九年级数学根与系数的关系同步练习题3
- 格式:doc
- 大小:124.00 KB
- 文档页数:4
北师大版九年级数学上册第二章2.5一元二次方程的根与系数的关系 假期同步测试一.选择题1.如果一元二次方程x 2-3x-1=0的两根为x 1、x 2,那么x 1+x 2=( ) A .-3 B .3 C .-1 D .12.一元二次方程x 2+4x-3=0的两根为1x 、2x ,则1x •2x 的值是( ) A .4 B .-4 C .3 D .-33.一元二次方程3x 2﹣4x ﹣5=0的两实数根的和与积分别是( ) A .,﹣ B ., C .﹣,﹣D .﹣,4.一元二次方程x 2-3x-2=0的两根为x 1,x 2,则下列结论正确的是( ) A .x 1=-1,x 2=2 B .x 1=1,x 2=-2 C .x 1+x 2=3D .x 1x 2=25. 设x 1,x 2是一元二次方程2x -2x-3=0的两根,则2211x x =( ) A .6 B .8 C .10 D .12 6.关于x 的一元二次方程x 2+bx ﹣1=0的判别式为( ) A .1﹣b2B .b 2﹣4C .b 2+4D .b 2+17. 已知x 1,x 2是一元二次方程x 2-4x+1=0的两个实数根,则x 1x 2-x 1-x 2的值等于( )A .-3B .0C .3D .58.若关于x 的方程x 2-2x+c=0有一根为-1,则方程的另一根为( )A.-1 B.-3 C.1 D.39.若关于x的一元二次方程x2-3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2-ab+b2=18,则a b的值是()b aA.3 B.-3 C.5 D.-510.判断一元二次方程式x2-8x-a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?()A.12 B.16 C.20 D.24 11.(2019•贵港)若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,则m等于()A.﹣2 B.﹣3 C.2 D.3 12.(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1•x2=2 13.已知关于的一元二次方程有两个不相等的实数根,若,则的值是A.2 B.–1 C.2或–1 D.不存在14.已知一元二次方程的两个根分别是x=2和x=-3,则这个一元二次方程是( )A.x2-6x+8=0 B.x2+2x-3=0C.x2-x-6=0 D.x2+x-6=0二.填空题15.已知x1=3是关于x的一元二次方程x2-4x+c=0的一个根,则方程的另一个根x2是_______16.设m、n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n= .17.若关于x的一元二次方程(m﹣2)x2﹣4x+3=0有实数解,则m的取值范围为.18.方程2x2-3x-1=0的两根为x1,x2,则x12+x22= .19.关于x的方程2x2-ax+1=0一个根是1,则它的另一个根为 .20.已知一元二次方程x2+3x-4=0的两根为x1、x2,则x12+x1x2+x22= .21.已知关于x的一元二次方程x2﹣5x+1﹣m=0的一个根为2,则另一个根是22.设m,n分别为一元二次方程x2+2x-2018=0的两个实数根,则m2+3m+n= .23.(2019•娄底)已知方程x2+bx+3=0的一根为+,则方程的另一根为.24.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是__________.三.解答题25.若关于x的方程x2+mx+7=0的一个根为3-2,求方程的另一个根及m的值.26.(2019•孝感)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a ﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.27.已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1、x2.(1)求m的取值范围;(2)若x12+x22=6x1x2,求m的值.28.已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,求这个直角三角形的斜边长29.已知:关于x的方程x2+2mx+m2-1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m 的值.30.已知关于x的方程x2-(2k-1)x+k2-2k+3=0有两个不相等的实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,是否存在这样的实数k,使得|x1|-|x2|=5成立?若存在,求出这样的k值;若不存在,请说明理由.答案提示1.A;2.D;3.A;4.C;5. C;6.C;7.A;8.D;9.D;10.C;11.B;12.D;13.A;14.D.15.1; 16. 5; 17.m≤且m≠2; 18.134; 19.12; 20.13; 21.3;22. 2016; 23.﹣; 24.3<m≤5.25.解:设方程的另一个根为t,根据题意,得(3-2)t=7,∴t=73-2=3+ 2.所以-m=3-2+3+2=6,即m=-6.即方程的另一个根为3+2,m的值为-6.26.解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=1,2;(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,∴[2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.27.解: (1)∵方程有两个实数根,∴△≥0,即(﹣2)2﹣4(m﹣1)≥0,解得m≤2;(2)由根与系数的关系可得x1+x2=2,x1x2=m﹣1,∵x12+x22=6x1x2,∴(x1+x2)2﹣2x1x2=6x1x2,即(x1+x2)2=8x1x2,∴4=8(m﹣1),解得m=1.5.28.解: 设直角三角形的斜边为c,两直角边分别为a与b.∵直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,∴a+b=4,ab=3.5;根据勾股定理可得:c2=a2+b2=(a+b)2-2ab=16-7=9,∴c=329.解:(1)∵a=1,b=2m,c= m2-1,∵△=b2-4ac=(2m)2-4×1×(m2-1)=4>0,∴方程x2+2mx+m2-1=0有两个不相等的实数根;(2)∵x2+2mx+m2-1=0有一个根是3,∴32+2m×3+ m2-1=0,解得,m=-4或m=-2.30.解:(1)∵原方程有两个不相等的实数根,∴Δ=[-(2k-1)]2-4(k2-2k+3)=4k-11>0,解得k >114.(2)存在.∵x 1+x 2=2k -1,x 1x 2=k 2-2k +3=(k -1)2+2>0, ∴将|x 1|-|x 2|=5两边平方,可得x 12-2x 1x 2+x 22=5,即(x 1+x 2)2-4x 1x 2=5, ∴(2k -1)2-4(k 2-2k +3)=5, 即4k -11=5,解得k =4. ∵4>114,∴k =4.。
数学练习题初三根与系数的关系同步测试题
一、填空题:
数学练习题初三根与系数的关系1、以为两根的一元二次方程是。
2、已知关于x的方程x2+m2x+m=0的两个实数根是x1、x2,y1、y2是方程y2+5my+7=0的两个实数根,且x1-y1=2,
x2-y2=2,则m=_______.
3.已知关于x的方程x2-4x+k-1=0的两根之差等于6,那么k=______.
4.分别以x2+3x-2=0的两根和与两根积为根的一元二次方程是______.
5、已知a2=1-a,b2=1-b,且ab,则(a-1)(b-1)= ______.
