2015高中数学 第一章 1.1.2余弦定理(一)课时作业 新人教A版必修5
- 格式:doc
- 大小:164.50 KB
- 文档页数:4
课时作业2 余弦定理时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.在△ABC 中,a =4,b =4,C =30°,则c 2等于( ) A .32-16 3 B .32+16 3 C .16D .48解析:由余弦定理得c 2=a 2+b 2-2ab cos C =42+42-2× 4×4×32=32-16 3. 答案:A2.在△ABC 中,a 2-c 2+b 2=-3ab ,则角C =( ) A .60° B .45°或135° C .150°D .30°解析:cos C =a 2+b 2-c 22ab =-3ab 2ab =-32.∵0°<C <180°,∴C =150°. 答案:C3.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6C.π4D.π12解析:∵c <b <a , ∴最小角为角C .∴cos C =a 2+b 2-c 22ab =49+48-132×7×43=32.∴C =π6,故选B.答案:B4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B =( )A.14B.34C.24D.23解析:因为b 2=ac 且c =2a ,由余弦定理:cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =a 2+4a 2-2a 24a2=34,故选B. 答案:B5.在△ABC 中,AB =5,AC =3,BC =7,则AB →·AC →等于( ) A.152B .-152C.1532D .15解析:∵cos A =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴AB →·AC →=|AB →|·|AC →|·cos A =5×3×(-12)=-152,故选B.答案:B6.△ABC 中,下列结论:①a 2>b 2+c 2,则△ABC 为钝角三角形;②a 2=b 2+c 2+bc ,则A 为60°;③a 2+b 2>c 2,则△ABC 为锐角三角形;④若A :B :C =1:2:3,则a :b :c =1:2:3,其中正确的个数为( )A .1个B .2个C .3个D .4个解析:①∵cos A =b 2+c 2-a 22bc<0,∴A 为钝角,正确;②∵cos A =b 2+c 2-a 22bc =-12,∴A =120°,错误;③∵cos C =a 2+b 2-c 22ab>0,∴C 为锐角,但A 或B 不一定为锐角,错误; ④∵A =30°,B =60°,C =90°, ∴a :b :c =1:3:2,错误.故选A. 答案:A二、填空题(每小题8分,共计24分)7.在△ABC 中,a 2+b 2<c 2,且sin C =32,则C =________. 解析:由余弦定理cos C =a 2+b 2-c 22ab<0,知C 是钝角.∴由sin C =32得C =120°. 答案:120°8.已知等腰三角形的底边长为6,一腰长为12,则顶角的余弦值为________.解析:设顶角为A ,则cos A =b 2+c 2-a 22bc =122+122-622×12×12=78.答案:789.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是________. 解析:∵c 2=a 2+b 2-2ab ·cos C =1+4-4cos C =5-4cos C , 又∵0<C <π2,∴cos C ∈(0,1).∴c 2∈(1,5). ∴c ∈(1,5). 答案:(1,5) 三、解答题(共计40分)10.(10分)在△ABC 中,C =2A ,a +c =10,cos A =34,求b .解:由正弦定理得c a =sin C sin A =sin2A sin A=2cos A , ∴c a =32.又a +c =10,∴a =4,c =6. 由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+2012b =34,∴b =4或b =5.当b =4时,∵a =4,∴A =B . 又C =2A ,且A +B +C =π,∴A =π4,与已知cos A =34矛盾,不合题意,舍去.当b =5时,满足题意,∴b =5.11.(15分)(2012·浙江卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A=3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.解:(1)由b sin A =3a cos B 及正弦定理a sin A =bsin B ,得sin B =3cos B .所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . 所以a =3,c =2 3.12.(15分)在△ABC 中,a +b =10,而cos C 的值是方程2x 2-3x -2=0的一个根,求三角形周长的最小值.解:设三角形的另一边是c ,方程2x 2-3x -2=0的根是x =-12或x =2.∵-1<co s C <1,∴cos C =-12.由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-2ab (-12)=(a +b )2-ab =100-ab =100-a ·(10-a ) =100+a 2-10a =75+(a -5)2.要使三角形的周长最小,只要c 最小,当a =5时,c 2最小,∴c 最小,c 的最小值是75=53, ∴三角形周长的最小值是10+5 3.。
