人教B版高中必修4 期末试卷
- 格式:docx
- 大小:212.78 KB
- 文档页数:7
第三章 3.1 3.1.1一、选择题1.cos75°cos15°-sin435°sin15°的值是( ) A .0 B .12C .32D .-12[答案] A[解析] cos75°cos15°-sin435°sin15° =cos75°cos15°-sin(360°+75°)sin15° =cos75cos15°-sin75°sin15° =cos(75°+15°)=cos90°=0.2.在△ABC 中,若sin A sin B <cos A cos B ,则△ABC 一定为( ) A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形[答案] D[解析] ∵sin A sin B <cos A cos B , ∴cos A cos B -sin A sin B >0, ∴cos(A +B )>0,∵A 、B 、C 为三角形的内角, ∴A +B 为锐角, ∴C 为钝角.3.下列结论中,错误的是( )A .存在这样的α和β的值,使得cos(α+β)=cos αcos β+sin αsin βB .不存在无穷多个α和β的值,使得cos(α+β)=cos αcos β+sin αsin βC .对于任意的α和β,有cos(α+β)=cos αcos β-sin αsin βD .不存在这样的α和β的值,使得cos(α+β)≠cos αcos β-sin αsin β [答案] B[解析] 当α、β的终边都落在x 轴的正半轴上或都落在x 轴的负半轴上时,cos(α+β)=cos αcos β+sin αsin β成立,故选项B 是错误的.4.在锐角△ABC 中,设x =sin A sin B ,y =cos A cos B ,则x 、y 的大小关系是( )A .x ≥yB .x ≤yC .x >yD .x <y[答案] C[解析] y -x =cos(A +B ),在锐角三角形中π2<A +B <π,y -x <0,即x >y .5.化简sin(x +y )sin(x -y )+cos(x +y )cos(x -y )的结果是( ) A .sin2x B .cos2y C .-cos2x D .-cos2y [答案] B[解析] 原式=cos[(x +y )-(x -y )]=cos2y .6.△ABC 中,cos A =35,且cos B =513,则cos C 等于( )A .-3365B .3365C .-6365D .6365[答案] B[解析] 由cos A >0,cos B >0知A 、B 都是锐角, ∴sin A =1-⎝⎛⎭⎫352=45,sin B =1-⎝⎛⎭⎫5132=1213,∴cos C =-cos(A +B )=-(cos A cos B -sin A sin B ) =-⎝⎛⎭⎫35×513-45×1213=3365. 二、填空题7.若cos α=15,α∈(0,π2),则cos(α+π3)=________.[答案]1-6210[解析] ∵cos α=15,α∈(0,π2),∴sin α=265.∴cos(α+π3)=cos αcos π3-sin αsin π3=15×12-265×32=1-6210.8.已知cos(π3-α)=18,则cos α+3sin α的值为________.[答案] 14[解析] cos(π3-α)=cos π3cos α+sin π3sin α=12cos α+32sin α =12(cos α+3sin α)=18, ∴cos α+3sin α=14.三、解答题 9.已知cos α=55,sin(α-β)=1010,且α、β∈(0,π2). 求:cos(2α-β)的值. [解析] ∵α、β∈(0,π2),∴α-β∈(-π2,π2),∴sin α=1-cos 2α=255,cos(α-β)=1-sin 2(α-β)=31010,∴cos(2α-β)=cos[α+(α-β)] =cos αcos(α-β)-sin αsin(α-β) =55×31010-255×1010=210. 10. 已知sin α+sin β=310,cos α+cos β=9110,求cos(α-β)的值.[解析] 将sin α+sin β=310,两边平方得,sin 2α+2sin αsin β+sin 2β=9100①,将cos α+cos β=9110两边平方得,cos 2α+2cos αcos β+cos 2β=91100②,①+②得2+2cos(α-β)=1, ∴cos(α-β)=-12.一、选择题 1.cos47°+sin17°sin30°cos17°的值为( )A .-32B .-12C .12D .32[答案] D [解析]cos47°+sin17°sin30°cos17°=cos (30°+17°)+sin17°sin30°cos17°=cos30°cos17°-sin30°sin17°+sin17°sin30°cos17°=cos30°=32. 2.在△ABC 中,若tan A ·tan B >1,则△ABC 一定是( ) A .等边三角形 B .直角三角形 C .锐角三角形 D .钝角三角形[答案] C[解析] ∵sin A ·sin B >cos A ·cos B , ∴cos A ·cos B -sin A ·sin B <0, 即cos(A +B )<0,∵A 、B 、C 为三角形的内角, ∴A +B 为钝角,∴C 为锐角. 又∵tan A ·tan B >1, ∴tan A >0,tan B >0,∴A 、B 均为锐角,故△ABC 为锐角三角形.3.在锐角△ABC 中,设x =sin A ·sin B ,y =cos A ·cos B ,则x 、y 的大小关系为( )A .x ≤yB .x >yC .x <yD .x ≥y[答案] B[解析] y -x =cos A cos B -sin A sin B =cos(A +B ), ∵△ABC 为锐角三角形, ∴C 为锐角,∵A +B =π-C , ∴A +B 为钝角, ∴cos(A +B )<0,∴y <x .4.函数f (x )=sin x -cos(x +π6)的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32] [答案] B[解析] f (x )=sin x -cos(x +π6)=sin x -cos x cos π6+sin x sin π6=32sin x -32cos x =3(32sin x -12cos x ) =3sin(x -π6)∈[-3,3].二、填空题 5.形如⎪⎪⎪⎪⎪⎪ab cd 的式子叫做行列式,其运算法则为⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,则行列式⎪⎪⎪⎪⎪⎪cos π3 sin π6sin π3 cos π6的值是________. [答案] 0[解析] ⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴⎪⎪⎪⎪⎪⎪cos π3 sin π6sin π3cos π6=cos π3cos π6-sin π3sin π6=cos(π3+π6)=cos π2=0.6.已知cos(α+β)=13,cos(α-β)=15,则tan α·tan β=________.