6、若、为实数且|+-3|+(2-)2=0,则以、为根的一元二次方程为。
(其中二次项系数为1)
二、解答下列各题:(每小题6分,共36分)
1、设x1,x2是方程2x2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值
(1)(x1+1)(x2+1);(2)x12x2+x1x22; (4)(x1-x2)2;
2、已知关于x的方程x2+(a+1)x+b-1=0的两根之比是2:3,判别式的值为1,求方程的根.
3、已知x1 ,x2是关于x的方程x2-2(m+2)x+2m2-1=0的两个实根,且满足,
求m值.
4、已知关于x的方程x2+2(m-2)x+m4+4=0有两个实数根,且这两根的平方和比两根的积大21,求m值并解此方程.
5、已知斜边为5的直角三角形的两条直角边a、b的长是方程x2-(2m-1)x+4(m-1)=0的两个根,求m的值.
6、已知关于x的方程 3 x2 10 x + k = 0有实数根,求满足下列条件的k的值:
(1)有两个实数根 (2)有两个正数根 (3)有一个正数根和一个负数根.。
初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)1.先阅读,再回答问题:如果x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a,b,c的关系是:x1+x2=-,x1x2=.例如:若x1,x2是方程2x2-x-1=0的两个根,则x1+x2=-=-=,x1x2===-.若x1,x2是方程2x2+x-3=0的两个根,(1)求x1+x2,x1x2(2)求+的值.(3)求(x1-x2)22.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,求a,b,c之间的关系.3.已知关于的一元二次方程.若是此方程的一个根,求的值和它的另一个根;若方程有两个不相等的实数根,试判断另一个关于的一元二次方程的根的情况.4.已知关于的一元二次方程.若方程有实数根,求的取值范围;如果是满足条件的最大的整数,且方程一根的相反数是一元二次方程的一个根,求的值及这个方程的另一根.5.根据下列命题完成以下问题。
(命题)若、是关于的一元二次方程的两个实数根,则有,。
〖问题1〗若、是关于的一元二次方程的两个实数根,则有____________,___________。
〖问题2〗若、是一元二次方程的两个实数根,则有____________,___________。
〖问题3〗甲、乙两同学解同一道一元二次方程时,甲看错了一次项系数,得两根为2和7,乙看错了常数项,得两根为1和-10。
初中数学一元二次方程根与系数关系专项复习题3(附答案详解)1.一元二次方程x 2+3x =0的解是( )A .x =3B .x 1=0,x 2=3C .x 1=0,x 2=-3D .x =-32.关于x 的一元二次方程x 2+bx ﹣1=0的判别式为( )A .1﹣b 2B .b 2﹣4C .b 2+4D .b 2+13.下列方程中,两实数根之和等于2的方程是( )A .x 2+2x ﹣3=0B .x 2﹣2x+3=0C .2x 2﹣2x ﹣3=0D .3x 2﹣6x+1=0 4.关于x 的一元二次方程x 2-2x +2k =0有实数根,则k 得范围是( )A .k <B .k >C .k≤D .k≥5.方程x 2﹣3x +4=0和2x 2﹣4x ﹣3=0所有实数根的和是( )A .3B .5C .1D .26.方程2270x ax -+=,有一根是12,则另一根为( ) A .7 B .7.5C .-7D .15 7.已知关于x 的方程()2a 1x 2x 10--+=有实数根,则a 的取值范围是()n nA .a 2≤B .a 2>C .a 2≤且a 1≠D .a 2<-8.x=1是关于x 的一元二次方程2x 2+mx−1=0的一个根,则此方程的两根之和为A .−1B .1C .12D .−129.关于x 的方程220x x k +-=有两个相等的实数根,则k 的值为( )A .12 B .12- C .1? D . 1-10.甲、乙两个同学分别解一道二次项系数是1的一元二次方程,甲因把一次项系数看错了,而解得方程两根为﹣3和5,乙把常数项看错了,解得两根为2和2,则原方程是....( )A .x 2+4x ﹣15=0B .x 2﹣4x ﹣15=0C .x 2+4x+15=0D .x 2﹣4x+15=011.若x=3是一元二次方程x 2﹣2x+c=0的一个根,则这个方程的另一个根为_____. 12.设x 1、x 2是方程2x 2+4x-3=0的两个根,则(x 1+1)(x 2+1)=_______.13.已知关于x 的方程230x x k ++=的一个根是1-,则k =________;另一根为________.14.若关于x 的一元二次方程2430kx x -+=有两个不相等的实数根,则k 的取值范围15.若关于x 的一元二次方程()()21220m x mx m --++=有两个不等的实数根,则m 的取值范围是________.16.方程x 2-2x -3=0,两根分别为3,-1,记为[3,-1],请写出一个根为[-2,3]的一元二次方程________________________.17.方程(2x +1)(x +2)=6化为一般形式是______,b 2—4ac ____,用求根公式求得x 1=______,x 2=______,x 1+x 2=______,12x x =______,18.关于x 的一元二次方程2310kx x --=有实数根,则k 的取值范围是________. 19.如果关于x 的方程2420x x m -+=有实数根,则m 的取值范围是_______________.20.已知实数a 、b 满足a b ¹,且222018a a b b -=-=-,则11a b+的值为_______. 21.(1)不解方程,求方程5x 2﹣1=2x 的两个根x 1、x 2的和与积;(2)求证:无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根.22.如果x 1,x 2是一元二次方程ax 2+bx+c=0的两根,那么有x 1+x 2=-b a ,x 1x 2=c a.这是一元二次方程根与系数的关系,我们可以利用它来解题,例如:x 1,x 2是方程x 2+6x-3=0的两根,求x 12+x 22的值.解法可以这样:因为x 1+x 2=-6,x 1x 2=-3,所以x 12+x 22=(x 1+x 2)2-2x 1x 2=(-6)2-2×(-3)=42. 请你根据以上解法解答下题:设x 1,x 2是方程2x 2-x-15=0的两根,求: (1)11x +21x 的值; (2)(x 1-x 2)2的值.23.关于x 的方程3x 2﹣2x+m=0的一个根为﹣1,求方程的另一个根及m 的值.24.关于x 的一元二次方程()21210k x x +++=的实数解是1x 和2x . ()1求k 的取值范围;()2如果12121x x x x k +-=-,求k 的值.25.已知2x 2﹣4x+c=0的一个根,求方程的另一个根和c 的值.26.已知:关于x 的方程x 2+2ax+a 2﹣1=0(1)不解方程,判列方程根的情况; (2)若方程有一个根为2,求a 的值.27.