第一章 解三角形§1.1 正弦定理和余弦定理1.1.1 正弦定理(一) 课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2. 2.在Rt △ABC 中,C =π2,则a c =sin_A ,b c=sin_B . 3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =c sin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2答案 D2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1C .2 6D .2+2 3答案 C解析 由正弦定理a sin A =b sin B, 得4sin 45°=b sin 60°,∴b =2 6. 3.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( )A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B .5.在△ABC 中,A =60°,a =3,b =2,则B 等于( )A .45°或135°B .60°C .45°D .135°答案 C解析 由a sin A =b sin B 得sin B =b sin A a=2sin 60°3=22. ∵a >b ,∴A >B ,B <60°∴B =45°.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C , 即sin C =-3cos C .∴tan C =- 3.又C ∈(0°,180°),∴C =120°.二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________.答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22. ∵BC =2<AC =6,∴A 为锐角.∴A =45°.∴C =75°.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________. 答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010. 由正弦定理知BC sin A =AB sin C, ∴AB =BC sin C sin A =1×sin 150°1010=102. 9.在△ABC 中,b =1,c =3,C =2π3,则a =________. 答案 1解析 由正弦定理,得3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角, ∴B 必为锐角,∴B =π6, ∴A =π6. ∴a =b =1.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°,∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.解 ∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4. ∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3. 12.在△ABC 中,已知a =23,b =6,A =30°,解三角形.解 a =23,b =6,a <b ,A =30°<90°.又因为b sin A =6sin 30°=3,a >b sin A ,所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°. 当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3.所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2. ∴sin(π4+B )=1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12. 又a <b ,∴A <B ,∴A =π6. 14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求a b的取值范围.解 在锐角三角形ABC 中,A ,B ,C <90°,即⎩⎪⎨⎪⎧ B <90°,2B <90°,180°-3B <90°,∴30°<B <45°. 由正弦定理知:a b =sin A sin B =sin 2B sin B=2cos B ∈(2,3), 故a 的取值范围是(2,3). 1.利用正弦定理可以解决两类有关三角形的问题:。
1.1.2余弦定理基础巩固一、选择题1.在△ABC 中,b =5,c =53,A =30°,则a 等于( ) A .5 B .4 C .3 D .10[答案] A[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴a 2=52+(53)2-2×5×53×cos30°, ∴a 2=25,∴a =5.2.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .π3B .π6C .2π3D .π3或2π3[答案] C[解析] ∵a 2=b 2+c 2+bc ,∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2-c 2-bc 2bc =-12,又∵0<A <π,∴A =2π3.3.(2014·全国新课标Ⅱ理,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B . 5C .2D .1[答案] B[解析] 本题考查余弦定理及三角形的面积公式. ∵S △ABC =12ac sin B =12×2×1×sin B =12,∴sin B =22, ∴B =π4或3π4.当B =π4时,经计算△ABC 为等腰直角三角形,不符合题意,舍去.当B =3π4时,由余弦定理,得b 2=a 2+c 2-2ac cos B ,解得b =5,故选B .4.