数学---山东省烟台市实验中学2017届高三上学期期中考试
- 格式:doc
- 大小:281.79 KB
- 文档页数:6
2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,52. 已知,则=( )i22i z =-z A. 2 B. 13. 已知.若,则( )a = ()2a b a+⊥ cos ,a b=A.B.D. 4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C .充要条件D. 既不充分也不必要条件5.此正四棱锥的体积为( )A. B. C.D.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对B. 2对C. 3对D. 4对7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A. B. C. 1D. 11e+e 1-e二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C 17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE V AE BD CD 4BD=(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈2024-2025学年山东省青岛市高三上学期期中数学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )6,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}15Q x x =-≤<P Q = A.B.C.D.{}1,2,3{}0,1,2{}1,2,5{}0,1,2,5【正确答案】B【分析】首先把集合用列举法表示出来,再运用交集的运算进行求解即可.P 【详解】若,,则是的正因数,而的正因数有,,,,61y x =+y ∈N 1x +661236所以,{}6,0,1,2,51P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N 因为,{}15Q x x =-≤<所以,{}0,1,2P Q ⋂=故选:B.2. 已知,则=( )i22i z =-z A. 2 B. 1【正确答案】C【分析】根据复数的运算法则计算出复数,再计算复数的模.z 【详解】由题意知,()()()i 22i i 22i 22i 22i z +==--+2i 28-=11i 44=-+所以,z ==故选:C.3. 已知.若,则()a = ()2a b a+⊥ cos ,a b =A.B.D. 【正确答案】B【分析】根据向量垂直可得,代入向量夹角公式即可得结果.32a b ⋅=-【详解】因为,且,()2a b a+⊥1a = 则,可得,()2220a a a ab b +⋅=+⋅= 21322a b a⋅=-=-rr r 所以.cos ,a b a b a b⋅===⋅r r r r r r 故选:B.4. 已知等比数列的前n 项和为,且,则“”是“的公比为2”的({}n a n S 31S ma =7m ={}n a )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件【正确答案】A【分析】利用等比数列的性质,分别判断充分性与必要性即可.【详解】设等比数列的公比为,{}n a q 由,得,()223123111111S a a a a a q a q a q q ma =++=++=++=21q q m ++=当时,,解得或,充分性不成立;7m =217q q ++=2q =3q =-当时,,必要性成立.2q =217q q m ++==所以“”是“的公比为2” 的必要不充分条件.7m ={}n a 故选:A5. 此正四棱锥的体积为( )A. B. C. D. 【正确答案】B【分析】根据正四棱柱及正四棱锥的体积公式可得正四棱锥的高与斜高的关系式,进而可得解.【详解】如图所示,正四棱柱为,正四棱锥,1111ABCD A B C D -1O ABCD -设底边边长,高AB a =1OO =则,1O E ==又正四棱柱的侧面积,114S AB OO =⋅=正四棱锥的侧面积,21142S AB O E a=⋅⋅=则,解得,a=a =所以正四棱锥体积,2113ABCD V S OO =⋅==故选:B.6. 已知函数则图象上关于原点对称的点有( )()21,0,22,0,xx f x x x x ⎧⎛⎫≥⎪ ⎪=⎝⎭⎨⎪-+<⎩()f x A. 1对 B. 2对C. 3对D. 4对【正确答案】C【分析】作出的图象,再作出函数关于原点对称的图象,进而数形结()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭合判断即可.【详解】作出的图象,再作出函数关于原点对称的图象如图所示.()f x 1,0,2xy x ⎛⎫=≥ ⎪⎝⎭因为函数关于原点对称的图象与图象有三个交点,故1,0,2xy x ⎛⎫=≥ ⎪⎝⎭22,0,y x x x =-+<图象上关于原点对称的点有3对.()fx故选:C7. 已知函数,函数的图象各点的横坐标缩()2211cos sin cos 222222x x x xf x =-f (x )小为原来的(纵坐标不变),再向左平移个单位长度,得到函数的图象.若方程12π12y =g (x )在上有两个不同的解,,则的值为( )()21g x m -=7π0,12x ⎡⎤∈⎢⎥⎣⎦1x 2x 12x x +A. B. C. D. π6π3π2π【正确答案】A【分析】先化简,根据图象变换求出,将方程转化为()f x ()g x ()21g x m -=,由函数图象的对称性求出答案.()12m g x +=()g x 【详解】根据题意可得,()1πcos sin 26f x x x x ⎛⎫=+=+ ⎪⎝⎭所以,()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,,7π012x ≤≤ππ3π2332x ∴≤+≤所以在上单调递增,在上单调递减,关于对称,()g x π0,12⎡⎤⎢⎥⎣⎦π7π,1212⎡⎤⎢⎥⎣⎦()g x π12x =且,,()π06g g ⎛⎫== ⎪⎝⎭π112g ⎛⎫= ⎪⎝⎭7π112g ⎛⎫=- ⎪⎝⎭方程等价于有两个不同的解,()21g x m -=()12m g x +=12,x x .12ππ2126x x ∴+=⨯=故选:A.8. 若关于不等式恒成立,则当时,的最小值为( )x ()ln ax x b ≤+1e e a ≤≤1e ln b a +-A.B. C. 1D. 11e +e 1-e【正确答案】C【分析】构建,分析可知的定义域为,且在()()ln f x ax x b=--()f x (0,+∞)()0f x ≤内恒成立,利用导数可得,整理可得,构建(0,+∞)ln 1a b ≤+1e ln ln b a a a +-≥-,利用导数求其最值即可.()1ln ,ee g a a a a =-≤≤【详解】设,()()ln f x ax x b=--因为,可知的定义域为,所以在内恒成立,1e e a ≤≤()f x (0,+∞)()0f x ≤(0,+∞)又因为,()111xf x x x -=-='令,解得;令,解得;f ′(x )>001x <<f ′(x )<01x >可知在内单调递增,在内单调递减,()f x (0,1)(1,+∞)则,可得,则,()()1ln 10f x f a b ≤=--≤ln 1a b ≤+1ln e e b aa +≥=可得,当且仅当时,等号成立,1e ln ln b a a a +-≥-ln 1a b =+令,则,()1ln ,e e g a a a a =-≤≤()111a g a a a '-=-=令,解得;令,解得;()0g a '>1e a <≤()0g a '<11e a <≤可知在内单调递增,在内单调递减,则,()g a (]1,e 1,1e ⎡⎫⎪⎢⎣⎭()()11g a g ≥=即,当且仅当时,等号成立,1eln ln 1b a a a +-≥-≥1,1a b ==-所以的最小值为1.1eln b a +-故选:C.方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.二.多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分)9. 已知,则下列结论正确的是()3515ab==A. B. C. D.lg lg a b>a b ab+=1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭49a b +>【正确答案】ABD【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D.【详解】由题可得,,33log 15log 310a =>=>55log 15log 510b =>=>,即,所以,1515110log 3log 5a b ∴<=<=110a b <<0a b >>对于A ,因为,所以,故A 正确;0a b >>lg lg a b >对于B ,,,故B 正确;15151511log 3log 5log 151a b +=+== a b ab ∴+=对于C ,因为,所以,故C 错误;0a b >>1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭对于D ,因为,,0a b >>111a b +=所以,()11444559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭当且仅当,即时等号成立,这与已知矛盾,所以,故D 正4b aa b =2a b =35a b =49a b +>确.故选:ABD.10. 若数列满足,,,则称数列为斐波那{a n }11a =21a =12n n n a a a --=+3n ≥n +∈N {a n }契数列,又称黄金分割数列,则下列结论成立的是( )A. B. 713a =222n n n a a a -+=+3n ≥n +∈N C.D.135********a a a a a ++++= 24620242025a a a a a ++++= 【正确答案】AC【分析】利用斐波那契数列的定义结合递推关系一一判定选项即可.【详解】对于A ,由题可得,,,,,故A 正确;32a =43a =55a =68a =713a =对于B ,因为,又,21112n n n n n n n n a a a a a a a a ++--=+=++=+12n n n a a a --=+所以,即,故B 错误;21213n n n n n a a a a a +---++=+223n n n a a a +-=+对于C ,2024202320222023202120202023202132a a a a a a a a a a =+=++==++++ ,故C 正确;2023202131a a a a =++++ 对于D ,2025202420232024202220212024202243a a a a a a a a a a =+=++=++++ ,故D 错误.20242022421a a a a a =+++++ 故选:AC.11. 