已知关于x 的一元二次方程2220x x k -+-=有两个不相等的实数根1x ,2x . (1)求k 的取值范围;(2)若1x ,2x 满足211212325x x x x x ---<,且k 为整数,求k 的值.28.阅读材料:①韦达定理:设一元二次方程ax 2+bx+c=0(且a≠0)中,两根12x x 、有如下关系: 12b x x a +=-,12c x x a⋅=. ②已知p 2﹣p ﹣1=0,1﹣q ﹣q 2=0,且pq≠1,求1pq q+ 的值. 解:由p 2﹣p ﹣1=0及1﹣q ﹣q 2=0,可知p≠0,q≠0.又∵pq≠1,∴1p q≠ ; ∴1﹣q ﹣q 2=0可变形为21110q q⎛⎫--= ⎪⎝⎭的特征.所以p 与1q是方程x 2﹣x ﹣1=0的两个不相等的实数根. 则p+1q=1, ∴1pq q+=1. 根据阅读材料所提供的方法,完成下面的解答.已知:2m 2﹣5m ﹣1=0,21520n n +-=,且m≠n .求:11m n+ 的值.29.已知关于x 的方程:2244(3)x m x m --=(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实数根1x 、2x 满足211x x -=,求m 的值及相应的1x 、2x .30.学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程的两个根为x 1,x 2,就能快速求出11x +21x ,x 12+x 22,…的值了.比如设x 1,x 2是方程x 2+2x -3=0的两个根,则x 1+x 2=-2,x 1x 2=-3,得11x +21x =1212x x x x +=23.” (1)小亮的说法对吗?简要说明理由;参考答案1.C【解析】分析:分解因式得到x (x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.详解:x 2+3x=0,x(x+3)=0,x=0,x+3=0,x 1=0,x 2=−3,故选:C.点睛:此题考查了解一元二次方程-因式分解法,用因式分解法解方程的一般步骤是:移项、化积、转化、求解.2.C【解析】【分析】将一元二次方程的各项系数代入根的判别式24b ac ∆=-中,即可得出答案.【详解】在一元二次方程x 2+bx ﹣1=0中,∵a =1,b =b ,c =-1,∴222441(1)4b ac b b ∆=-=-⨯⨯-=+.故选C.【点睛】本题考查了一元二次方程根的判别式.找出一元二次方程中各项的系数并准确进行计算是解题的关键.3.D【解析】【分析】先根据根的判别式,判断有无实数根的情况,再根据根与系数的关系,逐一判断即可.【详解】A. x 2+2x ﹣3=0,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;B. ∵x 2﹣2x+3=0 ,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;C. ∵2x 2﹣2x ﹣3=0,∴△=b²-4ac=32>0,∴此方程有实数根, 根据根与系数的关系可求12212b x x a -+=-=-= , 故此选项错误;D. ∵3x 2﹣6x+1=0,∴△=b²-4ac=24>0,∴此方程有实数根, 根据根与系数的关系可求12623b x x a -+=-=-=, 故此选项正确.故选D.【点睛】本题考查了根的判别式及根与系数的关系,若1x ,2x 是一元二次方程ax²+bx+c=0(a≠0)的两根时12b x x a +=-,12c x x a=. 4.C【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b 2-4ac≥0.【详解】因为关于x 的一元二次方程有实根,所以解得故选:C.【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.5.D【解析】解:在方程x2﹣3x+4=0中,△=(﹣3)2﹣4×1×4=﹣7<0,∴方程x2﹣3x+4=0无实数根;在方程2x2﹣4x﹣3=0中,△=(﹣4)2﹣4×2×(﹣3)=40>0,∴方程2x2﹣4x﹣3=0有两个不等的实数根.设x1、x2是方程2x2﹣4x﹣3=0的实数根,∴x1+x2=2.故选D.6.A【解析】【分析】由韦达定理即可求解.【详解】解:令另一根为x,由韦达定理可知1722x ,解得x=7,故选择A.【点睛】本题考查了一元二次方程的韦达定理.7.A【解析】【分析】分两种情况进行讨论,即一元一次方程和一元二次方程,从而得出答案.【详解】当方程为一元一次方程时,a=1,方程有实数根;当方程为一元二次方程时,a≠1且4-4(a-1)≥0,解得:a≤2且a≠1;综上所述,a≤2.故选A.【点睛】考查的是方程的解得情况以及分类讨论的思想,属于中等题型.解决这个问题的关键就是分类讨论,很多同学会把这个方程当做一元二次方程来解.8.C【解析】设方程的另一根为x1,∵x=1是关于x的一元二次方程2x2+mx−1=0的一个根,根据根与系数的关系可得:x1·1=−12,∴x1=−12,∴x1+1=12.故选C.9.D【解析】【分析】利用一元二次方程根的判别式,得出△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,代入公式求出即可.【详解】∵关于x的方程x2+2x-k=0有两个相等的实数根,∴△=b2+4ac=4+4k=0,解得;k=-1,故选:D.【点睛】考查了一元二次方程根的判别式,一元二次方程ax²+bx+c=0(a≠0)的根与根的判别式24b ac∆=-有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.10.B【解析】甲的常数项是对的,所以常数项为:-3×5 = -15,乙的一次项系数是对的,所以是一次项系数为:-(2+2)= -4,原方程是x2 - 4 x -15 = 0,故选D.【点睛】本题主要考查了根与系数的关系,牢记根与系数的关系是解决此类问题的关键.【解析】【分析】由根与系数的关系,设另一个根为x ,再根据两根之和为b a -,代入计算即可. 【详解】由根与系数的关系,设另一个根为x ,则3+x =2,解得:x =−1.故答案为:x =−1.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a +=-= 是解决本题的关键.12.52-; 【解析】【分析】根据(x 1+1)(x 2+1)=1212()1x x x x +++,依据一元二次方程的根与系数的关系,可得两根之积或两根之和,代入数值计算即可.【详解】∵x 1、x 2是方程2x 2+4x-3=0的两个根, ∴121232,2x x x x +=-=-, 又∵(x 1+1)(x 2+1)=121235()12122x x x x +++=--+=-, 故填空答案:52-. 【点睛】 本题考查了根与系数的关系,解题的关键是将根与系数的关系与代数式变形.13.2 -2【解析】把x=-1代入已知方程列出关于k 的新方程,通过解新方程来求k 的值;然后利用根与系数的关系来求方程的另一根.