(2014·江西理,4)在△ABC 中,内角A 、B 、C 所对应的边分别为a 、b 、c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B .932C .332D .3 3[答案] C[解析] 本题考查正弦、余弦定理及三角形的面积公式.由题设条件得a 2+b 2-c 2=2ab -6,由余弦定理得a 2+b 2-c 2=ab , ∴ab =6,∴S △ABC =12ab sin π3=12×6×32=332.选C .5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 满足b 2=ac ,且c =2a , 则cos B =( ) A .14 B .34 C .24D .23[答案] B[解析] 由b 2=ac ,又c =2a ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+4a 2-a ×2a 2a ·2a =34.6.(2015·广东文,5)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若a =2,c =23, cos A =32,且b <c ,则b =( ) A .3 B .2 2 C .2 D . 3[答案] C[解析] 由余弦定理,得a 2=b 2+c 2-2bc cos A , ∴4=b 2+12-6b ,即b 2-6b +8=0, ∴b =2或b =4. 又∵b <c ,∴b =2.二、填空题7.以4、5、6为边长的三角形一定是________三角形.(填:锐角、直角、钝角) [答案] 锐角[解析] 由题意可知长为6的边所对的内角最大,设这个最大角为α,则cos α=16+25-362×4×5=18>0,因此0°<α<90°. 8.若2、3、x 为三边组成一个锐角三角形,则x 的取值范围为________. [答案] (5,13)[解析] 长为3的边所对的角为锐角时,x 2+4-9>0,∴x >5, 长为x 的边所对的角为锐角时,4+9-x 2>0,∴x <13, ∴5<x <13.三、解答题9.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .[解析] 解法一:在△ABC 中,由A +C =2B ,A +B +C =180°,知B =60°.a +c =8,ac =15,则a 、c 是方程x 2-8x +15=0的两根.解得a =5,c =3或a =3,c =5. 由余弦定理,得b 2=a 2+c 2-2ac cos B =9+25-2×3×5×12=19.∴b =19.解法二:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知sin C =12,a =23,b =2,求边c .[解析] ∵sin C =12,且0<C <π,∴C 为π6或5π6.当C =π6时,cos C =32,此时,c 2=a 2+b 2-2ab cos C =4,即c =2. 当C =5π6时,cos C =-32,此时,c 2=a 2+b 2-2ab cos C =28,即c =27.能力提升一、选择题1.在△ABC 中,AB =3,BC =13,AC =4,则AC 边上的高为( ) A .322B .332C .32D .3 3[答案] B[解析] 由余弦定理,可得cos A =AC 2+AB 2-BC 22AC ·AB =42+32-1322×3×4=12,所以sin A =32. 则AC 边上的高h =AB sin A =3×32=332,故选B . 2.在△ABC 中,∠B =60°,b 2=ac ,则这个三角形是( ) A .不等边三角形 B .等边三角形 C .等腰三角形 D .直角三角形[答案] B[解析] 由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,则(a -c )2=0,∴a =c ,又∠B =60°, ∴△ABC 为等边三角形.3.在△ABC 中,三边长AB =7,BC =5,AC =6,则AB →·BC →等于( ) A .19 B .-14 C .-18 D .-19[答案] D[解析] 在△ABC 中AB =7,BC =5,AC =6, 则cos B =49+25-362×5×7=1935.又AB →·BC →=|AB →|·|BC →|cos(π-B ) =-|AB →|·|BC →|cos B =-7×5×1935=-19.4.△ABC 的三内角A 、B 、C 所对边的长分别为a 、b 、c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则C 的大小为( ) A .π6B .π3C .π2D .2π3[答案] B[解析] ∵p =(a +c ,b ),q =(b -a ,c -a ),p ∥q , ∴(a +c )(c -a )-b (b -a )=0, 即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,∵0<C <π,∴C =π3.二、填空题5.(2015·重庆文,13)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________. [答案] 4[解析] ∵3sin A =2sin B , ∴3a =2b ,又∵a =2,∴b =3. 由余弦定理,得c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×(-14)=16,∴c =4.6.如图,在△ABC 中,∠BAC =120°,AB =2,AC =1,D 是边BC 上一点,DC =2BD ,则AD →·BC →=________.[答案] -83[解析] 由余弦定理,得BC 2=22+12-2×2×1×(-12)=7,∴BC =7,∴cos B =4+7-12×2×7=5714.