解:(1)设甲车单独运完此堆垃圾需运x趟,则乙车单独运完此堆垃圾需运2x趟,根据题意得出:1x+=,解得:x=18,经检验得出:x=18是原方程的解,则2x=36,答:甲车单独运完需18趟,乙车单独运完需36趟;(2)设甲车每一趟的运费是a元,由题意得:12a+12(a﹣200)=4800,解得:a=300,则乙车每一趟的费用是:300﹣200=10 0(元),单独租用甲车总费用是:18×300=5400(元),单独租用乙车总费用是:36×100=3600(元),3600<5400,故单独租用一台车,租用乙车合算。
26、把(a,b)、(a+1,b+k)两点代入一次函数解析式可得k=2,所以y=1x;(2)P(,0)、0)、(2,0)、(1,0);(3)当0<x<1或x<12-时,反比例函数值大于一次函数值。
27、(1)提示:连接PD,证△ABP≌△ADP, 再运用矩形对角线相等性质。
(2)EF最大值=2228、(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,∴∠EAP′+∠AP′E=90°,又∵∠PAD+∠EAP′=90°,∴∠PAD=∠AP′E,在△APD和△P′AE中,,∴△APD≌△P′AE(AAS),∴AE=DP,∴AE=CP;(3)解:∵=,∴设CP =3k ,PE=2k ,则AE=CP=3k ,AP ′=AP=3k+2k=5k ,在Rt △AEP ′中,P ′E==4k ,∵∠C=90°,P ′E ⊥AC ,∴∠CBP+∠BPC=90°,∠EP ′P+∠P ′PE=90°,∵∠BPC=∠EPP ′(对顶角相等),∴∠CBP=∠P ′PE ,又∵∠BAP ′=∠P ′EP=90°,∴△ABP ′∽△EPP ′,∴=, 即=, 解得P ′A=AB ,在Rt △ABP ′中,AB 2+P ′A 2=BP ′2,即AB 2+AB 2=(5)2, 解得AB=10.29、解:(1)将A(1,0),B(-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩=……………………(2分) ∴23b c =-⎧⎨=⎩……………………(3分)∴抛物线解析式为:223y x x =--+…………………… (4分)(2)存在………………………………………………(5分)理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称 ∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小∵223y x x =--+ ∴C 的坐标为:(0,3)直线BC 解析式为:3y x =+……………………(6分) Q 点坐标即为13x y x =-⎧⎨=+⎩的解∴12x y =-⎧⎨=⎩∴Q(-1,2)………………………………………………(7分)(3)答:存在。