【详解】依题意,得(−1)2+3×(−1)+k =0,解得,k =2.设方程的另一根为t ,则−1×t =2, 解得t =−2.故答案是:2;−2.【点睛】考查一元二次方程()200++=≠ax bx c a 根与系数的关系, 熟记公式1212,,b c x x x x a a+=-=是解决本题的关键. 14.43k <且0k ≠ 【解析】由题意可得:016430k k ≠⎧⎨∆=-⋅⋅>⎩, ∴43k <且0k ≠. 点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的定义和根的判别式∆=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.15.2m <且1m ≠【解析】【详解】根据题意得:△=b 2﹣4ac=4m 2﹣4()()1?2m m -+>0, 解得m <2,∵方程为一元二次方程,∴m ﹣1≠0,即m≠1,则m 的取值范围是2m <且1m ≠. 故答案为2m <且1m ≠. 16.x 2-x -6=0(答案不唯一) 【解析】 【分析】根据一元二次方程的一般形式ax 2+bx+c=0,利用一元二次方程根与系数的关系可以求出该方程. 【详解】设该方程为ax 2+bx+c=0, x 1+x 2=-b a ,x 1•x 2=c a, 方程的两根为-2和3, 则-ba=-(-2+3)=-1, ca=(-2)×3=-6, 如果a=1,则b=-1,c=-6, 则该方程为x 2-x-6=0. 答案不唯一. 故可以填x 2-x-6=0.故答案为:x 2-x -6=0(答案不唯一) 【点睛】此题主要考查了根与系数的关系,先设出一元二次方程的一般形式,利用根与系数的关系可求出方程.17.2x 2+5x —4=0, 57, 154x -±=, 254x -=, 52-, —2【解析】 【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0),据此可得出方程(2x+1)(x+2)=6的一般形式;把一般形式中a ,b ,c 的值代入计算,即可求出b 2-4ac 的值;将a ,b ,c 的值代入求根公式x =中进行计算,即可得出x 1,x 2的值;根据一元二次方程根与系数的关系即可得出x 1+x 2,x 1•x 2的值. 【详解】方程(2x +1)(x +2)=6化为一般形式是22540x x +-=; 在方程22540x x +-=中,∵a =2,b =5,c =−4,∴()2245424253257b ac -=-⨯⨯-=+=,∴x ==∴1x =,2x =,∵12x x 、是方程22540x x +-=的两根,∴121252.2x x x x +=-⋅=-,故答案为:25254057 2.2x x +-=--;, 【点睛】考查了一元二次方程的一般形式,求根公式以及根与系数的关系,属于基础题,比较简单. 18.94k ≥-且0k ≠ 【解析】 【分析】先求出∆的值,然后根据∆的值与一元二次方程根的关系列式求解即可. 【详解】 由题意得,∆=(-3)2-4×k×(-1)≥0,且k≠0,∴94k ≥-且0k ≠ 故答案为:94k ≥-且0k ≠.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 19.2m ≤ 【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m 的取值范围. 详解:∵关于x 的方程2420x x m -+=有实数根, ∴△=(-4)²-4×2m=16-8m≥0, 解得:m≤2 故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根. 20.12018-【解析】 【分析】由于实数a≠b ,且a ,b 满足a-a 2=b-b 2=-2018,则a ,b 可看着方程x 2-x-2018=0的两根,根据根与系数的关系得a+b=1,ab=-2018,然后把11a b+通分后变形,再利用整体代入的方法计算. 【详解】∵a ,b 满足222018a a b b -=-=-, ∴a ,b 可看着方程x 2−x −2018=0的两根, ∴a +b =1,ab =−2018,∴111.2018a b a b ab ++==- 故答案为:1.2018-【点睛】考查一元二次方程根与系数的关系,熟记根与系数的关系式是解题的关键.21.(1)x 1+x 2=25,x 1x 2=﹣15;(2)见解析. 【解析】 【分析】(1)先把右边的项移到左边,然后根据一元二次方程根与系数的关系求解即可; (2)先整理成一元二次方程的一般形式,然后求出∆的值即可判断. 【详解】(1)方程可化为5x 2﹣2x ﹣1=0, ∴x 1+x 2=25,x 1x 2=﹣15; (2)方程可化为x 2﹣3x+2﹣p 2=0, ∴△=(﹣3)2﹣4(2﹣p 2)=4p 2+1>0,∴无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 22.(1)115;(2)1214【解析】分析:(1)根据根与系数的关系得出12x x + 和12x x ⋅的值,再把要求的式子进行通分,然后代值计算即可;(2)把要求从的式子变形为21212()4x x x x +-,再把12x x +=12,12152x x =-代入进行计算即可.详解:x 1+x 2=12,x 1x 2=-152. (1)1211x x +=2112x x x x +=12152-=- 115;(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(12)2-4×(-152)=1214. 点睛:此题主要考查了根与系数的关系,根据题意得出12=bx x a +-和12c x x a=的值是解决问题的关键.23.-5,53【解析】试题分析:把x =−1代入方程2320x x m -+=得关于m 的方程,可求出m =−5,然后利用根与系数的关系求方程的另一根.试题解析:把x =−1代入方程2320x x m -+=得3+2+m =0,解得m =−5, 设方程的另一个根为t ,则13m t -⋅=-, 所以5.3t =即方程的另一个根为5.324.:()1k 的取值范围是0k ≤,且1k ≠-;()2 k 的值为2-. 【解析】 【分析】(1)根据题意可知,一元二次方程有两个实数根,故△≥0,且方程为一元二次方程,可知二次项系数不为0,据此解答即可;(2)根据一元二次方程根与系数的关系,得x 1+x 2=﹣21k -+,x 1x 2=11k +,根据x 1+x 2﹣x 1x 2=1﹣k 列出等式,解答即可. 【详解】(1)△=22﹣4×(k ﹣1)×1=﹣4k . ∵方程有实数根,∴△≥0且k +1≠0,解得:k ≤0且k ≠﹣1,k 的取值范围是k ≤0且k ≠﹣1; (2)根据一元二次方程根与系数的关系,得:x 1+x 2=﹣21k -+,x 1x 2=11k +. 由x 1+x 2﹣x 1x 2=1﹣k ,得:21k -+﹣11k +=1﹣k ,解得:k 1=2,k 2=﹣2. 经检验,k 1、k 2是原方程的解.又由(1)k ≤0且k ≠﹣1,故k 的值为﹣2. 