∴AD →·BC →=(AB →+BD →)·BC →=AB →·BC →+BD →·BC → =-2×7×5714+73×7×1=-83.三、解答题7.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积. [解析] 如图,连结AC .∵B +D =180°,∴sin B =sin D .S 四边形ABCD =S △ABC +S △ACD =12AB ·BC ·sin B +12AD ·DC ·sin D =14sin B .由余弦定理,得AB 2+BC 2-2AB ·BC ·cos B =AD 2+DC 2-2AD ·DC ·cos D , 即40-24cos B =32-32cos D .又cos B =-cos D , ∴56cos B =8,cos B =17.∵0°<B <180°,∴sin B =1-cos 2B =437. ∴S 四边形ABCD =14sin B =8 3.8.设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且a +c =6,b =2,cos B =79.(1)求a 、c 的值; (2)求sin(A -B )的值.[解析] (1)由余弦定理,得b 2=a 2+c 2-2ac cos B 得,b 2=(a +c )2-2ac (1+cos B ),又已知a +c =6,b =2,cos B =79,∴ac =9.由a +c =6,ac =9,解得a =3,c =3. (2)在△ABC 中,∵cos B =79,∴sin B =1-cos 2B =429. 由正弦定理,得sin A =a sin Bb =223,∵a =c ,∴A 为锐角,∴cos A =1-sin 2A =13.∴sin(A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.9.在△ABC 中,角A 、B 、C 所对边分别为a 、b 、c 且a =3,C =60°,△ABC 的面积为332,求边长b 和c .[解析] ∵S △ABC =12ab sin C ,∴332=12×3b ×sin60°=12×3b ×32, ∴b =2.由余弦定理,得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×cos60° =9+4-2×3×2×12=7,∴c =7.。
课时训练2 余弦定理一、利用余弦定理解三角形1.在△ABC 中,a=1,B=60°,c=2,则b 等于( )A.1B.√2C.√3D.3答案:C解析:b 2=a 2+c 2-2ac cos B=1+4-2×1×2×12=3,故b=√3. 2.在△ABC 中,c 2-a 2-b 2=√3ab ,则角C 为( ) A.60° B.45°或135° C.150° D.30°答案:C解析:∵cos C=a 2+b 2-c 2=-√3ab =-√3,∴C=150°.3.在△ABC 中,已知sin A ∶sin B ∶sin C=3∶5∶7,则此三角形的最大内角的度数等于 . 答案:120°解析:由正弦定理可得a ∶b ∶c=3∶5∶7,不妨设a=3,b=5,c=7,则c 边最大,∴角C 最大.∴cos C=a 2+b 2-c 2=32+52-72=-1. ∵0°<C<180°,∴C=120°.4.(2015河南郑州高二期末,15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A=√3sin C ,B=30°,b=2,则边c= . 答案:2解析:∵在△ABC 中,sin A=√3sin C ,∴a=√3c.又B=30°,由余弦定理,得cos B=cos 30°=√32=a 2+c 2-b22ac=22√3c 2,解得c=2.二、判断三角形形状5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b+c=2c cos 2A2,则△ABC 是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形答案:A解析:∵b+c=2c cos 2A2,且2cos 2A2=1+cos A ,∴b+c=c (1+cos A ),即b=c cos A.由余弦定理得b=c ·b 2+c 2-a 22bc ,化简得a 2+b 2=c 2,∴△ABC 是直角三角形.6.在△ABC 中,若sin 2A+sin 2B<sin 2C ,则△ABC 的形状是( ) A.钝角三角形 B.直角三角形 C.锐角三角形 D.不能确定答案:A解析:由sin 2A+sin 2B<sin 2C ,得a 2+b 2<c 2,所以cos C=a 2+b 2-c 2<0,所以∠C 为钝角, 即△ABC 为钝角三角形.7.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a=2b cos C ,试判断△ABC 的形状.解法一:∵cos C=a 2+b 2-c 2,代入a=2b cos C ,得a=2b ·a 2+b 2-c 2,∴a 2=a 2+b 2-c 2,即b 2-c 2=0. ∴b=c.∴△ABC 为等腰三角形.解法二:根据正弦定理asinA =bsinB =csinC =2R ,得a=2R sin A ,b=2R sin B ,代入已知条件得2R sin A=4R sin B cos C , 即sin A=2sin B cos C ,∵A=π-(B+C ),∴sin A=sin(B+C ). ∴sin B cos C+cos B sin C=2sin B cos C. ∴sin B cos C-cos B sin C=0.∴sin(B-C )=0.又-π<B-C<π,∴B-C=0,即B=C.∴△ABC 是等腰三角形.三、正弦定理、余弦定理的综合应用8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知b-c=14a ,2sin B=3sin C ,则cos A 的值为( ) A.