[答案] -14[解析] ∵cos(α+β)=13,∴cos αcos β-sin αsin β=13,①∵cos(α-β)=15,∴cos αcos β+sin αsin β=15,②由①②得⎩⎨⎧sin αsin β=-115cos αcos β=415,∴tan αtan β=sin αsin βcos αcos β=-14.三、解答题7.已知cos(α-30°)=1517,30°<α<90°,求cos α的值.[解析] ∵30°<α<90°, ∴0°<α-30°<60°. ∵cos(α-30°)=1517,∴sin(α-30°)=1-cos 2(α-30°)=817,∴cos α=cos[(α-30°)+30°]=cos(α-30°)cos30°-sin(α-30°)sin30°=1517×32-817×12=153-834.8.已知向量a =(2cos α,2sin α),b =(3cos β,3sin β),若向量a 与b 的夹角为60°,求cos(α-β)的值.[解析] ∵a·b =6cos αcos β+6sin αsin β=6cos(α-β), ∴|a |=2,|b |=3, 又∵a 与b 的夹角为60°,∴cos60°=a·b |a|·|b|=6cos (α-β)2×3=cos(α-β),∴cos(α-β)=12.9. 已知函数f (x )=2cos(ωx +π6)(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值;(2)设α、β∈[0,π2],f (5α+5π3)=-65,f (5β-5π6)=1617,求cos(α+β)的值.[解析] (1)∵T =10π=2πω,∴ω=15.(2)由(1)得f (x )=2cos(15x +π6),∵-65=f (5α+5π3)=2cos[15(5α+5π3)+π6]=2cos(α+π2)=-2sin α,∴sin α=35,cos α=45.∵1617=f (5β-5π6)=2cos[15(5β-5π6)+π6]=2cos β, ∴cos β=817,sin β=1517.∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.。
一、选择题1.cos(-41π3)的值为()A.12B.-12C.32 D.36【解析】cos(-41π3)=cos(-14π+π3)=cosπ3=12.【答案】A2.sin(-1 560°)的值是()A.-32B.-12C.12 D.32【解析】sin(-1 560°)=-sin 1 560°=-sin(4×360°+120°)=-sin 120°=-32.【答案】A3.α是第四象限的角,cos α=1213,则sin(20kπ-α)=() A.513B.-513C.512D.-512【解析】由题意得sin α=-1-cos2α=-513,∴sin(20kπ-α)=sin(-α)=-sin α=513.【答案】A4.1-2sin(2π+2)cos(2π-2)等于()A.sin 2-cos 2 B.sin 2+cos 2C.±(sin 2-cos 2) D.cos 2-sin 2【解析】原式=1-2sin 2cos 2=(sin 2-cos 2)2=|sin 2-cos 2|.而sin 2>cos 2,故应选A.【答案】A5.设f(α)=2sin(2π-α)cos(2π+α)-cos(-α)1+sin2α+sin(2π+α)-cos2(4π-α),则f(-236π)的值为()A.33B.-33C. 3 D.-3【解析】f(α)=2sin(-α)cos α-cos α1+sin2α+sin α-cos2α=-cos α(2sin α+1)sin α(2sin α+1)=-1tan α.∴f(-236π)=-1tan(-236π)=-1tanπ6=- 3.【答案】D二、填空题6.(2019·沈阳高一检测)cos 1 110°的值为________.【解析】cos 1 110°=cos(3×360°+30°)=cos 30°=3 2.【答案】3 27.sin 690°+cos(-1 140°)+tan 1 020°的值为________.【解析】原式=sin(2×360°-30°)+cos(-3×360°-60°)+tan(3×360°-60°)=sin(-30°)+cos(-60°)+tan(-60°)=-sin 30°+cos 60°-tan 60°=-12+12-3=- 3.【答案】-38.若tan(-α-π6)=-3,则tan(136π+α)=________.【解析】∵tan(-α-π6)=tan[-(α+π6)]=-3,∴tan(α+π6)=3.∴tan(136π+α)=tan[2π+(α+π6)]=tan(α+π6)=3. 【答案】 3 三、解答题 9.化简求值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos(-233π)+tan 17π4.【解】 (1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30° =32×32+12×12=1.(2)原式=cos[π3+(-4)×2π]+tan(π4+2×2π) =cos π3+tan π4=12+1=32.10.化简:sin 2(α-2π)cos (2π+α)cot (-α-2π)tan (2π-α)cos 3(-α-4π).【解】 原式=sin 2α·cos α·cot (-α)tan (-α)cos 3(-α)=sin 2αcos α·cos α(-sin αcos α)·cos 3α·sin (-α)=sin 2α·cos 2αsin 2α·cos 2α =1.11.已知sin(2π+α)+cos(-α)=23,α∈(π2,π),求sin α-cos α的值. 【解】 由sin(2π+α)+cos(-α)=sin α+cos α,故sin α+cos α=23. 两边平方并整理得sin αcos α=-718.又由α∈(π2,π),得sin α>cos α,∴sin α-cos α=(sin α-cos α)2=sin2α+cos2α-2sin αcos α=1-2×(-7 18)=43.。