如图,在边长为4的正方体中,E ,F 分别是棱,的中点,1111ABCD A B C D -11B C 11C D P 是正方形内的动点,则下列结论正确的是()1111D C B AA. 若平面,则点P 的轨迹长度为//DP CEFB. 若P 的轨迹长度为AP =2πC. 若P 是正方形的中心,Q 在线段EF 上,则的最小值为1111D C B A PQ CQ +D. 若P 是棱的中点,则三棱锥的外接球的表面积是11A B P CEF -41π【正确答案】ACD【分析】作出相应图形,先证明平面平面,再结合给定条件确定动点轨迹,//BDNM CEF 求出长度即可判断;建立空间直角坐标系,根据题意确定动点轨迹,求解长度即可判断,A B 将平面翻折到与平面共面,连接,与交于点,此时取到CEF 1111D C B A PC EF Q PQ CQ +最小值,利用勾股定理求出即可判断,先找到球心,利用勾股定理得出半径,求,PQ CQ C 出外接球的表面积即可判断.D 【详解】如图,取,的中点为,连接,,11A D 11A B ,N M ,,,,MN DN BD BM NE 11B D所以,又E ,F 分别是棱,的中点,11//MN B D 11B C 11C D 所以,所以,11//EF B D //MN EF 平面,平面,MN ⊄CEF EF ⊂CEF 平面,//MN ∴CEF 因为分别是棱,的中点,所以,且,,N E 11A D 11B C //NE CD NE CD =所以四边形为平行四边形,CDNE 所以,又平面,平面,//ND CE ND ⊄CEF CE ⊂CEF 平面,//ND ∴CEF 又,平面,MN ND N = ,MN ND ⊂BDNM 所以平面平面,//BDNM CEF点P 是正方形内的动点,且平面,1111D C B A //DP CEF 所以点P 的轨迹为线段,由勾股定理得,故正确;MN MN ==A 如图,以为原点,以所在直线为轴,轴,轴,A 1,,AB AD AA x y z 由题意得,设,(0,0,0)A (,,4)P x y,AP ==所以,所以点的轨迹为为圆心,半径为1的个圆,221x y +=P 1A 14所以点P 的轨迹长度为.故错误;1π2π42⋅=B 如图,将平面翻折到与平面共面,CEF 1111DC B A 连接,与交于点,此时取到最小值,PC EF Q PQ CQ+,且,CE CF === 2PE PF ==所以点为的中点,所以Q EFPQ EQ ===所以,CQ ===即的最小值为,故正确;PQ CQ +C如图,连接,交于点,连接,PF 11B D 1O PE 若P 是棱的中点,则,11A B 90FEP ∠= 所以是外接圆的一条直径,所以是外接圆的圆心,FP PEF !1O PEF !过点作平面的垂线,则三棱锥的外接球的球心一定在该垂线上,1O ABCD P CEF -O 连接,设,则,OP 1OO t =2222t R +=连接,,所以,OC 12AC ==()(2224t R -+=所以,解得,()(222224t t +=-+52=t 所以,222541244R =+=所以三棱锥的外接球的表面积为,故正确.P CEF -24π41πS R ==D 故选.ACD方法点睛:三棱锥外接球的半径的求法:(1)先找两个面的外心;(2)过外心作所在平面的垂线,两垂线的交点即为球心;(3)构造直角三角形,利用勾股定理求出半径.有时无须确定球心的具体位置,即只用找一个面的外心,则球心一定在过该外心与所在平面的垂线上.第Ⅱ卷三.填空题(本大题共3小题,每小题5分,共15分)12. 曲线的所有切线中,斜率最小的切线的方程是_______.32374y x x x =+++【正确答案】.430x y -+=【分析】首先求函数的导数,再根据二次函数求最小值,即可求切线的斜率,以及代入切线方程,即可求解.【详解】由题意,223673(1)4y x x x '=++=++所以时,,又时,,1x =-min4y '=1x =-1y =-所以所求切线的方程为,即.14(1)y x +=+430x y -+=故.430x y -+=13. 为测量某塔的高度,在塔旁的水平地面上共线的三点A ,B ,C 处测得其顶点P 的仰角分别为30°,60°,45°,且米,则塔的高度________米.50AB BC ==OP =【正确答案】【分析】设,在,,分别根据锐角三角函数定义求PO h =Rt POA △Rt POB △Rt POC △出,最后利用余弦定理进行求解即可.,,OA OB OC 【详解】设塔的高,PO h =在中,,同理可得,,Rt POA △otan 30OP OA ==OB =OC h =在中,,则,OAC πOBA OBC ∠+∠=cos cos OBA OBC ∠=-∠,22222222OB AB OA OB BC OC OB AB OB BC +-+-∴=-⋅⋅.=h =所以塔的高度为米.故答案为.14. 已知,当,时,是线段的中点,点在所有的线段121A A =2n ≥*N n ∈1n A +1n n A A -P 上,若,则的最小值是________.1n n A A +1A P λ≤λ【正确答案】23【分析】根据中点坐标公式可得,进而可得为等比数列,()*122n n n a a a n +++=∈N {}1n n a a +-即可利用累加法求解,由极限即可求解.121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详解】不妨设点、,设点,()10,0A ()21,0A ()(),0n n A a n *∈N 则数列满足,,,{a n }10a =21a =()*122n n n a a a n +++=∈N 所以,,1212n nn n a a a a +++--=-所以,数列是首项为,公比为的等比数列,{}1n n a a +-211a a -=12-所以,,11111122n n n n a a --+⎛⎫⎛⎫-=⨯-=- ⎪⎪⎝⎭⎝⎭当时,2n ≥()()()2121321110122n n n n a a a a a a a a --⎛⎫⎛⎫=+-+-++-=++-++- ⎪ ⎪⎝⎭⎝⎭ ,1111212113212n n --⎛⎫-- ⎪⎡⎤⎛⎫⎝⎭==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+也满足,故对任意的,.10a =121132n n a -⎡⎤⎛⎫=--⎢⎥⎪⎝⎭⎢⎥⎣⎦n *∈N 121132n n a -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦所以,,故11212lim 1323n n A P ∞-→+⎧⎫⎡⎤⎪⎪⎛⎫=--=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭23λ≥故答案为.23四.解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 已知数列的前项和为,且.{}n a n n S 22n n S a +=(1)求及数列的通项公式;2a {}n a (2)在与之间插入个数,使得这个数依次组成公差为的等差数列,求n a 1n a +n ()2+n n d 数列的前项和.1n d⎧⎫⎨⎬⎩⎭n n T 【正确答案】(1),,24a =2n n a =*N n ∈(2)332n nn T +=-【分析】(1)先将代入题干表达式计算出,再将代入题干表达式即可计算1n =12a =2n =出的值,当时,由,可得,两式相减进一步推导即可2a 2n ≥22n n S a +=1122n n S a --+=发现数列是以为首项,为公比的等比数列,从而计算出数列的通项公式;{}n a 22{}n a (2)先根据第题的结果写出与的表达式,再根据题意可得,()1n a 1n a +()11n n n a a n d +-=+通过计算出的表达式即可计算出数列的通项公式,最后运用错位相减法即可计算出n d 1n d ⎧⎫⎨⎬⎩⎭前项和.n n T 【小问1详解】由题意,当时,,解得,1n =111222S a a +=+=12a =当时,,即,解得,2n =2222S a +=12222a a a ++=24a =当时,由,可得,两式相减,可得,2n ≥22n n S a +=1122n n S a --+=122n n n a a a -=-整理,得,∴数列是以2为首项,2为公比的等比数列,12n n a a -={}n a ∴,.1222n n n a -=⋅=*N n ∈【小问2详解】由(1)可得,,,2nn a =112n n a ++=在与之间插入个数,使得这个数依次组成公差为的等差数列,n a 1n a +n ()2+n n d 则有,()11n n na a n d +-=+∴,∴,1211nn n n a a d n n +-==++112n n n d +=∴,1231211123412222n n n n T d d d +=++⋅⋅⋅+=+++⋅⋅⋅+,()2311111123122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得,2112311111121111133221122222222212n n n n n n n n n T ++++-+++=+++⋅⋅⋅+-=+-=--∴.332n n n T +=-16. 设的内角A ,B ,C 所对的边分别为a ,b ,c ,且有,ABC V π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭(1)求角B :(2)若AC 边上的高,求.h =cos cos A C【正确答案】(1)π3B =(2)18-【分析】(1)由正弦定理及两角和的正弦公式可得角的大小;B (2)由等面积法可得,再由正弦定理可得的值,再由22b ac =sin sin A C ,可得的值.cos cos()B A C =-+cos cos A C 【小问1详解】因为,π2cos 3b A a c⎛⎫-=+ ⎪⎝⎭由正弦定理可得,12sin cos sin sin 2B A A A C ⎛⎫+=+ ⎪ ⎪⎝⎭即sin cos sin sin sin()B A A B A A B +=++即,sin cos sin sin sin cos cos sin B A A B A A B A B +=++,sin sin sin cos B A A A B =+在三角形中,,sin 0A >,cos 1B B -=即,因为,则π1sin 62B ⎛⎫-= ⎪⎝⎭(0,)B π∈ππ5π,666B ⎛⎫-∈- ⎪⎝⎭可得,则.ππ66B -=π3B =【小问2详解】因为边上的高,AC h =所以①21122ABC S b h b =⋅==又②11sin 22ABC S ac B ac === 由①②可得,22b ac =由正弦定理可得,2sin 2sin sin B A C =结合(1)中可得,π3B =3sin sin 8A C =因为,()1cos cos cos cos sin sin 2B A C A C A C =-+=-+=所以.1311cos cos sin sin 2828A C A C =-=-=-17. 