-14 B.14C.12D.-13答案:A解析:∵2sin B=3sin C ,∴2b=3c.又b-c=a4,∴a=2c ,b=32c.∴cos A=b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c×c=-14. 9.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=√3bc ,sin C=2√3sin B ,则A= . 答案:π6解析:∵sin C=2√3sin B ,∴由正弦定理得c=2√3b. ∵a 2-b 2=√3bc ,∴cos A=b 2+c 2-a 2=c 2-√3bc=2√3bc -√3bc2bc=√32,∴A=π6.10.(2015山东威海高二期中,17)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 且满足4a cos B-b cos C=c cos B.(1)求cos B 的值;(2)若ac=12,b=3√2,求a ,c.解:(1)已知等式4a cos B-b cos C=c cos B ,利用正弦定理,得4sin A cos B-sin B cos C=sin C cos B ,整理,得4sin A cos B=sin(B+C ), 即4sin A cos B=sin A ,∵sin A ≠0,∴cos B=14.(2)∵ac=12,b=3√2,cos B=14,∴由b 2=a 2+c 2-2ac cos B ,得a 2+c 2=24,联立a 2+c 2=24与ac=12,解得a=c=2√3.(建议用时:30分钟)1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a=1,b=2,cos C=14 ,则sin B=( )A.15B.√15C.√15D.7答案:B解析:由已知根据余弦定理得c 2=a 2+b 2-2ab cos C=4,∴c=2,即B=C , ∴sin B=√1-116=√154.2.(2015河北邯郸三校联考,3)在△ABC 中,如果sin A ∶sin B ∶sin C=2∶3∶4,那么cos C 等于( ) A.23B.-23C.-13D.-14答案:D解析:由正弦定理可得sin A ∶sin B ∶sin C=a ∶b ∶c=2∶3∶4,可设a=2k ,b=3k ,c=4k (k>0), 由余弦定理可得cos C=a 2+b 2-c 2=4k 2+9k 2-16k 2=-1,故选D .3.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.若C=120°,c=√2a ,则( ) A.a>b B.a<b C.a=bD.a 与b 的大小关系不能确定 答案:A解析:由余弦定理c 2=a 2+b 2-2ab cos C 得2a 2=a 2+b 2+ab ,∴a 2-b 2=ab>0,∴a 2>b 2,∴a>b. 4.△ABC 的三边长分别为AB=7,BC=5,AC=6,则BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为( ) A.19 B.14 C.-18 D.-19答案:A解析:cos B=72+52-62=19,∴BA⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|BA ⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |cos B=7×5×1935=19. 5.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B+C )<sin 2B+sin 2C ,则角A 的取值范围为( ) A.(0,π2)B.(π4,π2) C.(π6,π3) D.(π3,π2) 答案:D解析:由题意得sin 2A<sin 2B+sin 2C ,再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0, 则cos A=b 2+c 2-a 22bc >0,∵0<A<π,∴0<A<π.又a 为最大边,∴A>π3.因此得角A 的取值范围是(π3,π2).6.已知在△ABC 中,2B=A+C ,b 2=ac ,则△ABC 的形状为 .答案:等边三角形解析:∵2B=A+C ,又A+B+C=180°,∴B=60°.又b 2=ac ,由余弦定理可得b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 60°=a 2+c 2-ac ,∴有a 2+c 2-ac=ac ,从而(a-c )2=0, ∴a=c ,故△ABC 为等边三角形.7.(2015北京高考,12)在△ABC 中,a=4,b=5,c=6,则sin2AsinC = . 答案:1解析:在△ABC 中,由正弦定理知,sin2AsinC =2sinAcosA sinC =2cos A ·a c =2cos A×46=43cos A ,再根据余弦定理,得cos A=36+25-162×6×5=34,所以sin2A sinC=43×34=1.8.在△ABC 中,角A ,B ,C 的对边边长分别为a=3,b=4,c=6,则bc cos A+ac cos B+ab cos C 的值为 . 答案:612解析:由余弦定理得bc cos A+ac cos B+ab cos C=b 2+c 2-a 22+a 2+c 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=32+42+622=612.9.在△ABC 中,已知(a+b+c )(a+b-c )=3ab ,且2cos A sin B=sin C ,试判定△ABC 的形状. 解:由(a+b+c )(a+b-c )=3ab ,得(a+b )2-c 2=3ab , 即a 2+b 2-c 2=ab.∴cos C=a 2+b 2-c 22ab=ab 2ab =12.