【点睛】本题考查了一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 25.,c=-1 【解析】试题分析:设出方程另一根,利用根与系数的关系建立方程求解即可得出结论. 试题解析:解:设方程的另一根为m ,由题意得:24(2m m c ⎧-=⎪⎨-=⎪⎩①②,解得:21m c ⎧=⎪⎨=-⎪⎩ 答:方程的另一根为:xc 的值为﹣1.点睛:本题主要考查了一元二次方程的根与系数的关系,解答本题的关键是求出方程的另一根.26.(1)证明见解析;(2)-1或-3.【解析】分析: (1)根据根的判别式可得△=4a 2-4(a 2-1)=4即可判断根的情况; (2)由题意可知把x=2代入原方程求得a 的值,然后再把a 的值代入原方程求得方程的另外一个根即可.详解: :(1)∵关于x 的方程x 2-2ax+a 2-1=0, ∴△=4a 2-4(a 2-1)=4>0,即△>0, ∴方程有两不相等的实数根; (2)∵x=2是方程的一个根,∴把x=2代入原方程中得:4-4a+a 2-1=0, ∴a=-1或a=-3,点睛: 本题主要考查了根的判别式的知识和一元二次方程的解的知识,解答此题要掌握一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根 27.(1)k <3(2)0,1,2 【解析】试题分析:(1)根据判别式的意义得到△=(-2)2-4(k-2)>0,然后解不等式即可;(2)由根的定义知: 211220x x k -+-= ,由一元二次方程根与系数的关系,得x 1+x 2=2,x 1x 2=k-2,再代入不等式211212325x x x x x ---<,即可求得k 的取值范围,然后根据k 为整数,求出k 的值.试题解析:(1)依题意可知:()()22420k --->,解得3k <;(2)由根的定义知: 211220x x k -+-= ,∴ 21122x x k -=-,由根与系数的关系知:122x x +=, 122x x k =- ,若1x ,2x 满足211212325x x x x x ---<, 则 2111212225x x x x x x ----<,∴ ()2111212225x x x x x x --+-<, ∴ ()22225k k ----<,∴ 13k >- ,又由(1)知3k <,∴ 133k -<< ,Q k 为整数,∴ k 的值为 0,1, 2.28.-5. 【解析】 【分析】类比材料中所给的方法解答即可. 【详解】 由21520n n+-=得2n 2﹣5n ﹣1=0, 根据2m 2﹣5m ﹣1=0与2n 2﹣5n ﹣1=0的特征,且m≠n , ∴m 与n 是方程2x 2﹣5x ﹣1=0的两个不相等的实数根 ∴m+n=52,mn=12- ,∴11m n +=5212m nmn +=-=-5. .【点睛】本题是阅读理解题,根据题目中所给的解题方法解决问题是解决本题的关键.29.(1)证明见解析(2)①112x -=,212x --=②1x =,2x =【解析】试题分析:(1)求出b 2-4ac>0,即可判断方程总有两个实数根;(2)根据根与系数的关系求得123x x m +=-,21204m x x ⋅=-≤,即可得1x 、2x 异号或有1个为0.再根据211x x -=,分①10x ≥,20x <和②10x ≤,2>0x 两种情况求m 的值及相应的1x 、2x .试题解析:(1)()2216316m m ∆=-+23296144m m =-+2332722m ⎛⎫=-+ ⎪⎝⎭72≥.∴无论m 取何值,方程有两个异根. (2)()224430x m x m ---=.∵4a =,124b m =-,2c m =-. ∴123x x m +=-,21204m x x ⋅=-≤,∴1x 、2x 异号或有1个为0.211x x -=,①10x ≥,20x <,211x x --=即121x x +=-,31m -=-,∴2m =.24440x x +-=.115x -+=,215x --=.②10x ≤,2>0x .211x x +=,4m =. 244160x x --=. 240x x --=.11172x +=,21172x -=. 30.(1) 小亮的说法不对,理由见解析;(2)答案不唯一,详见解析 【解析】 【分析】根据:如果方程ax 2+bx +c =0(a ≠0)有两个实数根x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca. 注意分式的分母不能等于0. 【详解】(1)小亮的说法不对.若有一根为零时,就无法计算+的值了,因为零作除数无意义 (2)答案不唯一,如:一元二次方程x 2-5x -6=0.设方程的两个根分别为x 1,x 2,则x 1+x 2=5,x 1·x 2=-6. 又∵x 12+x 22+2x 1x 2-2x 1x 2=(x 1+x 2)2-2x 1x 2,将x 1+x 2=5,x 1·x 2=-6代入, 得x 12+x 22=52-2×(-6)=37 【点睛】本题考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,那么x 1+x 2=-b a ,x 1x 2=ca.。
初三数学根与系数练习题1. 已知一元二次方程$x^2 - 5x + k = 0$的一个根是$x_1 = 2$,求$k$和另一个根$x_2$。
解析:根据一元二次方程的性质,对于方程$ax^2 + bx + c = 0$,其两个根$x_1$和$x_2$的和为$x_1 + x_2 = -\frac{b}{a}$,乘积为$x_1 \cdot x_2 = \frac{c}{a}$。
已知$x_1 = 2$,代入方程可得:$2 + x_2 = 5$$x_2 = 5 - 2$$x_2 = 3$所以,另一个根$x_2$为3。
根据根的性质,根的和为$x_1 + x_2 = 2 + 3 = 5$,根的乘积为$x_1 \cdot x_2 = 2 \cdot 3 = 6$。
因此,方程的系数$k$可以通过根的性质求解,即$k = x_1 \cdot x_2 = 6$。
答案为:$k = 6$。
2. 某一元二次方程的一个根是3,且方程的两个根之和为5,求方程的另一个根和方程的系数。
解析:已知根$x_1 = 3$,根的和$x_1 + x_2 = 5$。
根据根的性质可得:$x_1 + x_2 = 3 + x_2 = 5$$x_2 = 5 - 3$$x_2 = 2$所以,另一个根$x_2$为2。
根据根的性质,根的和为$x_1 + x_2 = 3 + 2 = 5$,根的乘积为$x_1\cdot x_2 = 3 \cdot 2 = 6$。
因此,方程的系数可以通过根的性质求解,即$a = 1$,$b = -(x_1 +x_2) = -5$,$c = x_1 \cdot x_2 = 6$。
答案为:方程的另一个根为2,方程的系数为$a = 1$,$b = -5$,$c = 6$。
3. 解一元二次方程$2x^2 + kx + 3 = 0$,已知其两个根之积为4。
解析:已知根的乘积$x_1 \cdot x_2 = 4$,根据根的性质可得:$x_1 \cdot x_2 = 4$而已知方程为$2x^2 + kx + 3 = 0$,根据方程系数和根的关系,可得:$x_1 + x_2 = -\frac{k}{2}$$x_1 \cdot x_2 = \frac{3}{2}$将已知的根的乘积代入上述方程,得到:$\frac{3}{2} = 4$显然上式不成立,因为方程的两个根之积为4,而不是$\frac{3}{2}$。