高一数学下期期末测试试卷(考试时间:120分钟 满分:150分)一、选择题(每小题5分,共60分)在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项的代号填在题后的括号中.)1.给出下列关系式:sin1>sin2,cos(-21)>cos 31,tan125°>tan70°, sin1213π>cos 1213π,其中正确的个数是 ( ) A 、1 B 、2 C 、3 D 、4 2.如果f(x+π)=f(-x),且f(x)= f(-x),则f(x)可能是( )A 、sin2x Bcosx C 、sin|x| D 、|sinx|3.关于函数图象的变化,正确的结论是 ( )A 、将图象y=sin(2x-4π)向右平移4π,得图象y=sin2x B 、将图象y=sin(2x-4π)上的每一点的纵坐标不变,横坐标变为原来的21,得 图象y=sin(x-4π) C 、将图象y=f(x)按向量=(h,k)平移得图象y=f(x-h)-kD 、将图象y=f(x)先按向量平移,再按向量平移,且+=(-1,2),则得到的图象为y=f(x+1)+24.在△ABC 中,A 、B 、C 的对边分别是a 、b 、c ,则acosB+bcosA 等于 ( )A 、2cosCB 、2sinC C 、2b a + D 、c 5.不重合的四点A 、B 、C 、D 满足:2AB =3AC ,AB =-2BD ,则点D 分BC 之比为 ( )A 、3B 、-3C 、31D 、-31 6.设,,是任意的非零平面向量,且两两不共线,下列命题其中正确的有 ( )A 、①② B、②③ C、③④ D、②④7.已知OA =(-3,4),AB =(13,-4),则AB 在OA 上的投影为 ( )A 、11B 、-11C 、18555D 、-185558.已知AB =(3,-2), AC =(k,3),且△ABC 为直角三角形,则实数k 的值为 ( )A 、2B 、319C 、不存在D 、2或319 9.在△ABC 中,已知b 2-bc-2c 2=0,且a=6,cosA=87,则△ABC 的面积为 ( ) A 、215 B 、15 C 、2 D 、3 10.在△ABC 中,tanA+tanB+tanC>0,则△ABC 是( )A 、 锐角三角形B 、 钝角三角形C 、直角三角形D 、任意三角形11.已知m 、n 是夹角为60°的两个单位向量,则a =2m +n 和b =-3m +2n 的夹角为( )A 、30° B、60° C、120° D、150°12.在△ABC 中,sinA:sinB:sinC=2:6:(3+1),则三角形的最小内角是( )A 、60° B、45° C、30° D、以上答案都不对二、填空题(每小题4分,共16分)请将你认为正确的答案直接填在题后的横线 上.13.已知cos(4+x)=53,1217π<x<47π,则tanx=____________. 14.计算cos15°cos75°+cos 215°=_____________.15.已知△ABC 中,a=1,b=3,A=30°,则B=____________.16.在正六边形ABCDEF 中,若AB =a ,CD =b ,则CB =______________.三、解答题(本题共6个小题,共74分)解答应写出文字说明、证明过程或演算 步骤).17.(12 分) 已知△A BC 三顶点的坐标分别为A(2,1),B(0,3),C(-1,5),AD 为边BC 上的高。
向量数量积的坐标运算及度量公式1.已知向量a 和向量b 的夹角为135°,|a |=2, |b |=3,则向量a 和向量b 的数量积a·b =________.-322.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16B .-8C .8D .163.已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0B .2 2C .4D .8B 2(22)a b a b -=-=2244a a b b -⋅+=8=2 2.4.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为________.325.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.6556.设a ,b ,c 是任意的非零向量,且相互不共线,则下列命题正确的有________②④ ①(a·b )c -(c·a )b =0;②|a |-|b |<|a -b |;③(b·c )a -(a·c )b 不与c 垂直;④(3a +4b )·(3a -4b )=9|a |2-16|b |2. 7.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C的轨迹方程为________________.解析 由题意得AB →=⎝ ⎛⎭⎪⎫2,-y 2, BC →=⎝ ⎛⎭⎪⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝ ⎛⎭⎪⎫2,-y 2·⎝ ⎛⎭⎪⎫x ,y 2=0,化简得y 2=8x (x ≠0). 8.若等边△ABC 的边长为3平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB→=________.解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝ ⎛⎭⎪⎫32,-12,MB →=⎝ ⎛⎭⎪⎫32,-12,MB →=⎝ ⎛⎭⎪⎫-32,52,所以MA →·MB →=-2. 题型一 平面向量的数量积的运算例1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.2(2)如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →, |AD →|=1,则AC →·AD →等于( )A.2 3B.32C.33D . 3解法1基底法: ∵BC →=3BD →,∴AC →=BC →-BA →=3BD →-BA →=3(AD →-AB →)+AB → =3AD→+(1-3)AB →. 又AD ⊥AB ,|AD →|=1. ∴AC →·AD →=3AD2→+(1-3)AB →·AD →= 3.法2定义法设BD =a ,则BC =3a ,作CE ⊥BA 交的延长线于E ,可知∠DAC =∠ACE ,在Rt △ABD 与Rt △BEC 中, Rt △ABD ∽Rt △BEC 中,BD ADBC EC=,CE =3, ∴cos ∠DAC =cos ∠ACE =3AC . ∴AD →·AC →=|AD →|·|AC →|cos ∠DAC =|AD →|·|AC →| cos ∠ACE = 3. 法3坐标法变式训练1 (1)若向量a 的方向是正南方向,向量b 的方向是正东方向,且|a |=|b |=1,则(-3a )·(a +b )=______.-3(2)如下图,在ABC △中,3==BC AB ,︒=∠30ABC ,AD 是边BC 上的高,则AC AD ⋅的值等于 ( ) A .0 B .49C .4D .49-【思路点拨】充分利用已知条件的3==BC AB ,︒=∠30ABC ,借助数量积的定义求出. 【答案】B 【解析】因为3==AC AB ,︒=∠30ABC ,AD 是边BC 上的高,23=AD 29cos 4AD AC AD AC CAD AD ⋅=⋅∠==.(3)设向量a ,b ,c 满足|a|=|b|=1,a·b =-12,〈a -c ,b -c 〉=60°,则|c|的最大值等于( )A .2 B.3 C.2 D .1 【解析】 ∵a·b =-12,且|a|=|b|=1, ∴cos 〈a ,b 〉=a·b |a|·|b|=-12. ∴〈a ,b 〉=120°.如图所示,将a ,b ,c 的起点平移至同一点O ,则a -c =CA →,b -c =CB →,∠ACB =60°,于是四 点A ,O ,B ,C 共圆,即点C 在△AOB 的外接圆上,故当OC 为直径时,|c|取最大值.由余弦定理,得AB =OA 2+OB 2-2·OA·OB·cos 〈a ,b 〉=3,由正弦定理,得2R =ABsin 120°=2,即|c|的最大值为2.