如图1,在平行四边形中,,,E 为的中点,ABCD 24AB BC ==60ABC ∠=︒CD 将沿折起,连结,,且,如图2.ADE VAE BD CD 4BD =(1)求证:图2中的平面平面;ADE ⊥ABCE (2)在图2中,若点在棱上,直线与平面F BD AF ABCE 点到平面的距离.F DEC 【正确答案】(1)证明见解析(2【分析】(1)连接,利用勾股定理证明,再根据线面垂直的判定定BE ,BE DE BE AE ⊥⊥理证得平面,再根据面面垂直的判定定理即可得证;BE ⊥ADE (2)以点为原点,建立空间直角坐标系,利用向量法求解即可.E【小问1详解】连接,BE 由题意,2,60,120AD DE ADE BCE ==∠=︒∠=︒则为等边三角形,ADE V 由余弦定理得,所以2144222122BE ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭BE =则,222222,DE BE BD AE BE BD +=+=所以,,BE DE BE AE ⊥⊥又平面,,,AE DE E AE DE ⋂=⊂ADE 所以平面,BE ⊥ADE 又平面,所以平面平面;BE ⊂ABCE ADE ⊥ABCE 【小问2详解】如图,以点为原点,建立空间直角坐标系,E 则,()()()(()2,0,0,0,,,,0,0,0A B CD E -设,()01DF DB λλ=≤≤故,()((,,1,EC ED DB=-==-,((()1,1,AD AD DF λλ=+=-+-=--因为轴垂直平面,故可取平面的一条法向量为,z ABCE ABCE ()0,0,1m =所以,cos ,m AF m AF m AF⋅===化简得,解得或(舍去),23830λλ+-=13λ=3λ=-所以,1133DF DB ⎛==- ⎝ 设平面的法向量为,DEC (),,n x y z =则有,可取,00n EC x n ED x ⎧⋅=-=⎪⎨⋅=+=⎪⎩)1n =- 所以点到平面FDEC18. 已知函数,且与轴相切于坐标原点.()sin ln(1)f x x x ax =++-()y f x =x (1)求实数的值及的最大值;a ()f x (2)证明:当时,;π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>(3)判断关于的方程实数根的个数,并证明.x ()0f x x +=【正确答案】(1),最大值为0 2a =(2)证明见解析(3)2个,证明见解析【分析】(1)由求出的值,即可得到解析式,再利用导数求出函数的单调(0)0f '=a ()f x 区间,从而求出函数的最大值;(2)依题意即证当时,记,π,π6x ⎡⎤∈⎢⎥⎣⎦1sin ln(1)2x x ++>1()sin ln(1)2m x x x =++-,当时直接说明即可,当,利用导数说明函数的单调π,π6x ⎡⎤∈⎢⎥⎣⎦π5π,66x ⎡⎤∈⎢⎥⎣⎦5π,π6x ⎛⎤∈ ⎥⎝⎦性,即可得证;(3)设,,当时,由(1)知,()()h x f x x =+()1,x ∞∈-+(1,0)x ∈-()(0)0f x f <=则,当时,利用导数说明函数的单调性,结合零点存在性定理判断函()0f x x +<π()0,x ∈数的零点,当时,,令,[π,)x ∈+∞()1ln(1)h x x x ≤++-()1ln(1)(π)l x x x x =++-≥利用导数说明在区间上单调递减,即可得到,从而说明函数在()l x [π,)+∞()0l x <无零点,即可得解.[π,)+∞【小问1详解】由题意知,且,(0)0f =(0)0f '=,1()cos 1f x x a x '=+-+ ,解得,(0)20f a '∴=-=2a =,,()sin ln(1)2f x x x x ∴=++-()1,x ∞∈-+则,1()cos 21f x x x '=+-+当时,,.故,0x ≥cos 1≤x 111x ≤+()0f x '≤所以在区间上单调递减,所以.()f x [0,)+∞()(0)0f x f £=当时,令,10x -<<1()cos 21g x x x =+-+则,21()sin (1)g x x x '=--+,,,sin (0,1)x -∈ 211(1)x >+()0g x '∴<在区间上单调递减,则,()f x '∴(1,0)-()(0)0f x f ''>=在区间上单调递增,则,则.()f x ∴(1,0)-()(0)0f x f <=()()max 00f x f ==综上所述,,的最大值为.2a =()f x 0【小问2详解】因为,()sin ln(1)2f x x x x =++-要证当时,即证,π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>1sin ln(1)2x x ++>记,,1()sin ln(1)2m x x x =++-π,π6x ⎡⎤∈⎢⎥⎣⎦当时,,,π5π,66x ⎡⎤∈⎢⎥⎣⎦1sin 12x ≤≤ln(1)0x +>;1()sin ln(1)02m x x x ∴=++->当时,,5π,π6x ⎛⎤∈ ⎥⎝⎦1()cos 1m x x x '=++记,则,1()()cos 1n x m x x x '==++21()sin 0(1)n x x x '=--<+在区间上单调递减,则,()m x '∴5π,π6⎛⎤ ⎥⎝⎦5π6()065π6m x m ⎛⎫<=+< '+⎝'⎪⎭则在区间上单调递减,()m x 5π,π6⎛⎤⎥⎝⎦,()11()(π)sin πln(π1)ln π1022m x m ∴≥=++-=+->综上所述,当时,.π,π6x ⎡⎤∈⎢⎥⎣⎦1()22f x x +>【小问3详解】设,,()()sin ln(1)h x f x x x x x =+=++-()1,x ∞∈-+,1()cos 11h x x x '∴=+-+当时,由(1)知,(1,0)x ∈-()(0)0f x f <=故,()()0f x x f x +<<故在区间上无实数根.()0f x x +=(1,0)-当时,,因此为的一个实数根.0x =(0)0h =0()0f x x +=当时,单调递减,π()0,x ∈1()cos 11h x x x '=+-+又,,(0)10h '=>1(π)20π1h '=-<+存在,使得,∴0(0,π)x ∈()00h x '=所以当时,当时,00x x <<ℎ′(x )>00πx x <<ℎ′(x )<0在区间上单调递增,在区间上单调递减,()h x ∴()00,x ()0,πx ,又,()0(0)0h x h ∴>=(π)ln(π1)π2π0h =+-<-<在区间上有且只有一个实数根,在区间上无实数根.()0f x x ∴+=()0,πx (]00,x 当时,,[π,)x ∈+∞()1ln(1)h x x x ≤++-令,()1ln(1)(π)l x x x x =++-≥,1()1011x l x x x -'∴=-=<++故在区间上单调递减,,()l x [π,)+∞()(π)ln(1π)π13π0l x l ≤=+-+<-<于是恒成立.故在区间上无实数根,()0f x x +<()0f x x +=[π,)+∞综上所述,有2个不相等的实数根.()0f x x +=方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.19. 对于任意正整数n ,进行如下操作:若n 为偶数,则对n 不断地除以2,直到得到一个奇数,记这个奇数为;若n 为奇数,则对不断地除以2,直到得出一个奇数,记这个n a 31n +奇数为.若,则称正整数n 为“理想数”.n a 1n a =(1)求20以内的质数“理想数”;(2)已知.求m 的值;9m a m =-(3)将所有“理想数”从小至大依次排列,逐一取倒数后得到数列,记的前n 项和{}n b {}n b 为,证明.n S ()*7N 3n S n <∈【正确答案】(1)2和5为两个质数“理想数” (2)的值为12或18m(3)证明见解析【分析】(1)根据“理想数”概念,结合列举法可解;(2)分析题意知道必为奇数,则必为偶数,结合整除知识得解;9m a m =-m (3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.【小问1详解】以内的质数为,202,3,5,7,11,13,17,19,故,所以为“理想数”;212=21a =2,而,故不是“理想数”;33110⨯+=1052=3,而,故是“理想数”;35116⨯+=41612=5,而,故不是“理想数”;37122⨯+=22112=7,而,故不是“理想数”;311134⨯+=34172=11,而,故不是“理想数”;313140⨯+=4058=13,而,故不是“理想数”;317152⨯+=52134=17,而,故不是“理想数”;319158⨯+=58292=19和5为两个质数“理想数”;2∴【小问2详解】由题设可知必为奇数,必为偶数,9m a m =-m ∴存在正整数,使得,即:∴p 92p m m =-9921p m =+-,且,921p ∈-Z211p-≥,或,或,解得,或,211p ∴-=213p -=219p-=1p =2p =,或,即的值为12或18.1991821m ∴=+=-2991221m =+=-m 【小问3详解】显然偶数"理想数"必为形如的整数,()*2k k ∈N 下面探究奇数"理想数",不妨设置如下区间:,((((0224462222,2,2,2,2,2,,2,2k k -⎤⎤⎤⎤⎦⎦⎦⎦若奇数,不妨设,1m >(2222,2k k m -⎤∈⎦若为"理想数",则,且,即,且,m (*3112s m s +=∈N )2s >(*213s m s -=∈N )2s >①当,且时,;(*2s t t =∈N )1t >41(31)133t t m -+-==∈Z ②当时,;()*21s t t =+∈N 2412(31)133t t m ⨯-⨯+-==∉Z ,且,(*413t m t -∴=∈N )1t >又,即,22241223t k k--<<1344134k t k-⨯<-≤⨯易知为上述不等式的唯一整数解,t k =区间]存在唯一的奇数"理想数",且,(2222,2k k -(*413k m k -=∈N )1k >显然1为奇数"理想数",所有的奇数"理想数"为,()*413k m k -=∈N 所有的奇数"理想数"的倒数为,∴()*341kk ∈-N 1133134144441k k k ++<=⨯---1212123111111222521n n n n S b b b b b b b +⎛⎫⎛⎫∴=+++<+++++<+++++++ ⎪ ⎪⎝⎭⎝⎭,即.21111171111124431124⎛⎫<⨯++++<+⨯=⎪⎝⎭-- ()*73n S n <∈N 知识点点睛:本题属于新定义的题目,综合了整除,数列的放缩,分组求和和等比数列公式.属于难题.。