∵0°<C<180°,∴C=60°. ∵A+B+C=180°, ∴sin C=sin(A+B ).又∵2cos A sin B=sin C ,∴2cos A sin B=sin A cos B+cos A sin B , ∴sin(A-B )=0.∵A ,B 均为△ABC 的内角,∴A=B.因此△ABC 为等边三角形.10.在△ABC 中,C=2A ,a+c=10,cos A=34,求b.解:由正弦定理得c a =sinC sinA=sin2AsinA=2cos A , ∴c a =32.又a+c=10,∴a=4,c=6. 由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2+20=3,∴b=4或b=5.当b=4时,∵a=4,∴A=B. 又C=2A ,且A+B+C=π,∴A=π4,与已知cos A=34矛盾,不合题意,舍去.当b=5时,满足题意,∴b=5.。
1.1.2 余弦定理(一)一、选择题1.在△ABC 中,给出下列条件①A =60°,C =45°,b =10②B =30°,a =5,c =6③B =30°,a =2,b =1④a =1,b =3,c =4使三角形有一解的有( )A.②④B.①④C.①②③D.①②④2.在△ABC 中,b =5,c =53,A =30°,则a 等于( )A.5B.4C.3D.103.在△ABC 中,a =7,b =8,sin C =3314,则c 等于( ) A.3 B.217 C.3或217 D.6 64.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为( )A.60°B.90°C.120°D.150°5.若三角形三边长分别为5,7,8,则它的最大角和最小角的和为( )A.90°B.120°C.135°D.150°6.已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )(a +b +c )=ab ,则角C 的余弦值等于( )A.23B.12C.-23D.-127.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B 等于( )A.14B.34C.24D.238.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦是( ) A.-15B.-16C.-17D.-18二、填空题9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,b =4,c =6,则bc cos A +ac cos B +ab cos C 的值是______.10.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________.11.△ABC 的三边分别为a ,b ,c ,且S △ABC =a 2+b 2-c 24,则C =________. 三、解答题12.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,求△ABC 的最大内角.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a -b =4,a +c =2b ,且最大角为120°,求此三角形的最大边长.答案精析1.C [①已知两角及一边;②已知两边及夹角;④已知三边均只有一解,但④中三边无法组成三角形.③中已知两边及一边的对角,可能有两解,但sin A =1,又A ∈(0°,180°),∴A =90°.故只有一解.]2.A [由余弦定理a 2=b 2+c 2-2bc cos A =52+(53)2-2×5×(53)×32=25,∴a =5.] 3.C [∵sin C =3314, ∴cos C =± 1-(3314)2=±1314, ∴c 2=a 2+b 2-2ab cos C =72+82-2×7×8×(±1314)=9或217,∴c =3或217.] 4.D [由题意知,a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-3ab 2ab =-32, 又C ∈(0°,180°),∴C =150°.]5.B [中间的角设为θ,则cos θ=52+82-722×5×8=12, 又θ∈(0°,180°),∴θ=60°,∴最大角和最小角之和为120°.]6.D [∵(a +b -c )(a +b +c )=ab .∴(a +b )2-c 2=ab ,即a 2+b 2-c 2=-ab ,∴cos C =-12.] 7.B [cos B =a 2+c 2-b 22ac =a 2+(2a )2-ac 2a (2a )=5a 2-2a 24a 2=34.] 8.C [c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,∴c =3, ∴cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.]9.612解析 bc cos A +ac cos B +ab cos C=b 2+c 2-a 22+a 2+c 2-b 22+a 2+b 2-c 22=a 2+b 2+c 22=12(32+42+62)=612. 10.19解析 由题意知a +b =5,ab =2,∴c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=52-2×2-2×2×12=19, ∴c =19.11.45°解析 S △ABC =12ab sin C =14(a 2+b 2-c 2)=14(2ab cos C ), ∴sin C =cos C ,又∵C ∈(0°,180°),∴C =45°.12.解 不妨设b +c 4=k ,则b +c =4k ,a +c =5k ,a +b =6k , ∴a =72k ,b =52k ,c =32k , 可见a >b >c ,∴A 为最大内角,∴cos A =b 2+c 2-a 22bc=254k 2+94k 2-494k 22×52k ×32k =-12, 又A ∈(0°,180°),∴A =120°.13.解 已知a -b =4,则a >b 且a =b +4,又a +c =2b ,则b +4+c =2b ,所以b =c +4,则b >c ,从而知a >b >c ,所以a 为最大边, 故A =120°,b =a -4,c =2b -a =a -8.由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+c 2+bc=(a-4)2+(a-8)2+(a-4)(a-8),即a2-18a+56=0,解得a=4或a=14.又b=a-4>0,所以a=14,即此三角形的最大边长为14.。