题型二 向量的夹角与向量的模例2 已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |; (3)若AB→=a ,BC →=b ,求△ABC 的面积. 例2 解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61,∴a·b =-6. ∴cos θ=a·b |a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3. (2)可先平方转化为向量的数量积.|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB→与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB→|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.变式训练2 (1)已知平面向量α,β,|α|=1,β=(2,0),α⊥(α-2β),求|2α+β|的值;(2)已知三个向量a 、b 、c 两两所夹的角都为120°,|a |=1,|b |=2,|c |=3,求向量a +b +c 与向量a 的夹角.解 (1)∵β=(2,0),∴|β|=2,又α⊥(α-2β), ∴α·(α-2β)=α2-2α·β=1-2α·β=0.∴α·β=12.∴(2α+β)2=4α2+β2+4α·β=4+4+2=10. ∴|2α+β|=10.(2)由已知得(a +b +c )·a =a 2+a·b +a·c =1+2cos 120°+3cos 120°=-32, |a +b +c |=a +b +c2=a 2+b 2+c 2+2a·b +2a·c +2b·c=1+4+9+4cos 120°+6cos 120°+12cos 120°= 3. 设向量a +b +c 与向量a 的夹角为θ,则cos θ=a +b +c ·a |a +b +c ||a |=-323=-32,即θ=150°,故向量a +b +c 与向量a 的夹角为150°.(3)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向. 即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.(4)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB→|的最小值为________ 解 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ), P A →=(2,-y ),PB →=(1,a -y ), ∴P A →+3PB →=(5,3a -4y ), |P A →+3PB→|2=25+(3a -4y )2, ∵点P 是腰DC 上的动点,∴0≤y ≤a , 因此当y =34a 时,|P A →+3PB →|2的最小值为25, ∴|P A →+3PB →|的最小值为5. 题型三 平面向量的垂直问题例3 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π). (1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β), a -k b =(cos α-k cos β,sin α-k sin β),|k a +b |=|a -k b |=∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 又k ≠0,∴cos(β-α)=0.而0<α<β<π,∴0<β-α<π,∴β-α=π2.变式训练3 (1) 已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32.①证明:a ⊥b ;② 若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ).① 证明 ∵a·b =3×12-1×32=0,∴a ⊥b . ②解 ∵c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,∴c·d =[a +(t 2-3)b ]·(-k a +t b )=-k a 2+t (t 2-3)b 2+[t -k (t 2-3)]a·b =0, 又a 2=|a |2=4,b 2=|b |2=1,a·b =0,∴c·d =-4k +t 3-3t =0,∴k =f (t )=t 3-3t4 (t ≠0).(2) 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).① 求证:a +b 与a -b 垂直; ②用k 表示a ·b ;③ 求a ·b 的最小值以及此时a 与b 的夹角θ. 点拨: 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解①由题意得,|a|=|b|=1,∴(a+b)·(a-b)=a2-b2=0,∴a+b与a-b垂直.②|k a+b|2=k2a2+2k a·b+b2=k2+2k a·b+1,(3|a-k b|)2=3(1+k2)-6k a·b.由条件知,k2+2k a·b+1=3(1+k2)-6k a·b,从而有,a·b=1+k24k(k>0).③由(2)知a·b=1+k24k=14(k+1k)≥12,当k=1k时,等号成立,即k=±1.∵k>0,∴k=1.此时cos θ=a·b|a||b|=12,而θ∈[0,π],∴θ=π3.故a·b的最小值为12,此时θ=π3.。
三角函数的积化和差与和差化积练习1.若cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=( ) A .23- B .13- C .13 D .23 2.直角三角形的两个锐角分别为A 和B ,则sin A sin B ( )A .有最大值12和最小值0 B .有最大值12,但无最小值 C .既无最大值,也无最小值D .有最大值1,但无最小值3.化简2π4π6πcoscos cos 777++的结果为( ) A .πsin 7B .1πsin 27C .12- D .1πcos 27- 4.已知α-β=π3,且cos α-cos β=13,则cos(α+β)等于( ) A .13 B .23 C .79D .89 5.如果sin(+)sin()m nαβαβ=-,那么tan tan βα等于( ) A .m n m n -+ B .m n m n+- C .n m m n -+ D .m n n m +- 6.cos 20°+cos 60°+cos 100°+cos 140°的值为________.7.若cos 2α-cos 2β=m ,则sin(α+β)sin(α-β)=________.8.若x 为锐角三角形的内角,则函数y =πsin 3x ⎛⎫+⎪⎝⎭+sin x 的值域为________. 9.求2cos10sin20cos20︒-︒︒的值.10.已知△ABC 的三个内角A ,B ,C 满足A +C =2B ,11cos cos cos A C B +=-,求cos 2A C -的值.参考答案1.