山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.123.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.2554.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24- B.3- C.3D.85.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.497.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z= D.2320240z z z z ++++= 10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为411.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积263PMN S =△,则点P 的轨迹长度为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,12AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e x g x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-【答案】C 【解析】【分析】根据B A ⊆,可得24x =或22x x =,结合集合元素性质分别求解即可.【详解】由B A ⊆得24x =或22x x =,即0x =或2x =或2x =-,当0x =时,{}{}1,4,0,1,0A B ==,符合题意;当2x =时,{}{}1,4,4,1,4A B ==,不符合元素的互异性,舍去;当2x =-时,{}{}1,4,4,1,4A B =-=,符合题意;综上,0x =或2x =-.故选:C .2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.12【答案】B 【解析】【分析】利用二项式系数的性质直接求解即可.【详解】因为22nx ⎫+⎪⎭的展开式中只有第6项的二项式系数最大,所以展开式一共有11项,即10n =.故选:B3.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.D.【答案】B 【解析】【分析】根据向量的坐标运算即可求解.【详解】因为()()1,3,2,2a b ==,所以()()3,5,1,1a b a b +=-=-,所以()()·cos ,17a b a b a b a b a b a b+-+-==+-.故选:B.4.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24-B.3- C.3D.8【答案】A【解析】【分析】设等差数列{}n a 的公差()0d d ≠,由236,,a a a 成等比数列求出d ,代入6S 可得答案.【详解】设等差数列{}n a 的公差()0d d ≠,∵等差数列{}n a 的首项为1,236,,a a a 成等比数列,∴2326a a a =⋅,∴()()()211125+=++a d a d a d ,且11a =,0d ≠,解得2d =-,∴{}n a 前6项的和为61656566122422()⨯⨯=+=⨯+-=-S a d .故选:A.5.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位【答案】A 【解析】【分析】先用诱导公式把正弦型函数化为余弦型函数,然后根据图象的平移变换的解析式的特征变化,得到答案.【详解】sin 2sin 2cos 2cos[2(326612y x x x x πππππ⎛⎫⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此该函数图象向左平移12π个单位,得到函数cos 2y x =的图象,故本题选A.【点睛】本题考查了已知变化前后的函数解析式,求变换过程的问题,考查了余弦函数图象变换特点.6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.49【答案】B 【解析】【分析】分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.先证NN '⊥平面PAC ,则可得到//BB NN '',再证//MM CC ''.由三角形相似得到13MM CC ''=,'2'3NN BB =,再由P AMN N PAMP ABC B PACV V V V ----=即可求出体积比.【详解】如图,分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.因为BB '⊥平面PAC ,BB '⊂平面PBB ',所以平面PBB '⊥平面PAC .又因为平面PBB ' 平面PAC PB '=,NN PB ''⊥,NN '⊂平面PBB ',所以NN '⊥平面PAC ,且//BB NN ''.在PCC '△中,因为,MM PA CC PA ''⊥⊥,所以//MM CC '',所以13PM MM PC CC '==',在PBB '△中,因为//BB NN '',所以23PN NN PB BB '==',所以11123231119332PAM P AMN N PAMP ABC B PACPAC PA MM NN S NN V V V V S BB PA CC BB ----⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭====⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭.故选:B7.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -【答案】C 【解析】【分析】根据已知条件,求得5,4x z ==,进而代入回归方程可求得ˆ2a=-,从而得出ˆ 1.22zx =-,联立ln z y =,即可求得本题答案.【详解】由已知可得,346754x +++==,2 2.5 4.5744z +++==,所以,有ˆ4 1.25a =⨯+,解得ˆ2a =-,所以,ˆ 1.22zx =-,由ln z y =,得ln 1.22y x =-,所以, 1.222 1.2e e e x x y --==⋅,则2e c -=.故选:C .8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2【答案】D【解析】【分析】由题意9mn mn+利用均值定理可得3mn =,再利用双曲线的几何性质求解即可.【详解】设(,0),(,0),(,),(,)A a B a C x y D x y --,则ACy m k x a ==+,BD y n k x a -==-,所以222y mn x a-=-,将曲线方程22222x a y a b -=代入得22b mn a=-,又由均值定理得996mn mn mn mn +=+≥,当且仅当9mn mn =,即223bmn a==时等号成立,所以离心率2e ==,故选:D.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z = D.2320240z z z z ++++= 【答案】BC【解析】【分析】设()i ,z a b a b =+∈R ,代入题干方程求解判断A ,求复数的模判断B ,根据复数乘方运算及共轭复数的定义判断C ,利用复数的周期性求和判断D.【详解】设()i ,z a b a b =+∈R ,由210z z ++=得()()2i i 10a b a b ++++=,即()()2212i 0a b a ab b -++++=,所以221020a b a ab b ⎧-++=⎨+=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩或1232a b ⎧=-⎪⎪⎨⎪=-⎪⎩,所以1i 22z =-+或122z =--,故选项A 错误;由13i 22z =-+,所以1z ==,由122z =--,所以1z ==,故选项B 正确;当13i 22z =-+时,所以2211i 2222z ⎛⎫=-+=-- ⎪ ⎪⎝⎭,13i 22z =--,所以2z z =,当122z =--时,所以221313i i 2222z ⎛⎫=--=-+ ⎪ ⎪⎝⎭,13i 22z =-+,所以2z z =,故选项C 正确;因为321(1)(1)0z z z z -=-++=,所以31z =,所以()()()2320242345620202021202220232024z z z z z z z z z z z z z z z ++++=+++++++++++ ()()()232201722111z z z z z z z z z z =+++++++++++ ()00011=++++-=- ,故选项D 错误.故选:BC10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为4【答案】BCD 【解析】【分析】设(),4P a a -,则可求AB 的方程为(4)40ax a y +--=.结合,,,O A P B 四点共圆可判断A 的正误,求出OP 的最小值后可判断B 的正误,求出AB 所过的定点后可判断C 的正误,结合AB 的方程可求OM ON +,利用二次函数的性质可求其最小值,故可判断D 的正误.【详解】设(),4P a a -,因为AB 与,x y 轴均相交,故04a <<,连接,OA OB ,设线段:4(04)l x y x +=<<,则,,,O A P B 四点共圆,且此圆以OP 为直径,而以OP 为直径的圆的方程为:()()40x x a y y a -+-+=,整理得到:22(4)0x y ax a y +---=,故AB 的方程为:4(4)0ax a y ---=,整理得到:(4)40ax a y +--=.对于A ,若O 在以线段AB 为直径的圆上,则90AOB ∠=︒,由,,,O A P B 四点共圆可得90APB ∠=︒,而90∠=∠=︒PAO PBO ,2AO BO ==,故四边形OAPB 为正方形,故OP =,但P 为动点且OP 长度变化,故O 不恒在以线段AB 为直径的圆上,故A 错误.对于B ,四边形PAOB 面积为122S OA AP =⨯⨯⨯=而PO ≥=,当且仅当OP ⊥l 即()2,2P 时等号成立,故S 的最小值为4,故B 成立.对于C ,因为AB 的方程为:(4)40ax a y +--=,整理得到:()440a x y y -+-=,令0440x y y -=⎧⎨-=⎩得11x y =⎧⎨=⎩,故AB 过定点()1,1Q ,设O 到AB 的距离为d ,则d OQ ≤=故AB =≥,当且仅当d =OQ AB ⊥时等号成立,故AB 的最小值为,故C 成立.对于D ,由AB 的方程为(4)40ax a y +--=可得44,0,0,4M N a a ⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭,故()24416,04424OM ON a a a a +=+=<<---+,而20(2)44a <--+≤,故4OM ON +≥,当且仅当2a =等号成立,故OM ON +的最小值为4,故D 成立.故选:BCD .11.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-【答案】ACD 【解析】【分析】选项A ,先求原函数的导函数,再判断其导函数的符号即可;选项B ,取譬如“点(1,(1))f --和点(1,(1))f ”的特殊值判断即可;选项C ,||x x >=≥,11x +>,进而判断即可;选线D ,先构造函数()()()F x f x f x mx =---,将不等式的恒成立问题转化为函数的最值,即可判断.