1.1.2 余弦定理1.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab>0,则△ABC ( ) A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形2.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( )A .19B .14C .-18D .-193.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2 D. 34.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A =( )A .30°B .60°C .120°D .150°5.在△ABC 中,a ,b ,c 为角A ,B ,C 的对边,且b 2=ac ,则B 的取值范围是( )A.⎝⎛⎦⎤0,π3 B.⎣⎡⎭⎫π3,π C.⎝⎛⎦⎤0,π6 D.⎣⎡⎭⎫π6,π6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b =________ 7.在△ABC 中,若sin A ∶sin B ∶sin C =5∶7∶8,则B 的大小是________.8.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c =14a,2sin B =3sin C ,则cos A 的值为________.9.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值.10.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos (A +B )=1.(1)求角C 的度数;(2)求AB 的长.参考答案1.【解析】 由题意知a 2+b 2-c 22ab<0,即cos C <0,∴△ABC 为钝角三角形.【答案】 C2.【解析】 由余弦定理的推论知cos B =AB 2+BC 2-AC 22AB ·BC =1935, ∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=7×5×⎝⎛⎭⎫-1935=-19. 【答案】 D3.【解析】 由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4.又b <c ,∴b =2.【答案】 C4.【解析】 ∵sin C =23sin B ,由正弦定理,得c =23b ,∴cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32, 又A 为三角形的内角,∴A =30°.【答案】 A5.【解析】 cos B =a 2+c 2-b 22ac =(a -c )2+ac 2ac =(a -c )22ac +12≥12, ∵0<B <π,∴B ∈⎝⎛⎦⎤0,π3.故选A. 【答案】 A6.【解析】 由余弦定理得5=22+b 2-2×2b cos A ,又cos A =23,所以3b 2-8b -3=0, 解得b =3或b =-13(舍去). 【答案】 37.【解析】 由正弦定理知:a =2R sin A ,b =2R sin B ,c =2R sin C .设sin A =5k ,sin B =7k ,sin C =8k ,∴a =10Rk ,b =14Rk ,c =16Rk ,∴a ∶b ∶c =5∶7∶8,∴cos B =25+64-492×5×8=12,∴B =π3. 【答案】 π38.【解析】 由2sin B =3sin C 及正弦定理得2b =3c ,即b =32c .又b -c =14a ,∴12c =14a ,即a =2c .由余弦定理得 cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-34c 23c 2=-14. 【答案】 -149.【解】 (1)由正弦定理得a sin A =b sin B=2R ,R 为△ABC 外接圆半径. 又b sin A =3a cos B ,所以2R sin B sin A =3·2R sin A cos B .又sin A ≠0,所以sin B =3cos B ,所以tan B = 3.又因为0<B <π,所以B =π3. (2)由sin C =2sin A 及a sin A =c sin C,得c =2a . 由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac ,∴a 2+4a 2-2a 2=9,解得a =3,故c =2 3.10.【解】 (1)∵cos C =cos [π-(A +B )]=-cos (A +B )=-12,且C ∈(0,π), ∴C =2π3. (2)∵a ,b 是方程x 2-23x +2=0的两根, ∴⎩⎨⎧a +b =23,ab =2,∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.。
1.1.2 余弦定理(一) 课时目标
1.熟记余弦定理及其推论;
2.能够初步运用余弦定理解斜三角形.