解析:cos(α+β)cos(α-β)=12 (cos 2α+cos 2β) =12[(2cos 2α-1)+(1-2sin 2β)]=cos 2α-sin 2β, ∵cos(α+β)cos(α-β)=13, ∴cos 2α-sin 2β=13. 答案:C2.解析:因为A +B =π2,sin A sin B =12[cos(A -B )-cos(A +B )]=12cos(A -B ), 又π2-<A -B <π2,则0<cos(A -B )≤1, 故0<12cos(A -B )≤12,即sin A sin B 有最大值12,无最小值. 答案:B3.解析:2π4π6ππcos cos cos sin 7777πsin 7⎛⎫++ ⎪⎝⎭=原式 =13ππ5π3π5πsin sin sin sin sin πsin 277777πsin 7⎛⎫-+-+- ⎪⎝⎭ =1πsin 127π2sin 7-=-. 答案:C4.解析:由cos α-cos β=13得 12sin sin 223αβαβ+--=,又α-β=π3, ∴+1sin 23αβ=-, ∴cos(α+β)=1-2 2+sin2αβ=1-2×213⎛⎫- ⎪⎝⎭=79. 答案:C5.解析:tan sin cos sin cos =tan cos sin cos sin ββαβααβαβα⋅==1[sin(+)sin()]21[sin(+)sin()]2m nm n αββααββα+-+=---.答案:B6.解析:cos 20°+cos 60°+cos 100°+cos 140°=cos 20°+12+2cos 120°cos 20°=cos 20°+12-cos 20°=12.答案:1 27.解析:sin(α+β)sin(α-β)=12-(cos 2α-cos 2β)=12-[(2cos2α-1)-(2cos2β-1)]=cos2β-cos2α=-m.答案:-m8.解析:y=πsin3x⎛⎫+⎪⎝⎭+sin x=2ππsin cos66x⎛⎫+⎪⎝⎭π6x⎛⎫+⎪⎝⎭,由已知得ππ2π663x<+<,所以12<πsin6x⎛⎫+⎪⎝⎭≤1.所以y∈⎝.答案:⎝9.解:2cos10sin202cos10(1sin10)cos20cos20︒-︒︒-︒=︒︒=2cos10(sin90sin10)4cos10cos50sin40cos20cos20︒︒-︒︒︒︒=︒︒=8cos10cos50sin20cos20cos20︒︒︒︒︒=8cos 10°sin 20°sin 40°=4(sin 30°+sin 10°)sin 40°=2sin 40°+4sin 40°sin 10°10.解:由题设条件知B=60°,A+C=120°,∴==-,∴11cos cosA C+=-将上式化简为cos A+cos C=-cos A cos C,则2cos cos22A C A C+-=A+C)+cos(A-C)].将cos2A C +=cos 60°=12,cos(A +C )=cos 120°=12-代入上式,得cos 2A C -=2A -C ). 将cos(A -C )=22cos 2A C -⎛⎫ ⎪⎝⎭-1代入上式并整理,得22cos 022A C A C --⎛⎫+-= ⎪⎝⎭,即2cos 3022A C A C --⎛⎫+= ⎪⎝⎭.∵2A C -+3≠0,∴2cos 02A C -=.∴cos 22A C -=.。
【成才之路】2014-2015学年高中数学 第二、三章 平面向量 三角恒等变换综合测试题 新人教B 版必修4本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.有下列四个命题:①存在x ∈R ,sin 2x 2+cos 2x 2=12;②存在x 、y ∈R ,sin(x -y )=sin x -sin y ; ③x ∈[0,π],1-cos2x2=sin x ; ④若sin x =cos y ,则x +y =π2. 其中不正确的是( ) A .①④ B .②④ C .①③ D .②③[答案] A[解析] ∵对任意x ∈R ,均有sin 2x2+cos 2x2=1,故①不正确,排除B 、D ;又x ∈[0,π],1-cos2x 2=sin 2x =sin x ,故③正确,排除C ,故选A.2.(2014·山东潍坊重点中学高一期末测试)若向量a =(2cos α,-1),b =(2,tan α),且a ∥b ,则sin α=( )A .22 B .-22C .±22D .-12[答案] B[解析] ∵a ∥b ,∴2cos α·tan α=-2,即sin α=-22. 3.(2014·陕西咸阳市三原县北城中学高一月考)函数y =2cos 2x -1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数[答案] C[解析] y =2cos 2x -1=cos2x ,故函数y =2cos2x 是最小正周期为π的偶函数. 4.在△ABC 中,若4sin A +2cos B =1,2sin B +4cos A =33,则sin C 的大小是( ) A .-12B .32C .12或32D .12[答案] D[解析] 由条件,得(4sin A +2cos B )2=1,(2sin B +4cos A )2=27, ∴20+16sin A cos B +16sin B cos A =28. ∴sin A cos B +cos A sin B =12.即sin(A +B )=12.∴sin C =sin[π-(A +B )]=sin(A +B )=12.5.函数y =(sin x +cos x )2+1的最小正周期是( ) A .π2B .πC .3π2D .2π[答案] B[解析] y =(sin x +cos x )2+1 =1+2sin x cos x +1=2+sin2x . ∴最小正周期T =π.6.设5π<θ<6π,cos θ2=a ,则sin θ4的值等于( )A .-1+a2 B .-1-a2 C .-1+a2D .-1-a2[答案] D[解析] ∵5π<θ<6π,∴5π4<θ4<3π2, ∴sin θ4<0,∴sin θ4=-1-cosθ22=-1-a2.7.(2014·山东济宁梁山一中高一月考)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A . 5B .10C .2 5D .10[答案] B[解析] ∵a ⊥c ,∴a ·c =2x -4=0,∴x =2. 又∵b ∥c ,∴-4=2y ,∴y =-2. ∴a =(2,1),b =(1,-2), ∴|a +b |=32+-2=10.8.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( ) A . 3 B .2 3 C .4 D .12[答案] B[解析] ∵a =(2,0),∴|a |=2,|a +2b |=a +2b2=a 2+4a·b +4b 2,∵a·b =|a|·|b |cos60°=1, ∴|a +2b |=4+4+4=2 3.9.cos 275°+cos 215°+cos75°cos15°的值为( ) A .62B .32C .54D .1+34[答案] C[解析] 原式=sin 215°+cos 215°+sin15°cos15° =1+12sin30°=54.10.