【详解】已知函数())ln 1f x x =+,||x x >=≥0x ->,故函数()f x 的定义域为R ,对于选项A ,函数()f x 的导函数为:()f x '=,0x ->,得()0f x '<,所以()f x 在其定义域上是单调递减函数,选项A 正确;对于选项B ,取特值:(1)ln f =(1)2)f -=+,且(1)(1)ln 2ln(22)ln(222)1222f f +-++==≠,即函数图象上存在点(1,(1))f --和点(1,(1))f 不关于()0,1对称,选项B 错误;对于选项C 0x ->11x -+>,得())ln1ln10f x x =-+>=,当x →+∞111x -+=+→,当x →-∞1x -+→+∞,同时()f x 在其定义域上是单调递减函数,故()f x 的值域是()0,∞+选项C 正确;对于选项D ,定义()()()F x f x f x mx =---,0x >,则))()ln1ln1F x x x mx =-+-++-,)()ln 1ln1F x x mx ⎛⎫=-++-⎪⎭,)()ln ln1F x x mx ⎛⎫=-+-,故)()lnF x x mx =-+-,其导函数()F x m m'==-,若,()0x ∈+∞,()()f x f x mx --≥恒成立,即函数()0F x ≥恒成立,由于(0)0F =,则(0)0F '≥在()0,x ∈+∞上恒成立,即(0)10F m '=--≥,得1m ≤-,当1m =-时,)()lnG x x x =-++,,()0x ∈+∞()1G x '=+,由于,()0x ∈+∞,则1>1<,()10G x '=+>,所以函数()G x 在区间(0,)+∞上单调递增,且(0)ln100G =-+=,则,()0x ∈+∞时,()0G x >恒成立,同时,()0x ∈+∞,由于1m ≤-,mx x -≥则))()lnln()0F x x mx x x G x =--≥-++=>,显然()0F x >恒成立,,()0x ∈+∞时,()()f x f x mx --≥恒成立,则m 的最大值为1-正确;选项D 正确;故选:ACD.【点睛】关键点点睛:本题D 选项的关键是转化为(0)0F '≥在()0,x ∈+∞上恒成立,从而得到1m ≤-,最后验证得到1m =-时符合题意即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.【答案】13【解析】【详解】试题分析:直接利用二项分布的期望与方差列出方程求解即可.解:随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,可得np=30,npq=20,q=,则p=,故答案为.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.【答案】【解析】【分析】当直线l 的斜率不存在时,写出直线l 的方程,求出||4AB =,不合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立抛物线的方程,由12||8AB x x p =+=+,求出k ,根据锐角三角函数表达边长,再进一步求出PAB 的面积.【详解】由22143x y +=的右焦点为()1,0,所以抛物线的焦点为(1,0)F ,故12p=,则2p =,因此抛物线24y x =,当直线l 的斜率不存在时,直线l 的方程为1x =,代入抛物线的方程,得2y =±,所以(1,2)A ,(1,2)B -,所以||4AB =,不合题意,当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立2(1)4y k x y x =-⎧⎨=⎩,得2222(24)0k x k x k -++=,所以212224k x x k ++=,所以221212222444||2822p p k k AB x x x x p k k ++=+++=++=+==,所以1k =±,由对称性不妨设1k =,则45AFx ∠=︒,因为ABN ∠和BAM ∠的平分线相交于点P ,//AM BN ,所以PA PB ⊥,45ABN ∠=︒,22.5ABP ∠=︒,所以在Rt ABP 中,sin 22.58sin 22.5AP AB =︒=︒,cos 22.58cos 22.5BP AB =︒=︒,所以18sin 22.58cos 22.52ABP S =⋅︒⋅︒ 32sin 22.58cos 22.516sin 45=︒︒=︒=,故答案为:14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积3PMN S =△,则点P 的轨迹长度为___________.【答案】263π【解析】【分析】由题意求出P 到MN 的距离,又易证1BD ⊥面1AB C ,进而得到P 点在1AB C V 所在平面的轨迹是以263为半径的圆,因为1AB C V 3<,所以该圆一部分位于三角形外,作出图形即可求解.【详解】因为正方体的棱长为16BD =,所以123BD MN ==,设P 到MN 的距离为d ,由1||2PMN S d MN ==263d =,11A D ⊥平面11ABB A ,1AB ⊂平面11ABB A ,∴111A D AB ⊥,又11AB A B ⊥,1111A D A B A = ,∴1AB ⊥平面11A D B ,11BD AB ∴⊥,同理可证1BD AC ⊥,又1AB AC A = ,1BD ∴⊥面1AB C ,P ∴点在1AB C V 所在平面的轨迹是以263为半径的圆,1AB C V内切圆的半径为123=,∴该圆一部分位于三角形外,如图有22226(2)()3x +=,解得63x =,∴6HOB π∠=,∴圆在三角形内的圆弧为圆周长的一半,∴1262622l π=⋅⋅,故答案为:263π.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.【答案】(1)6(2)π2θ=【解析】【分析】(1)过点P 作PQ AM ⊥,利用圆的性质求得PQ ,代入面积公式直接求解即可;(2)设AOP 的面积为1,S APM 的面积为2S ,结合三角形面积公式建立方程,利用辅助角公式化简求解即可.【小问1详解】过点P 作PQ AM ⊥交AM 于点Q ,如图:因为圆O 的半径为2,由题意π2π22sin 22cos 22cos 323PQ θθ⎛⎫=+-=-=-= ⎪⎝⎭,又4AM =,所以APM △的面积为14362⨯⨯=.【小问2详解】连接AP ,设AOP 的面积为1,S APM 的面积为2S ,又1122sin 2sin 2S θθ=⨯⨯⨯=,()()211421cos 41cos 22S AM PQ θθ=⋅=⨯⨯⨯-=-,由题意212S S =,所以()41cos 4sin θθ-=,即sin cos 1θθ+=,所以π2sin 42θ⎛⎫+= ⎪⎝⎭,因为()0,πθ∈,所以ππ5π,444θ⎛⎫+∈ ⎪⎝⎭,所以π3π44θ+=,所以π2θ=,所以当π2θ=时,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.【答案】(Ⅰ)见解析(Ⅱ)63【解析】【分析】(Ⅰ)利用三角形中位线定理可得1//DF BC ,由线面平行的判定定理可得结果;(Ⅱ)由122AA AC CB AB ===,可设:AB=2a ,可得AC BC ⊥,以点C 为坐标原点,分别以直线1,,CA CB CC 为x 轴、y 轴、z 轴,建立空间直角坐标系如图,利用向量垂直数量积为零列方程分别求出平面1A CD 的法向量、平面1A CE 的一个法向量,再由空间向量夹角余弦公式可得结果.【详解】(Ⅰ)如图,连结1AC ,交1AC 于点F ,连结DF ,因为D 是AB 的中点,所以在1ABC 中,DF 是中位线,所以1DF / / BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD ;(Ⅱ)因为2AC CB AB ==,所以90ACB ︒∠=,即ACBC ⊥,则以C 为坐标原点,分别以1,,CA CB CC为,,x y z 轴的正方向,建立如图所示的空间直角坐标系,设1AA =AC=CB=2,则1(0,0,0),(1,1,0),(0,2,1),(2,0,2)C D E A ,则1(1,1,0),(0,2,1),(2,0,2)CD CE CA ===,设()111,,m x y z =r是平面1DA C 的一个法向量,则,即11110220x y x z +=⎧⎨+=⎩,取11x =,则111,1=-=-y z ,则(1,1,1)n =--同理可得平面1EA C 的一个法向量,则(2,1,2)n =-,所以,3cos ,3m n 〈〉=,所以sin ,3m n 〈〉=,即二面角D AC E --的正弦值为.63【点睛】本题主要考查线面平行的判定定理、利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.【答案】(1)815(2)分布列见解析,169【解析】【分析】(1)根据超几何分布概率公式求解即可;(2)根据超几何分布概率公式求得分布列,进而求得数学期望即可.【小问1详解】由题意可知当比赛使用1个新球,1个旧球时,盒中恰有3个新球,使用一局比赛后盒中恰有3个新球的概率112642C C 8C 15P ==.【小问2详解】由题意可知X 的可能取值为0,1,2,3,4,()22422266C C 60C C 225P X ==⋅=,()22111134424222226666C C C C C C 721+C C C C 225P X ==⋅⋅=,()1122112233444224222222666666C C C C C C C C 1142++C C C C C C 225P X ==⋅⋅⋅=,()22111132424222226666C C C C C C 323+C C C C 225P X ==⋅⋅=,()22222266C C 14C C 225P X ==⋅=,所以X 的分布列为X01234P622572225114225322251225()67211432116012342252252252252259E X =⨯+⨯+⨯+⨯+⨯=.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e xg x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.【答案】(1)答案见解析(2)①(){},0e -∞ ;②证明见解析【解析】【分析】(1)对()f x 求导得到()2x a f x x='-,根据导数与函数单调性间的关系,对a 分类讨论,即可得出结果;(2)①法一:直接对a 进行分类讨论,利用(1)的结果,即可得出结果;法二:分离常量得到21ln 2x a x=,构造函数()2ln xx x ϕ=,将问题转化成函数图象交点个数来解决问题;②构造函数()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,从而将问题转化成证明()()22e 1e 4e 0x x --++>,即可证明结果.【小问1详解】()f x 的定义域为()0,∞+,()2a x af x x x x='-=-,当0a ≤时,()0f x '>恒成立,此时()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,令()0f x '>得x >()0f x '<得0x <<;此时()f x 单调递减区间为(;单调递增区间为)∞+,综上,当0a ≤时,()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,()f x 单调递减区间为(,单调递增区间为)∞+.