1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .
2.余弦定理的推论
cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2
-c 2
2ab .
3.在△ABC 中:
(1)若a 2+b 2-c 2=0,则C =90°;
(2)若c 2=a 2+b 2-ab ,则C =60°;
(3)若c 2=a 2+b 2+2ab ,则C =135°.
一、选择题
1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3
C. 5 D .5
答案 A
2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π
3 B.π
6
C.π
4 D.π
12
答案 B
解析 ∵a >b >c ,∴C 为最小角,
由余弦定理cos C =a 2+b 2-c 2
2ab =72+ 43 2- 13
2
2³7³43=3
2.∴C =π
6.
3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( )
A .1 B. 2 C .2 D .4
答案 C
解析 b cos C +c cos B =b ²a 2+b 2-c 22ab +c ²c 2+a 2-b 22ac =2a 2
2a =a =2.
4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.1
4 B.34 C.24 D.2
3
答案 B
解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,
∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ²2a =3
4.
5.在△ABC 中,sin 2A 2=c -b 2c
(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )
A .正三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形
答案 B
解析 ∵sin 2A 2=1-cos A 2=c -b
2c ,
∴cos A =b c =b 2+c 2
-a 2
2bc ⇒a 2+b 2=c 2,符合勾股定理.
故△ABC 为直角三角形.
6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )
A .135°
B .45°
C .60°
D .120°
答案 B
解析 ∵S =14(a 2+b 2-c 2)=12ab sin C ,
∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .
由余弦定理得:c 2=a 2+b 2-2ab cos C ,
∴sin C =cos C ,
∴C =45° .
二、填空题
7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________.
答案 120°
8.△ABC 中,已知a =2,b =4,C =60°,则A =________.
答案 30°
解析 c 2=a 2+b 2-2ab cos C
=22+42-2³2³4³cos 60°
=12
∴c =2 3.
由正弦定理:a
sin A =c
sin C 得sin A =12.
∵a <c ,∴A <60°,A =30°.
9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________. 答案 120°
解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,
则cos θ=a 2+b 2- a 2+ab +b 2 2
2ab =-12,
∴θ=120°.
10.在△ABC 中,BC =1,B =π
3,当△ABC 的面积等于3时,tan C =________.
答案 -2 3
解析 S △ABC =1
2ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13,
∴cos C =a 2+b 2-c 2
2ab =-1
13,sin C =12
13,
∴tan C =-12=-2 3.
三、解答题
11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.
解 由条件知:cos A =AB 2+AC 2-BC 22²AB ²AC =92+82-722³9³8=23
,设中线长为x ,由余弦定理知:x 2=⎝ ⎛⎭⎪⎫AC 22+AB 2-2²AC 2²AB cos A =42+92-2³4³9³23
=49 ⇒x =7.
所以,所求中线长为7.
12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )
=1.
(1)求角C 的度数;
(2)求AB 的长;
(3)求△ABC 的面积.
解 (1)cos C =cos[π-(A +B )]
=-cos(A +B )=-12
, 又∵C ∈(0°,180°),∴C =120°.
(2)∵a ,b 是方程x 2-23x +2=0的两根,
∴⎩⎨⎧ a +b =23,
ab =2.
∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,
∴AB =10.
(3)S △ABC =12ab sin C =32. 能力提升
13.(2010²潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________. 答案 3
解析 ∵cos C =BC 2+AC 2-AB 22³BC ³AC =22
, ∴sin C =22
. ∴AD =AC ²sin C = 3.
14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.
解 由余弦定理知
cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 2
2ac
, cos C =a 2+b 2-c 2
2ab
, 代入已知条件得
a ²
b 2+
c 2-a 22bc +b ²a 2+c 2-b 22ac +c ²c 2-a 2-b 2
2ab
=0, 通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,
展开整理得(a 2-b 2)2=c 4.
∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.
根据勾股定理知△ABC 是直角三角形.
1.利用余弦定理可以解决两类有关三角形的问题:
(1)已知两边和夹角,解三角形.
(2)已知三边求三角形的任意一角.
2.余弦定理与勾股定理
余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.。