设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C =( )A .π6B .π3C .2π3D .5π6[答案] C[解析] ∵m·n =3sin A cos B +3cos A sin B =3sin(A +B )=1+cos(A +B ),∴3sin(A +B )-cos(A +B )=1,∴3sin C +cos C =1,即2sin ⎝⎛⎭⎪⎫C +π6=1,∴sin ⎝⎛⎭⎪⎫C +π6=12,∴C +π6=5π6,∴C =2π3.11.在△ABC 中,已知sin 2A +sin 2B +sin 2C =2,则△ABC 为( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形[答案] C[解析] 由已知,得1-cos2A 2+1-cos2B 2+sin 2C =2,∴1-12(cos2A +cos2B )+sin 2C =2,∴cos2A +cos2B +2cos 2C =0, ∴cos(A +B )·cos(A -B )+cos 2C =0, ∴cos C [-cos(A -B )-cos(A +B )]=0, ∴cos A ·cos B ·cos C =0, ∴cos A =0或cos B =0或cos C =0. ∴△ABC 为直角三角形.12.若f (sin x )=3-cos2x ,则f (cos x )=( ) A .3-cos2x B .3-sin2x C .3+cos2x D .3+sin2x[答案] C[解析] f (sin x )=3-cos2x =3-(1-2sin 2x )=2+2sin 2x , ∴f (x )=2+2x 2 ∴f (cos x )=2+2cos 2x =2+1+cos2x =3+cos2x .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.2tan150°1-tan 2150°的值为________. [答案] - 3[解析] 原式=2×⎝⎛⎭⎪⎫-331-⎝⎛⎭⎪⎫-332=-233·32=- 3.14.已知向量a 、b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. [答案] 3 2[解析] ∵|a |=1,〈a ,b 〉=45°,|2a -b |=10,∴4|a |2-4a ·b +|b |2=10,∴4-4×1×|b |cos45°+|b |2=10,∴|b |2-22|b |-6=0,∴|b |=3 2.15.若1+tan α1-tan α=2 014,则1cos2α+tan2α=________.[答案] 2 014[解析] 1cos2α+tan2α=1cos2α+sin2αcos2α=1+sin2αcos2α=α+sin α2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α=2 014.16.在△ABC 中,cos ⎝ ⎛⎭⎪⎫π4+A =513,则cos2A 的值为________.[答案]120169[解析] 在△ABC 中,cos ⎝ ⎛⎭⎪⎫π4+A =513>0,∴sin ⎝ ⎛⎭⎪⎫π4+A =1-cos 2⎝ ⎛⎭⎪⎫π4+A =1213.∴cos2A =sin ⎝ ⎛⎭⎪⎫π2+2A =sin2⎝ ⎛⎭⎪⎫π4+A=2sin ⎝⎛⎭⎪⎫π4+A cos ⎝ ⎛⎭⎪⎫π4+A =2×1213×513=120169.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求值(tan5°-cot5°)·cos70°1+sin70°.[解析] 解法一:原式=⎝ ⎛⎭⎪⎫tan5°-1tan5°·cos70°1+sin70° =tan 25°-1tan5°·sin20°1+cos20°=-2·1-tan 25°2tan5°·sin20°1+cos20°=-2cot10°·tan10°=-2. 解法二:原式=⎝⎛⎭⎪⎫sin5°cos5°-cos5°sin5°·sin20°1+cos20°=sin 25°-cos 25°sin5°·cos5°·sin20°1+cos20° =-cos10°12sin10°·2sin10°·cos10°2cos 210°=-2. 解法三:原式=⎝ ⎛⎭⎪⎪⎫1-cos10°sin10°-1sin10°1+cos10°·sin20°1+cos20°=⎝ ⎛⎭⎪⎫1-cos10°sin10°-1+cos10°sin10°·sin20°1+cos20°=-2cos10°sin10°·2sin10°·cos10°2cos 210°=-2. 18.(本小题满分12分)(2014·山东烟台高一期末测试)已知向量a 、b 满足|a |=2,|b |=1,且a 与b 的夹角为2π3,求:(1)a 在b 方向上的投影; (2)(a -2b )·b .[解析] (1)a 在b 方向上的投影为|a |cos 〈a ,b 〉=2×cos 2π3=2×(-12)=-1.(2)(a -2b )·b =a ·b -2b 2=2×1×cos 2π3-2×1=-1-2=-3.19.(本小题满分12分)(2014·山东济宁梁山一中高一月考)已知α为锐角,且tan(π4+α)=2.(1)求tan α的值;(2)求2α+π4α-sin αcos2α的值.[解析] (1)tan(π4+α)=1+tan α1-tan α=2,∴tan α=13.(2)∵α为锐角,tan α=13,∴sin α=1010,cos α=31010. ∴sin2α=2sin αcos α=2×1010×31010=35, cos2α=1-2sin 2α=1-2×110=45.∴2α+π4α-sin αcos2α=n2α+cos2αα-sin αcos2α=35+4531010-101045=2105. 20.(本小题满分12分)已知cos ⎝ ⎛⎭⎪⎫α-β2=-19,sin ⎝ ⎛⎭⎪⎫α2-β=23,且π2<α<π,0<β<π2,求tan α+β2的值.[解析] ∵π2<α<π,0<β<π2,∴π4<α-β2<π.∵cos ⎝ ⎛⎭⎪⎫α-β2=-19,∴sin ⎝ ⎛⎭⎪⎫α-β2=459. 又∵π4<α2<π2,∴-π4<α2-β<π2.∵sin ⎝ ⎛⎭⎪⎫α2-β=23,∴cos ⎝ ⎛⎭⎪⎫α2-β=53.故sin α+β2=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β =sin ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β-cos ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=459×53-⎝ ⎛⎭⎪⎫-19×23=2227, cos α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β=cos ⎝ ⎛⎭⎪⎫α-β2cos ⎝ ⎛⎭⎪⎫α2-β+sin ⎝ ⎛⎭⎪⎫α-β2sin ⎝ ⎛⎭⎪⎫α2-β=⎝ ⎛⎭⎪⎫-19×53+459×23=7527,∴tan α+β2=sinα+β2cosα+β2=22277527=22535.21.(本小题满分12分)设平面内两向量a⊥b ,且|a |=2,|b |=1,k 、t 是两个不同时为零的实数.