【小问2详解】①法一;当0a =时,()f x 没有零点,不符合题意;当a<0时,由(1)知函数()f x 在()0,∞+单调递增,因为()()2211ln 122f x x a x x a x =-<--,取0m a =>,则()21((1)(3)02f m a a a a a <+-+-=++<,又()1102f =>,故存在唯一()0,1x m ∈,使得()00f x =,符合题意;当0a >时,由(1)可知,()f x 有唯一零点只需0f =,即ln 022a aa -=,解得e a =,综上,a 的取值范围为(){},0e ∞-⋃.法二:当0a =时,()f x 没有零点,不符合题意;由()0f x =,得到21ln 2x a x =,令()2ln x x x ϕ=,则()312ln xx x ϕ-'=,当(x ∈时,()0x ϕ'>,则()x ϕ在区间(单调递增,当)x ∞∈+时,()0x ϕ'<,则()x ϕ在区间)∞+单调递减,又lim ()0x x ϕ→+∞=,()0lim x x ϕ∞+→=-,所以102a <或1122ea ϕ==,即a<0或e a =,综上,a 的取值范围为(){},0e ∞-⋃.②由①得出e a =,令()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,则()()1e 2e xh x x '=+-,令()()1e 2e xg x x =+-,则()()2e 0xg x x =+>'恒成立,所以()h x '单调递增,又()10h '=,故当()0,1x ∈时,()0h x '<,则()h x 在区间()0,1上单调递减,当()1,x ∞∈+时,()0h x '>,则()h x 在区间()1,∞+上单调递增;故()()10h x h ≥=,所以()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,要证()()4g x f x >'+,只需证明()1e2e 442x f x x x⎛⎫->+=-⎪'+ ⎝⎭,即证()()22e 1e 4e 0x x --++>,由22229595Δ12e 167e 12e e 16e e 12e 16e 2222⎛⎫=+-=-+-=-+- ⎪⎝⎭95e 12 2.7167.2022⎛⎫<-⨯+-⨯< ⎪⎝⎭,所以()()22e 1e 4e 0x x --++>成立,故不等式得证.【点睛】关键点点晴:本题的关键在于第(2)问中的②,构造函数()1e 2e (0)2x h x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,通过放缩,将问题转化成证明()()22e 1e 4e 0x x --++>,从而解决问题.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
山东省实验中学2025届高三上学期第二次诊断考试(11月)数学试题一、单选题1.设集合{}21,3M m m =--,若3M -∈,则实数m =()A .0B .1-C .0或1-D .0或12.已知复数z 满足()34i 12i z -=+,则z 的虚部是()A .25B .25-C .2i5D .2i5-3.已知等比数列{}n a 中,1242,16a a a ==,则3a =()A .4B .4±C .8D .8±4.设函数()132,0log ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,若()2f t >,则t 的取值范围是()A .()1,10,9∞⎛⎫--⋃ ⎪⎝⎭B .()1,1,19∞⎛⎫--⋃ ⎪⎝⎭C .11,9⎛⎫- ⎪⎝⎭D .1,9∞⎛⎫- ⎪⎝⎭5.已知11sin(),sin(),23αβαβ+=-=则2tan ()tan αβ等于A .2B .3C .4D .66.已知随机变量()2~2,N ξσ,且(1)()P P a ξξ≤=≥,则19(0)x a x a x+<<-的最小值为()A .5B .112C .203D .1637.已知函数2()32ln (1)3f x x x a x =-+-+在区间(1,2)上有最小值,则实数a 的取值范围是()A .3a >-B .49103a -<<-C .4933a -<<-D .103a -<<-8.将一枚均匀的骰子独立投掷两次,所得的点数依次记为x ,y ,记A 事件为“8C x>8C y”,则()P A =()A .1136B .13C .1336D .512二、多选题9.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则下列说法正确的是()A .()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭B .()f x 的图象关于直线5π12x =-对称C .2π3f x ⎛⎫- ⎪⎝⎭是偶函数D .将()f x 图象上所有点的横坐标变为原来的2倍,得到函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭的图象10.如图,在四边形ABCD 中,o 60DAB ∠=,o120DCB ∠=,2AB =,BC =,2BA BC ⋅= ,则下列结果正确的是()A .o45ABC ∠=B .AC =C .BD =D .ADC11.数学中有许多形状优美,寓意美好的曲线,曲线22:1C x y x y +=+就是其中之一(如图).给出下列四个结论,其中正确结论是()A .图形关于y 轴对称B .曲线C 恰好经过4个整点(即横、纵坐标均为整数的点)C .曲线CD .曲线C 所围成的“心形”区域的面积大于3三、填空题12.若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则a =.13.已知向量,,a b c 满足,2,1,a b a b a b c a -=+==-= c b ⋅的最大值为.14.定义:如果集合A 存在一组两两不交(任意两个集合交集为空集时,称为不交)的非空真子集()12,,,,2m A A A m m ∈≥N ,且12m A A A A ⋃⋃⋃= ,那么称无序子集组12,,,m A A A 构成集合A 的一个m 划分.若使函数()()πsin 4f x x ωω⎛⎫=+∈ ⎪⎝⎭N 在π0,4⎛⎫ ⎪⎝⎭有且仅有一个零点的ω的取值集合为A ,则集合A 的所有划分的个数为.四、解答题15.已知等差数列{}n a 的前n 项和为n S ,且1452,2a S a ==.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足2n an b =,求{}n b 的前n 项和n T .16.在ABC V 中,角,,A B C 的对边分别为,,a b c ,已知cos cos 3cos 3B A Cb c a-=-.(1)求ca的值;(2)若点D 在边AB 上,且2,2,BD DA CD AC ===ABC V 的面积.17.已知函数()e ln ,,0x n n n f x k x n k x x +⎛⎫=-+∈> ⎪⎝⎭N .(1)讨论()1f x 的单调区间;(2)若()3f x 有三个极值点,求正数k 的取值范围.18.口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.(1)记总的抽取次数为X ,求E (X );(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y ,求E (Y )并从实际意义解释E (Y )与(1)中的E (X )的大小关系.19.设5n ≥为正整数,120n a a a <<<< 为正实数列.我们称满足j ik ja ar a a -=-(其中1≤<<≤i j k n )的三元数组(,,)i j k 为“r -比值组”.(1)若5n =,且{}n a 为等差数列,写出所有的1-比值组;(2)给定正实数r ,证明:中位数为4(即(,,)i j k 中4j =)的r -比值组至多有3个;(3)记r -比值组的个数为()n f r ,证明:2()4n n f r <.。
烟台高三上期中考试试卷一、选择题(每题3分,共30分)1. 下列关于细胞膜的描述,不正确的是()A. 细胞膜具有流动性B. 细胞膜具有选择透过性C. 细胞膜上没有蛋白质D. 细胞膜由磷脂双层和蛋白质组成2. 光合作用中,光反应和暗反应的场所分别是()A. 叶绿体基质和叶绿体基粒B. 叶绿体基粒和叶绿体基质C. 线粒体基质和线粒体嵴D. 细胞质基质和细胞核3. 下列关于DNA复制的描述,正确的是()A. DNA复制只能发生在细胞分裂期B. DNA复制需要模板、原料、能量和酶C. DNA复制是半保留复制D. DNA复制是全保留复制4. 下列关于基因突变的描述,不正确的是()A. 基因突变是指基因序列发生改变B. 基因突变可以是自发的,也可以是诱导的C. 基因突变都会导致生物性状的改变D. 基因突变是生物进化的原始材料5. 下列关于生态系统的描述,不正确的是()A. 生态系统包括生物成分和非生物成分B. 生态系统具有一定的自我调节能力C. 生态系统的能量流动是单向的D. 生态系统的物质循环是可逆的6. 下列关于酶的描述,正确的是()A. 酶是一类具有催化作用的蛋白质B. 酶的催化作用需要消耗能量C. 酶的催化效率不受温度和pH值的影响D. 酶的催化作用具有专一性7. 下列关于细胞周期的描述,不正确的是()A. 细胞周期包括间期和分裂期B. 细胞周期的长短与细胞类型有关C. 细胞周期的长短与细胞大小无关D. 细胞周期的长短与细胞分裂速度有关8. 下列关于细胞凋亡的描述,不正确的是()A. 细胞凋亡是由基因控制的程序性死亡B. 细胞凋亡是细胞生命周期的自然过程C. 细胞凋亡可以被外部因素诱导D. 细胞凋亡是细胞的非正常死亡9. 下列关于遗传信息的描述,不正确的是()A. 遗传信息储存在DNA中B. 遗传信息可以通过转录和翻译传递C. 遗传信息只能通过DNA传递D. 遗传信息的传递是单向的10. 下列关于种群的描述,不正确的是()A. 种群是一定区域内同种生物的所有个体B. 种群具有种群密度、出生率和死亡率等特征C. 种群数量的增长是指数型的D. 种群数量的增长是S型的二、填空题(每题2分,共20分)1. 细胞膜上的蛋白质具有多种功能,其中______是细胞膜上蛋白质的一种重要功能。