人教版数学九年级上册同步练习21.2.根与系数的关系一.选择题(共12小题)1.对于一元二次方程ax2+bx+c=0 (a≠0),下列说法中错误的是()A.当a>0,c<0 时,方程一定有实数根B.当c=0 时,方程至少有一个根为0C.当a>0,b=0,c<0 时,方程的两根一定互为相反数D.当abc<0 时,方程的两个根同号,当abc>0 时,方程的两个根异号2.若x=±1是一元二次方程ax2+bx+c=0的两根,则()A.b=0,a+c≠0 B.b≠0,a+c=0 C.b=a+c=0 D.a+b﹣c=03.若方程2x2+bx+c=0的两根分别是b,c(bc≠0),则bc的值为()A.﹣ B.C.﹣ D.4.一元二次方程2x2﹣7x﹣5=0的两根分别是x1,x2,则x1x2等于()A.B.C.﹣ D.﹣5.下列方程中,两实数根之和等于2的方程是()A.x2+2x﹣3=0 B.x2﹣2x+3=0 C.2x2﹣2x﹣3=0 D.3x2﹣6x+1=06.方程x2﹣3x+7=0的两根为x1,x2,则下列表示正确的是()A.x1+x2=3,x1x2=7 B.x1+x2=﹣3,x1x2=7C.x1+x2=﹣3,x1x2=﹣7 D.以上全不对7.下列一元二次方程中,以2和﹣3为两根的方程是()A.x2+5x﹣6=0 B.x2﹣6x﹣1=0 C.x2﹣x﹣6=0 D.x2+x﹣6=08.一元二次方程ax2+bx+c=0(a≠0,b2﹣4ac≥0)的两实根之和()A.与c无关B.与b无关C.与a无关D.与a,b,c都有关9.若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.410.已知方程2x2﹣x﹣3=0的两根为x1,x2,那么+=()A.﹣ B.C.3 D.﹣311.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D.12.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是()A.﹣1 B.±2 C.2 D.﹣2二.填空题(共6小题)13.已知方程x2+px+q=0的两根为x1,x2,则可得x1+x2=,x1x2=.14.已知α,β是方程x2+5x﹣3=0的两根,则αβ=.15.一元二次方程x2+px+q=0的两根分别为2+,2﹣,则p=,q=.16.若2x(x+3)=1的两根分别为x1,x2,则x1+x2=,x1x2=,+=,x12+x22=,(x1﹣3)(x2﹣3)=,|x1﹣x2|=.17.写出一个以﹣2、3为两根的一元二次方程.18.已知x1,x2是关于x的方程x2+nx+n﹣3=0的两个实数根,且x1+x2=﹣2,则x1x2=.三.解答题(共3小题)19.不解方程,写出方程的两根之和与两根之积:(1)3x2+2x﹣3=0(2)x2+x=6x+7.20.若x1、x2是一元二次方程2x2﹣3x﹣1=0的两个根,求下列代数式的值.(1)+(2)x12+x22(3)(x1﹣x2)2(4)+(5)(x1﹣2)(x2﹣2)(6)(x1+)(x2+)21.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.参考答案一.选择题(共12小题)1.D.2.C.3.A.4.D.5.D.6.D.7.D.8.A.9.C.10.A.11.B.12.D.二.填空题(共6小题)13.﹣p,q.14.﹣3.15.4,1.16.﹣3,﹣,6,10,﹣,.17.x2﹣x﹣6=0.18.﹣1.三.解答题(共3小题)19.(1)设x1,x2是一元二次方程的两根,所以x1+x2=﹣,x1x2=﹣1;(2)方程化为一般式为x2﹣5x﹣7=0,设x1,x2是一元二次方程的两根,所以x1+x2=5,x1x2=﹣7.20.∵x1,x2是方程2x2﹣3x﹣1=0的两个根,∴x1+x2=,x1x2=﹣.(1)+===﹣3;(2)x12+x22=(x1+x2)2﹣2x1x2=()2﹣2×(﹣)=;(3)(x1﹣x2)2=(x1+x2)2﹣4x1x2=()2﹣4×(﹣)=;(4)+===﹣;(5)(x1﹣2)(x2﹣2)=x1x2﹣2(x1+x2)+4=﹣﹣2×+4=;(6)(x1+)(x2+)=x1x2+2+=﹣+2+=﹣.21.(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2。
九年级上册数学解一元二次方程根与系数的关系同步练习及答案1.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1+x 2的值是( )A .1B .5C .-5D .62.设方程x 2-4x -1=0的两个根为x 1与x 2,则x 1x 2的值是( )A .-4B .-1C .1D .03.两个实数根的和为2的一元二次方程可能是( )A .x 2+2x -3=0B .2x 2-2x +3=0C .x 2+2x +3=0D .x 2-2x -3=04.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为______.5.已知一元二次方程x 2-6x -5=0的两根为a ,b ,则1a +1b的值是________. 6.求下列方程两根的和与两根的积:(1)3x 2-x =3; (2)3x 2-2x =x +3.7.已知一元二次方程x 2-2x +m =0.(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且x 1+3x 2=3,求m 的值.8.点(α,β)在反比例函数y =k x的图象上,其中α,β是方程x 2-2x -8=0的两根,则k =__________9.已知x 1,x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为________. 10.已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值范围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值.答案1.B 2.B 3.D 4.25.-65解析:∵a ,b 是一元二次方程的两根, ∴a +b =6,ab =-5.1a +1b =a +b ab =-65. 6.解:(1)原方程化为一般形式为3x 2-x -3=0.所以x 1+x 2=--13=13,x 1x 2=-33=-1. (2)原方程化为一般形式为3x 2-3x -3=0,即x 2-x -1=0.所以x 1+x 2=--11=1,x 1x 2=-11=-1. 7.解:(1)∵方程x 2-2x +m =0有两个实数根, ∴Δ=(-2)2-4m ≥0.解得m ≤1.(2)由两根关系可知,x 1+x 2=2,x 1·x 2=m .解方程组121223 3.x x x x ⎧⎨⎩+=,+=解得123,21.2x x ⎧⎪⎪⎨⎪⎪⎩== ∴m =x 1·x 2=34. 8.-89.10 解析:x 1+x 2=-6,x 1x 2=3, x 2x 1+x 1x 2=x 22+x 21x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=10. 10.解:(1)由方程有两个实数根,可得Δ=b 2-4ac =4(k -1)2-4k 2=4k 2-8k +4-4k 2=-8k +4≥0.解得k ≤12. (2)依据题意,可得x 1+x 2=2(k -1).由(1)可知k ≤12, ∴2(k -1)<0,x 1+x 2<0.∴|x 1+x 2|=-x 1-x 2=x 1·x 2-1.∴-2(k -1)=k 2-1.解得k 1=1(舍去),k 2=-3.∴k 的值是-3.。