(1)若x =a +(t -3)b 与y =-ka +tb 垂直,求k 关于t 的函数关系式k =f (t ); (2)求函数k =f (x )的最小值. [解析] (1)∵x⊥y ,∴x·y =0, 即[a +(t -3)b ]·(-ka +tb )=0,∴-ka 2+t (t -3)b 2-k (t -3)a·b +ta·b =0.由|a |=2,|b |=1,a·b =0,可得-4k +t (t -3)=0.∵k 、t 不同时为0,则t ≠0,∴k =t t -4,即f (t )=t t -4(t ≠0).(2)f (t )=t 2-3t 4=14⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫t -322-94.故当t =32时,f (t )min =-916.22.(本小题满分14分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.[解析] (1)∵a ∥b ,∴2sin θ=cos θ-2sin θ, ∴4sin θ=cos θ,∴tan θ=14.(2)由|a |=|b |,得sin 2θ+(cos θ-2sin θ)2=5,∴1-2sin2θ+4sin 2θ=5. ∴-2sin2θ+2(1-cos2θ)=4, 即sin2θ+cos2θ=-1,∴sin ⎝ ⎛⎭⎪⎫2θ+π4=-22.又∵0<θ<π,∴π4<2θ+π4<9π4,∴2θ+π4=5π4或7π4.∴θ=π2或θ=3π4.。
高中数学人教版必修4 第一章三角函数 1.4.2 正弦函数、余弦函数的性质B卷姓名:________ 班级:________ 成绩:________一、选择题 (共7题;共14分)1. (2分)在中,若,则必是()A . 等边三角形B . 直角三角形C . 锐角三角形D . 钝角三角形2. (2分)(2020·陕西模拟) 将函数的图象向左平移个单位长度,得到函数的图象,则下列说法正确的是()①函数的图象关于直线对称;②函数的图象关于点对称;③函数的图象在区间上单调递减;④函数的图象在区间上单调递增.A . ①④B . ②③C . ①③D . ②(④3. (2分)函数()A . 在[﹣π,π]上是增函数B . 在[0,π]上是减函数C . 在上是减函数D . 在[﹣π,0]上是减函数4. (2分)(2018·山东模拟) 下列命题中,真命题是()A . ,使得B .C .D . 是的充分不必要条件5. (2分) (2017高一上·南昌期末) 函数y=sin2x+cos2x是()A . 周期为π的偶函数B . 周期为π的奇函数C . 周期为2π的增函数D . 周期为2π的减函数6. (2分)(2018·广东模拟) 函数,则的最大值和最小正周期分别为()A . 2和B . 4和C . 2和D . 4和7. (2分)在△ABC中,下列关系一定成立的是()A . sinA+sinC=sinBB . sin(A+B)=cosCC . cos(B+C)=﹣cosAD . tan(A+C)=tanB二、单选题 (共1题;共2分)8. (2分)下列函数中周期为π且为偶函数的是()A . y=cos(2x﹣)B . y=sin(2x+)C . y=sin(x+)D . y=cos(x﹣)三、填空题 (共3题;共3分)9. (1分) (2019高一上·黑龙江月考) 已知函数在区间上是增函数,则下列结论正确的是________(将所有符合题意的序号填在横线上).①函数在区间上是增函数;②满足条件的正整数的最大值为3;③ .10. (1分) (2017高二上·南阳月考) 给出下列命题:① 中角,,的对边分别为,,,若,则;② ,,若,则;③若,则;④设等差数列的前项和为,若,则 .其中正确命名的序号是________.11. (1分) (2016高一下·榆社期中) 已知函数f(x)=sin(2x+ )若y=f(x﹣φ)(0<φ<)是偶函数则φ=________.四、解答题 (共3题;共25分)12. (5分)判断下列函数的奇偶性:(1)y=cos2x,x∈R;(2)y=cos(2x﹣);(3)y=sin(x+π);(4)y=cos(x﹣).13. (10分)已知,且tanα<0(1)求tanα的值;(2)求的值.14. (10分)已知函数 =sin2x+acos2x,a为常数,a∈R,且.(1)求函数的最小正周期.(2)当时,求函数f(x)的最大值和最小值.参考答案一、选择题 (共7题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、单选题 (共1题;共2分)8-1、三、填空题 (共3题;共3分)9-1、10-1、11-1、四、解答题 (共3题;共25分)12-1、13-1、13-2、14-1、14-2、。
B卷能力素养提升(时间:120分钟满分:150分)第Ⅰ卷第一部分:听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
(Text 1)W: What is your favorite TV channel?M: I like to watch the sports channel.1.What program does the man like most?A.Sports. B.Music. C.News.(Text 2)M: What are your plans for tomorrow, Brenda?W: Well, first, I 'm going to wash the dishes.2.What does the woman plan to do first tomorrow?A.Wash some clothes.B.Wash the dishes.C.Take a shower.(Text 3)M: We are having a little party on the weekend. Can you and Tom come?W: That sounds nice. Thank you. But I'll have to check with Tom.3.What is the man doing?A.Inviting the woman to a party.B.Asking for the woman's help.C.Checking time with Tom.(Text 4)M: I thought I saw something in the yard.W: I didn't see anything.M: Well, look again.W: There's nothing there.4.What do we know about the woman?A.She saw nothing in the yard.B.She saw something in the yard.C.She put something in the yard.(Text 5)W: Which one hurts, the left or the right one?M: The left one. It's really painful. I can hardly hear with it.W: Don't go swimming for the next two days. If it doesn't get better by tomorrow, you should see a doctor.M: I guess so. Maybe I should get something from the drugstore right now.5.What is the man probably going to do?A.See a doctor.B.Do some exercise.C.Buy some medicine.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