2022-2023学年山东省高一上学期期中数学试题一、单选题1.已知全集{}Z 17U x x =∈-≤≤∣,集合{}{}0,2,3,5,6,1,3,5,7A B ==,则集合()U A B ⋂等于( )A .{}0,2,6B .{}2,6C .{}0,2D .{}0,6A【分析】由题意可得{}1,0,1,2,3,4,5,6,7U =-,再根据集合的补集、交集运算求解.【详解】∵{}{}Z171,0,1,2,3,4,5,6,7U x x =∈-≤≤=-∣,则{}1,0,2,4,6U B =- ∴(){}0,2,6U A B ⋂= 故选:A.2.设11,1,,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R 且为奇函数的所有α值为( ).A .1-,3B .1,3C .1-,12,1D .1-,1,3B【分析】结合已知条件,利用函数的定义域和奇函数定义即可求解. 【详解】因为11,1,,32α⎧⎫∈-⎨⎬⎩⎭,函数()y f x x α==的定义域为R ,所以1α=或3α=,由()f x 是奇函数,则()()f x f x -=-,经检验,当1α=或3α=时,都有()()f x f x -=-, 故α值为1,3. 故选:B.3.奇函数()f x 在区间[]28,上是减函数,最小值为5-,则函数()f x 在区间[]8,2--上是( ). A .增函数且最大值是5 B .增函数且最小值是5 C .减函数且最大值是5 D .减函数且最小值是5C【分析】结合已知条件,利用奇函数的对称性即可求解.【详解】因为奇函数()f x 在区间[]28,上是减函数,最小值为5-,所以由奇函数的图像关于原点对称可知,函数()f x 在区间[]8,2--上是减函数且最大值是5.故选:C.4.已知2433242,,log 353a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >> C .a c b >> D .c a b >>D【分析】根据指数函数与对数函数的单调性,利用中间量法即可得出答案. 【详解】解:22log 3log 21c =>=, 213444155455a ⎛⎫⎛⎫⎛⎫=>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>=, 413223332b ⎛⎫<= ⎪⎪⎫ ⎝⎭⎛=⎝⎭, 因为42153>>, 所以c a b >>. 故选:D.5.已知a >0,且a ≠1,函数f (x )()312500x a x a x a x ⎧-+-≤=⎨⎩,,>,满足对任意实数x 1≠x 2,都有()()2121f x f x x x -->0成立,则a 的取值范围是( )A .(0,1)B .(1,+∞)C .(13,3]D .(1,3]D【分析】根据已知条件判断出()f x 的单调性,由此列不等式组,解不等式组求得a 的取值范围. 【详解】由于()()21210f x f x x x ->-,所以()f x 在R 上递增.所以0310125a a a a ->⎧⎪>⎨⎪-≤⎩,解得13a .故选:D本小题主要考查函数的单调性,考查指数函数、一次函数的单调性,属于基础题.6.为了抗击新型冠状病毒肺炎保障师生安全,我校决定每天对教室进行消毒工作,已知药物释放过程中,室内空气中的含药量y (3/mg m )与时间t (h )成正比(102t <<);药物释放完毕后,y 与t 的函数关系式为1()4t a y -=(a 为常数,12t ≥),据测定,当空气中每立方米的含药量降低到0.5(3/mg m )以下时,学生方可进教室,则学校应安排工作人员至少提前分钟进行消毒工作A .30B .40C .60D .90C计算函数解析式,取()1211()42t f t -==,计算得到答案.【详解】根据图像:函数过点1,12⎛⎫⎪⎝⎭,故()1212,0211(),42t x t y f t t -⎧<<⎪⎪==⎨⎪≥⎪⎩, 当12t ≥时,取()1211()42t f t -==,解得1t =小时60=分钟.故选.C本题考查了分段函数的应用,意在考查学生的计算能力和应用能力. 7.函数2222x xx xy --+=-的图象大致为( )A .B .C .D .A求出函数的定义域,根据函数的奇偶性排除部分选项,再根据特殊函数值排除部分选项即可得到答案.【详解】由已知的0x ≠22()()22x xx xf x f x ---==--+,即()f x 是奇函数,图象关于原点对称,排除D ,1213221f +⎛⎫=== ⎪-⎝⎭,排除C ,12512(1)313222f f +⎛⎫==<= ⎪⎝⎭-,所以()f x 在()0,∞+是减函数,排除B , 故选:A.思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.8.对于函数()f x ,若在定义域内存在实数0x ,满足()()00f x f x -=-,则称()f x 为“局部奇函数”,已知()e 4xf x a =--在R 上为局部奇函数,则实数a 的取值范围是( ).A .[)4,-+∞B .[4,0)-C .(],4-∞-D .(],4∞-B【分析】结合已知条件,利用函数新定义,通过分离参数和基本不等式即可求解.【详解】由局部奇函数的定义可知,0000()e 4()e 4x xf x a f x a --=--=-=+,从而0080e e x x a -=-<+,因为0e 0x >,所以00e e 2x x -+≥=,当且仅当00e e x x -=,即00x =时,不等式取等号, 从而40a -≤<,即实数a 的取值范围是[4,0)-. 故选:B.二、多选题9.下列函数中,对任意1x ,20x >,12x x ≠,满足条件()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭的有( ).A .()2xf x =B .()xf x -=3C .()34f x x = D .()43f x x =ABD【分析】结合已知条件,根据函数的凸凹性即可求解. 【详解】由题意可知,()f x 在(0,)+∞上是下凸函数, 由指数函数的图像和性质可知,AB 正确; 由幂函数的图像和性质可知, C 错误,D 正确. 故选:ABD.10.下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“x ∀∈R ,2230ax x ++≥”是真命题,则13a ≥C .设x ,y ∈R 则“2x ≥且2y ≥”是“228x y +≥”的必要而不充分条件D .设a ,b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 ABD【分析】根据充分、必要条件和命题的真假依次判断即可. 【详解】选项A ,由1a >,能推出11a <,但是由11a <,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以“1a >”是“11a<”的充分不必要条件,故A 正确; 选项B ,“x ∀∈R ,2230ax x ++≥”是真命题可知,=0a 时不成立,当0a ≠时,只需满足2>0Δ=2120a a ⎧⎨-≤⎩,解得13a ≥,故B 正确;选项C ,根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,充分性成立,故C 错误; 选项D ,因为b 可以等于零,所以由0a ≠不能推出0ab ≠,由0ab ≠等价于0a ≠且0b ≠,可得0a ≠,所以“0a ≠”是“0ab ≠”的必要不充分条件,故D 正确. 故选:ABD.11.下到说法正确的是( ).A .若函数()f x 的定义域为[]0,2,则函数()2f x 的定义域为[]0,4B .()12x f x x +=+图象关于点()2,1-成中心对称 C .幂函数()()23433m f x m m x -=-+在()0,∞+上为减函数,则m 的值为1D .2112x y --⎛⎫= ⎪⎝⎭的最大值为12BC【分析】对于A :利用抽象函数定义域求法即可判断;对于B :由函数对称性的性质即可判断;对于C 根据幂函数的性质即可判断;对于D :利用换元法和指数函数单调性即可判断. 【详解】对于A :因为函数()f x 的定义域为[]0,2, 则对于(2)f x ,02201x x ≤≤⇒≤≤, 即函数()2f x 的定义域为[0,1],故A 错误; 对于B :因为()12x f x x +=+, 所以1324()(4)2222x x x f x f x x x x +--++--=+==+--+, 从而()12x f x x +=+图象关于点()2,1-成中心对称,故B 正确; 对于C :因为幂函数()()23433m f x m m x -=-+在()0,∞+上为减函数,所以2331340m m m ⎧-+=⎨-<⎩,解得1m =,故C 正确;对于D :不妨令211t x =--≤-,则由指数函数单调性可知,211111()()()2222x t y ---==≥=, 故211()2x y --=有最小值2,无最大值,故D 错误.故选:BC.12.下列说法正确的有( ) A .21x y x+=的最小值为2B .已知1x >,则4211y x x =+--的最小值为1 C .若正数x ,y 为实数,若23x y xy +=,则2x y +的最大值为3D .设x ,y 为实数,若2291x y xy ++=,则3x y +BD【分析】对于A 选项,当0x <时,0y <,故A 选项错误;对于C 选项,可以利用基本不等式求出2x y +的最小值为3,所以C 选项错误;对于BD 选项,可以根据已知条件,结合不等式的性质,以及基本不等式的公式,即可求解.【详解】对于A 选项,当0x <时,210x y x +=<,故A 选项错误,对于B 选项,当1x >时,10x ->,则44212(1)122(1)1111y x x x x x =+-=-++-=--,当且仅当1x =时,等号成立,故B 选项正确, 对于C 选项,若正数x 、y 满足23x y xy +=,则2213x y xy x y+==+,12112212(2)()(5)(523333x y x y x y x y y x +=++=+++=,当且仅当1x y ==时,等号成立,故C 选项错误, 对于D 选项,()()()()222222355719333333412x y x y xy x y x yx y x y +=++=+-⋅⋅+-⋅=+,所以212(3)7x y +,当且仅当3y x =时,等号成立,可得22137x y +,x y ==3x y +D 选项正确. 故选:BD .三、填空题13.已知函数()22x f x a -=+(0a >且1a ≠)恒过定点P ,则点P 的坐标为___________.()2,3【分析】指数函数必然满足01a =,取指数为0即可求得定点. 【详解】由01a =知,当2x =时,0()23f x a =+=,即过定点(2,3). 故(2,3)14.若lg 2a =,103b =,则5log 24=___________.(用a 、b 表示) 31a ba+- 【分析】先转化指数式103b =为对数式,再利用换底公式即可求解. 【详解】因为103b =,所以lg3b = 因此5lg 24lg8lg 33lg 2lg 3log 24lg 51lg 21lg 231a ba++====+---.故31a ba+- 15.某学校举办运动会,比赛项目包括田径、游泳、球类,经统计高一年级有57人参加田径比赛,有11人参加游泳比赛,有62人参加球类比赛.参加球类比赛的同学中有14人参加田径比赛,有4人参加游泳比赛;同时参加田径比赛和游泳比赛的有8人;同时参加三项比赛的有2人.则高一年级参加比赛的同学有___________.106【分析】设集合A 、B 、C 分别指参加田径、游泳、球类比赛的学生构成的集合,作出韦恩图,确定参加各类比赛的学生人数,即可得解.【详解】设集合A 、B 、C 分别指参加田径、游泳、球类比赛的学生构成的集合,由图可知,高一年级参加比赛的同学人数为4637112262106++++++=. 故答案为.106四、双空题16.设函数()f x 的定义域为()0,∞+,满足()()113f x f x +=,且当(]0,1x ∈时,()212x f x x+=.(1)当(]0,1x ∈时,()f x 的最小值为__________;(2)若对任意(]()0,0x m m ∈>,都有()1181f x ≥成立,则实数m 的最大值是__________. 22103【分析】(1)由()212x f x x+=得,()12f x x x =+,由于(]0,1x ∈,然后利用基本不等式求()f x 的最小值;(2)分别求出(]1,2x ∈时,(]2,3x ∈时,(]3,4x ∈时,()f x 的值域,解方程可得m 的最大值. 