初三数学上册一元二次方程根与系数的关系练习题1、 知方程01242=+-m x x 的根之比是3:2,求m 的值2、 知关于x 的一元二次方程012=-+kx x(1) 求证:方程有两个不相等的实数根 (2) 设方程的两个212121,x x x x x x =+且满足,求k 的值3、 关于x 的一元二次的方程212,01)1(2x x k x k kx 有两个不相等的实数根=-++-(1)、求k 的取值范围。
(2)是否存在实数k,使11121=+x x 成立?若存在求出k 的值,若不存在说明理由4、 关于x 的方程04)2(2=+++kx k kx有两个相等的实数根 (1)、求k 的取值范围(2)、是否存在k ,使两根之和等于0?若存在求k 的值,若不存在说明理由5、已知关于x 的一元二次方程)0(02)12(2>=-+--m m x m mx(1)、证明:此方程方程有两个不相等的实数根.(2)、的值求)且(是这个方程的两个实数根m m x x x x ,5)3(3,,2121=--6、关于x 的一元二次的方程的两个根互为相反数,04)183(322=+---a x a a x 求a 的值,方程的两个解7、关于x 的一元二次的方程032222=+++k kx x的两个实数根为21,x x 问是否存在实数k ,使其521=+x x 成立?若存在求k 的值,若不存在说明理由8、关于x 的方程04)2(222=++++m x m x 有两个实数根,且这两个根的平方和比两个实数根的积大40,求m 的值9、关于x 的一元二次的方程0252=+-x ax有两个同号实数根,试判断这两个同号实根是两个负根,还是两个正根,说明理由10、若21,x x 关于x 的一元二次的方程0)1(4422=+-+m x m x的两个非零实根,问这两个根是否能同号?若能同号,请写出相应的m 的取值范围,并指出两根的正负;若不能同号,说明理由11、关于x 的方程01)12()1(2=++-+-k x k x k 有两个不相等的实数根(1)、求k 的值(2)、是否存在k,使方程的两个实根满足22121+=+x x x x ,若存在说明理由,若不存在,请说明理由。
苏科版2019九年级数学上册1.3一元二次方程根与系数的关系同步练习3(附答案)1.已知关于x 的一元二次方程 ()2110m x x --+= 有两个不相等的实数根,那么m 的值为( )A .54m >B .54m ≤C .54m <D .54m <,且1m ≠ 2.一元二次方程2x 2﹣3x+1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.a ,b ,c 为常数且,则关于x 的方程根的情况是 A .有两个相等的实数根 B .有两个不相等的实数根C .无实数根D .有一根为04.方程的两根倒数之和为 ( )A .B .C .D .以上答案都不对。
5.已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是A .a<2B .a >2C .a < 2且a≠1D .a < -26.若m 、n 是一元二次方程x 2-5x-2=0的两个实数根,则m+n-mn 的值是( ) A .-7 B .7 C .3 D .-37.若关于x 的一元二次方程2x 3x a 0++=的一个根是-2,则另一个根为( ) A .5 B .-1 C .2 D .-58.若关于x 的方程x 2﹣2x ﹣k=0有两个相等的实数根,则k 的值为( )A .﹣1B .0C .﹣3D .﹣9.下列一元二次方程中,两实根之和为1的是( ) A .x 2—x +1=0 B .x 2+x —3=0 C .2 x 2-x -1=0 D .x 2-x -5=010.一元二次方程x 2+2x ﹣3=0的两个根中,较小一个根为( )A .3B .﹣3C .﹣2D .﹣111.已知方程x 2+mx +3=0的一个根是1,则它的另一个根是_____,m 的值是______.12.已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m ﹣mn +n =__________.13.如果关于x 的一元二次方程20x x m -+=有两个不相等的实数根,那么m 的取值范围是_______________.14.已知a 、b 是一元二次方程的两根,则ab =____.15.若关于x 的一元二次方程x 2﹣2x+m=0有实数根,则m 的取值范围是 . 16.若m ,n 是方程x 2﹣2x ﹣1=0的解,则2m 2﹣3m+n 的值是______.17.设x 1,x 2是方程240x x m --=的两个根,且12121x x x x +-=,则x 1+x 2=______,m =________.18.设x 1、x 2是方程x 2+x ﹣4=0两个实数根,则1211x x +=____. 19.设m ,n 分别为一元二次方程x 2+2x -2016=0的两个实数根,则m 2+3m +n = _____ . 20.关于x 的方程x 2-3x +2=0的两根为x 1,x 2,则x 1+x 2的值为_____________.21.已知关于x 的一元二次方程: 2210x x m -+-=两根为1x , 2x .(1)若11x =-,求m 的值;(2)若221220x x +=,求m 的值.22.已知关于x 的方程x 2+4x +3-a =0.(1)若此方程有两个不相等的实数根,求a 的取值范围;(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.23.关于x 的一元二次方程()22110xm x m -+-=有两个不相等的实数根12,x x .(1)求实数m 的取值范围;(2)是否存在实数m ,使得120x x =成立?如果存在,求出m 的值;如果不存在,请说明理由24.已知3是关于x 的方程x 2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为多少?25.已知关于x的方程(1)若方程有实数根, 求k的取值范围;(2)若方程有两个相等的实数根,求k的值,并求此时方程的根。
《根与系数的关系》同步练习3
一、填空题:
1、以12,12-+为两根的一元二次方程是 。
2、已知关于x 的方程x 2
+m 2
x+m=0的两个实数根是x 1、x 2,y 1、y 2是方程y 2
+5my+7=0的两个实数根,且x 1-y 1=2,x 2-y 2=2,则m=_______.
3.已知关于x 的方程x 2-4x+k-1=0的两根之差等于6,那么k=______.