期末试卷
一、选择题(每小题4分,共40分)
1、与463-︒终边相同的角可以表示为(k Z)∈( )
A .k 360463⋅︒+︒
B .k 360103⋅︒+︒
C .k 360257⋅︒+︒
D .k 360257⋅︒-︒ 【答案】C
2、如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )
A .A
B O
C =
B .AB ∥DE
C .A
D B
E =
D . AD FC =
【答案】D
3、α是第四象限角,12cos 13α=
,sin α=( )A. 513
B.5
13
-
C. 512
D. 512-
【答案】B 4、
5
5
sin cos 12
12
π+π的值是( )A. 4
B. 1
C.4-
D.1-
【答案】C
5、设()sin()cos()f x a x b x =π+α+π+β+4,其中a b 、、、αβ均为非零的常数,若
(1988)3f =,则(2008)f 的值为( )
A .1
B .3
C .5
D .不确定 【答案】B
6、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则
MN 的最大值为( )
A .1
B
C
D .2
【答案】B
7、为得到函数πcos 23y x ⎛⎫
=+
⎪⎝
⎭
的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位
B .向右平移
5π
12个长度单位 C .向左平移
5π
6个长度单位
D .向右平移
5π
6
个长度单位
【答案】A
8、函数的部分图象如图所示,则函数表达式为( )
A . ),2
,0)(sin(R x x A y ∈π
<
ϕ>ωϕ+ω
=)4
8sin(
4π
-π-=x y
B .
C .
D .
【答案】D
9、设函数()sin ()3f x x x π⎛⎫
=+
∈ ⎪⎝⎭
R ,则()f x =( ) A .在区间2736ππ⎡⎤
⎢
⎥⎣
⎦,上是增函数
B .在区间2π⎡⎤
-π-
⎢⎥⎣⎦
,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦
,上是增函数
D .在区间536ππ⎡⎤⎢⎥⎣⎦
,上是减函数
【答案】A
10、设D.E.F 分别是△ABC 的三边BC.CA.AB 上的点,且2,DC BD = 2,CE EA = 2,
AF FB =
则AD BE CF ++ 与BC
( )
A .互相垂直
B .同向平行
C .反向平行
D .既不平行也不垂直 【答案】C
二、填空题.(每小题4分,共16分)
11、
23sin 702cos 10-=-
. 【答案】2
12、已知函数()2sin 5f x x π⎛⎫
=ω-
⎪⎝⎭
的图象与直线1y =-的交点中最近的两个交点的距离)48sin(4π-π=x y )48sin(4π
+π=x y )4
8sin(4π
+π-=x y
为
3
π
,则函数()f x 的最小正周期为 . 【答案】π
13、已知函数()sin()cos()f x x x =+θ++θ是偶函数,且[0,]2
π
θ∈,则θ的值
为 . 【答案】
4
π
14、下面有五个命题:
①函数y =sin 4x -cos 4
x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =
,2
k k Z π
∈}. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数3sin(2)3y x π=+
的图像向右平移6
π
得到3sin 2y x =的图像. ⑤函数sin()2
y x π
=-在[0]π,上是单调递减的. 其中真命题的序号是 .
【答案】①④
三、解答题.(共四个小题,共44分) 15、(本题满分10分,每小题5分) (1)化简:
sin()cos(3)tan()tan(2)
tan(4)sin(5)
a παπααπαππαπ------+.
(2)若α.β为锐角,且12cos()13α+β=,3
cos(2)5
α+β=,求cos α的值. 【答案】
解:(1)原式= sin α
(2)因为α.β为锐角,且12cos()13α+β=,3
cos(2)5
α+β= [0,
]2παβ+∈,2[0,]2
π
αβ+∈
所以5sin()13α+β=,4
sin(2)5
α+β=
∴ 16
cos cos((2)())65
a ααββ=+-+=.
16、(本小题满分10分)
如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角βα,,它们的终边分别与单
位圆相交于A.B 两点,已知A.B
的横坐标分别为
510
.
(1)求tan()αβ-的值; (2)求αβ+的值. 【答案】
解:由条件得cos αβ=
=
αβ 、
为锐角,sin 510
αβ∴=
=
11
tan ,tan 23
αβ∴==
(1)11
tan tan 1
23tan()1tan tan 7
132αβαβαβ-
--===+⋅+⨯
(2)11tan tan 23tan()111
1tan tan 123
αβαβαβ+
++==
=-⋅-⨯ 又αβ 、为锐角,0αβπ∴<+< 4
π
αβ∴+=
17、(本小题满分12分)
已知函数21()cos cos 1,2f x x x x x R =
++∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在[
,]124
ππ
上的最大值和最小值,并求函数取得最大值和最小值时的自变
量x 的值. 【答案】
解:21()cos cos 12f x x x x =
+15
cos 2244
x x =
++ 15
sin(2)264
x π=++ (1)()f x 的最小正周期22
T π
π== (2)[,]124x ππ∈ 22[,
]633
x πππ
∴+∈ ∴当26
2
x π
π
+=
,
即6x π
=
时,max 157
()244f x =
+=
当263x ππ+=或2263
x ππ+=时,
即12
x π
=
或4x π
=
时,
min
153()244
f x =-+=
18、(本小题满分12分) 已知函数2π()cos 12f x x ⎛
⎫
=+
⎪⎝
⎭
,1()1sin 22g x x =+. (1)设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值; (2)求函数()()()h x f x g x =+的单调递增区间 【答案】。