4.分别以x 2
+3x-2=0的两根和与两根积为根的一元二次方程是______. 5、 已知a 2
=1-a ,b 2
=1-b ,且a ≠b ,则(a -1)(b -1)= ______.
6、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)
二、解答下列各题:(每小题6分,共36分)
1、设x 1,x 2是方程2x 2
+4x-3=0的两个根,利用根与系数的关系,求下列各式的值
(1)(x 1+1)(x 2+1);(2)x 12
x 2+x 1x 22
; (4)(x 1-x 2)2
;
2、已知关于x 的方程x 2
+(a+1)x+b-1=0的两根之比是2:3,判别式的值为1,求方程的根. 3、已知x 1 ,x 2是关于x 的方程x 2
-2(m+2)x+2m 2
-1=0的两个实根,且满足,
求m 值.
4、已知关于x 的方程x 2
+2(m-2)x +m 4
+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 值并解此方程.
5、已知斜边为5的直角三角形的两条直角边a 、b 的长是方程x 2
-(2m-1)x +4(m-1)=0的两个根,求m 的值. 6、已知关于x 的方程 3 x 2 – 10 x + k = 0有实数根,求满足下列条件的k 的值: (1)有两个实数根 (2)有两个正数根 (3)有一个正数根和一个负数根.
一、选择题
1、下列判断⑴12 3 和1
3
48 不是同类二次根式;⑵
1
45
和1
25
不是同类二次根式;⑶8x 与8
x
不是同类二次根式,其中错误的个数是( ) A 、3 B 、2 C 、1 D 、0
2、如果a 是任意实数,下列各式中一定有意义的是( )
A 、 a
B 、
1a
2 C 、3-a D 、-a 2
3、下列各组中的两个根式是同类二次根式的是( ) A 、52x 和3x B 、12ab 和
1
3ab
C 、x 2y 和xy 2
D 、 a 和1a 2
4、下列二次根式中,是最简二次根式的是( ) A 、8x B 、x 2-3 C 、x -y
x
D 、3a 2b 5、在27 、
1
12
、11
2
中与 3 是同类二次根式的个数是( ) A 、0 B 、1 C 、2 D 、3
6、若a<0,则|a 2 -a|的值是( )
A 、0
B 、2a
C 、2a 或-2a
D 、-2a
7、把(a -1) 1
1-a 根号外的因式移入根号内,其结果是( )
A 、1-a
B 、-1-a
C 、a -1
D 、-a -1 8、若
a+b
4b 与3a +b 是同类二次根式,则a 、b 的值为( )
A 、a=2、b=2
B 、a=2、b=0
C 、a=1、b=1
D 、a=0、b=2 或a=1、b=1 9、下列说法错误的是( )
A 、(-2)2的算术平方根是2
B 、 3 - 2 的倒数是 3 + 2
C 、当2<x<3时,
x 2-4x+4 (x -3)2
=
x -2
x -3
D 、方程x+1 +2=0无解 10、若 a + b 与 a - b 互为倒数,则( ) A 、a=b -1 B 、a=b+1 C 、a+b=1 D 、a+b=-1 11、若0<a<1,则
a 2+1a 2 -2 ÷(1+1a )×11+a
可化简为( ) A 、1-a 1+a B 、a -1
1+a C 、1-a 2 D 、a 2-1
12、在化简x -y
x +y
时,甲、乙两位同学的解答如下:
甲:
x -y x +y = (x -y)(x -y )(x +y )(x -y ) =(x -y)(x -y )
(x )2-(y )2
=x -y
乙:x -y x +y =(x )2-(y )2x +y = (x -y )(x +y )x +y =x -y
A 、两人解法都对
B 、甲错乙对
C 、甲对乙错
D 、两人都错( ) 二、填空题 1、要使
1-2x
x+3
+(-x)0有意义,则x 的取值范围是 。
2、若a 2 =( a )2,则a 的取值范围是 。
3、若x 3+3x 2 =-x x+3 ,则x 的取值范围是 。
4、观察下列各式:
1+1
3
=213
,2+1
4
=314
,3+1
5
=41
5
,……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是 。
5、若a>0,化简
-4a
b
= 。
6、若o<x<1,化简
(x -1
x )2+4 -
(x+1
x
)2-4 = . 7、化简:||-x 2 -1|-2|= 。
8、在实数范围内分解因式:x 4+x 2-6= .
9、已知x>0,y>0且x -2xy -15y=0,则2x+xy +3y
x+xy -y = .
10、若5+7 的小数部分是a ,5-7 的小数部分是b ,则ab+5b= 。
11、设 3 =a ,30 =b ,则0.9 = 。
12、已知a<0,化简
4-(a+1
a
)2 -
4+(a -1
a
)2 = .
三、计算与化简
1、13 (212 -75 )
2、24 - 1.5 +2
23 - 3 + 2 3 - 2 3、(-2 2 )2-( 2 +1)2+( 2 -1)-
1 4、7a 8a -2a 2
1
8a
+7a 2a 5、2n
m n -3mn m 3n 3 +5m m 3n (m<0、n<0) 6、1a+ b
7、x 2-4x+4 +x 2-6x+9 (2≤x ≤3) 8、x+xy
xy +y +xy -y x -xy
四、化简求值 1、已知x=
2 +1
2 -1 ,y=
3 -13 +1
,求x 2-y 2的值。
2、已知x=2+ 3 ,y=2- 3 ,求
x +y
x -y - x -y x +y
的值。
3、当a= 1
2+ 3 时,求1-2a+a 2a -1 - a 2-2a+1
a 2-a 的值。
五、已知x +1x =4,求x -1
x 的值。
参考答案 一、选择题 1、B 2、C 3、B 4、B 5、C 6、D 7、B 8、D 9、C 10、B 11、A 12、B
二、填空题
1、x ≤0.5且x ≠-3,x ≠0
2、a ≥0
3、-3≤x ≤0
4、 (n+1) 1n+2
5、-2b
-ab
6、2x
7、1
8、(x+ 3 )(x+ 2 )(x - 2 ) 9、2927 10、2
11、3a b
12、-4
三、计算与化简 1、 -1 2、
6
6
-5 3、6- 2 4、41
2 a 2a
5、-10mn
6、 (1)当a ≠ b 时,原式=12a 或 b
2b (2)当a= b 时,原式=a - b a 2-b
7、1
8、(x+y)xy
xy
四、化简求值
1、-11+12 2 +16 6
2、2 3 3
3、3
五、±2 3。