【详解】解:(1)由()212x f x x+=得,()12f x x x =+,因为(]0,1x ∈,所以()12f x x x =+≥=,当且仅当12x x =,即x =所以()f x的最小值为 (2)因为()()113f x f x +=,所以()1()13f x f x =-,因为当(]0,1x ∈时,()212)x f x x+=∈+∞,所以 (]1,2x ∈时,(](1)0,1x -∈,()21112(1)11()1[2(1)]33131x f x f x x x x +-=-=⋅=+-≥--)+∞,当(]2,3x ∈时,(](1)1,2x -∈, ()111()1[2(2)]392f x f x x x =-=+-≥-,当(]3,4x ∈时,(](1)2,3x -∈, ()111()1[2(3)]3273f x f x x x =-=+-≥-,1181>>(]3,4x ∈时,1111[2(3)]27381x x +-=-,解得 103x = 若对任意(]()0,0x m m ∈>,都有()1181f x ≥成立,则103m ≤,所以实数m 的最大值为103,故(1)(2)103此题考查函数与方程的综合运用,考查了函数解析式的求法,考查分类讨论的思想 属于较难题.五、解答题17.(1)求值:()30log 2log lg 25lg 499.8+++-;(2)求函数0()(2)f x x =-的定义域.(1)172;(2)[0,2)(2,4]⋃.【分析】(1)结合已知条件,利用对数运算法则求解即可; (2)结合函数解析式直接求定义域即可.【详解】(1)由题意,()30log 2log lg 25lg 499.8+++- 33log 423log 3lg10031=+++32412=+++172=;(2)由0()(2)f x x =-知,2340x x -+≥且11()02x-≥且20x -≠,解得02x ≤<或24x <≤,从而()f x 的定义域为[0,2)(2,4]⋃.18.已知幂函数223(N )m m y x m --*=∈关于y 轴对称,且在()0,∞+上单调减函数.(1)求m 的值;(2)解关于a 的不等式()()2233132m ma a +<-. (1)1 (2)2{|3a a <或4}a >【分析】(1)结合幂函数的奇偶性以及单调性即可求解;(2)结合(1)中结论对不等式化简,并通过解一元二次不等式即可求得答案.【详解】(1)因为幂函数223(N )m m y x m --*=∈在()0,∞+上单调减函数,所以2230m m --<且N m *∈,解得1m =或2m =, 因为幂函数223m m y x --=关于y 轴对称,所以223mm y x --=是偶函数,故223m m --为偶数,从而只有1m =满足题意, 从而m 的值为1.(2)由(1)中知,1m =,则()()()()22223333132132mma a a a +<-⇒+<-, 即22(1)(32)(4)(32)0a a a a +<-⇒-->, 解得23<a 或4a >, 故不等式的解集为:2{|3a a <或4}a >. 19.已知命题p :“{}011x x x ∃∈-≤≤,2000x x m --≥”是假命题.(1)求实数m 的取值集合B ;(2)设集合()(){}320A x x a x a =---<,若x B ∈是x A ∈的必要不充分条件,求实数a 的取值范围.(1){}2B m m =>;(2)23a ≥. 【分析】(1)分离出m ,将不等式恒成立转化为函数的最值,求出()2max x x -,求出m 的范围.(2)通过对一元二次不等式对应的两个根大小的讨论,写出集合A ,“x B ∈是x A ∈的必要不充分条件,”即A B ,求出a 的范围即可【详解】(1)由题意,“{}11x x x ∀∈-≤≤,都有不等式2x x m --<0成立”是真命题,得2x x m --<0在11x -≤≤恒成立,∴2max ()m x x >-,由于二次函数2y x x 开口向上,对称轴为12x =,故在=1x -取得最大值 得m>2,即{}2B m m =>;(2)不等式()()320x a x a ---<,①当32a a >+,即1a >时,解集{}23A x a x a =+<<,若x B ∈是x A ∈的必要不充分条件,则A B ,∴22a +≥,即0a ≥,即1a >②当32a a =+即1a =时解集A =∅,若x B ∈是x A ∈的必要不充分条件,则A B 成立,③当32a a <+,即1a <时解集{}32A x a x a =<<+,若x B ∈是x A ∈的必要不充分条件,则A B 成立,∴32a ≥,此时213a x x ⎧⎫∈≤<⎨⎬⎩⎭. 综上①②③:实数a 的取值范围为23a ≥. 20.指出:“绿水青山就是金山银山.”某市一乡镇响应号召,因地制宜地将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:kg )与肥料费用10x (单位:元)满足如下关系:()()252,024848,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩,其他成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/kg ,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入的肥料费用为多少元时,该单株水果树获得的利润最大?最大利润是多少元?(1)25030100,02()48030480,251x x x f x x x x ⎧-+≤≤⎪=⎨--+<≤⎪+⎩ (2)当肥料费用为30元时,该单株水果树获得的利润最大,利润最大值为270元.【分析】(1)结合已知条件,表示出()f x 即可;(2)利用一元二次函数的单调性和基本不等式即可求解.【详解】(1)因为25(2),02()4848,251x x W x x x ⎧+≤≤⎪=⎨-<≤⎪+⎩,()10()1020f x W x x x =--, 所以25030100,02()48030480,251x x x f x x x x ⎧-+≤≤⎪=⎨--+<≤⎪+⎩. (2)当02x ≤≤时,223191()503010050()102f x x x x =-+=-+, 由一元二次函数性质可知,()f x 在3[0,]10上单调递减,在3(,2]10上单调递增, 且(0)100(2)240f f =<=从而max ()(2)240f x f ==,即()f x 在[0,2]上的最大值为240;当25x <≤时,480480()30480[30(1)]51011f x x x x x =--+=-+++++,因为48030(1)2401x x ++≥+, 当且仅当48030(1)1x x =++,即3x =时,不等式取等号, 从而480()[30(1)]5102701f x x x =-+++≤+, 即当3x =时,()f x 有最大值270,此时肥料费用1030x =.综上所述,当肥料费用为30元时,该单株水果树获得的利润最大,利润最大值为270元.21.已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数. (1)求a ,b 的值;(2)判断并证明函数()f x 的单调性;(3)若对任意的R t ∈,不等式()()22210f kt kt f kt kt ++-+<恒成立,求k 的取值范围. (1)2a =,1b =(2)见解析(3)[0,1)【分析】(1)结合已知条件,利用奇函数性质即可求解;(2)利用指数函数单调性即可判断()f x 的单调性,然后利用单调性定义即可证明;(3)利用()f x 的单调性和奇偶性,并对参数进行分类讨论即可求解.【详解】(1)因为12()2x x b f x a+-+=+是定义在R 上的奇函数, 所以1(0)02b f a-+==+,即1b =, 11212(1)(1)41f f a a-+-+-=-=-=++,解得2a =. 故2a =,1b =.(2)由(1)中知,12111()22221x x x f x +-+==-+++, 由指数函数的单调性,()f x 在R 上单调递减,证明:设1x ,2R x ∈,12x x <, 则21121212111122()()()221221(21)(21)x x x x x x f x f x --=-+--+=++++, 由指数函数单调性可知,2122x x >,即21220x x ->,故12())0(f x f x ->,即12()()f x f x >,所以()f x 在R 上单调递减.(3)因为()f x 是R 上的奇函数,所以()()()()22222(1)21021f kt kt f kt kt f kt kt f kt f kt kt kt ++-+<⇒+=-+-+<--,因为()f x 在R 上单调递减,所以2221kt kt kt kt +>-+-,即2210kt kt ++>,从而对任意的R t ∈,2210kt kt ++>恒成立,当0k =时,不等式2210kt kt ++>恒成立,满足题意;当0k ≠时,欲使对任意的R t ∈,2210kt kt ++>恒成立,只需20Δ440k k k >⎧⎨=-<⎩,解得01k <<. 综上所述,k 的取值范围为[0,1).22.已知函数()221(0)g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1.(1)求a 、b 的值;(2)设()().g x f x x =①若[]1,1x ∈-时,()220x x f k -⋅,求实数k 的取值范围;②若方程()2213021x x f k k -+⋅-=-∣∣有三个不同的实数解,求实数k 的取值范围. (1)1,0a b ==;(2)①(],0-∞;② ()0,+∞.【分析】(1)由二次函数的单调性求得最大值和最小值,从而可求得,a b ;(2)① 不等式分离参数得2121(2)2x x k ≤+-,可换元设12xt =,然后由二次函数性质求得最小值,进而得k 的范围;② 化简方程,换元设21x t =-和,转化关于t 的二次方程2(23)(12)0(0)t k t k t -+++=≠,由根的分布知识求解.【详解】(1)2()21g x ax ax b =-++,对称轴是1x =,又0a >,所以()g x 在[]2,3上单调递增,则(2)11(3)314g b g a b =+=⎧⎨=++=⎩,解得10a b =⎧⎨=⎩. (2)由(1)2()21g x x x =-+,()1()2g x f x x x x==+-, ①(2)20x x f k -⋅≥即12222x x x k +-≥⋅,2121(2)2x x k ≤+-, 令11,222x t ⎡⎤=∈⎢⎥⎣⎦,记2()21F t t t =-+,min ()(1)0F t F ∴==,0k ∴≤, 即k 的取值范围是(],0-∞.② 由2(21)(3)021x x f k -+-=-得1221(23)021x x k k +-+-+=-, 即221(23)21(12)0x x k k --+-++=,且210x -≠,令21x t =-,则方程化为2(23)(12)0(0)t k t k t -+++=≠, 又方程2(21)(3)021x x f k -+-=-有三个不同的实数解,由21x t =-的图象可知,2(23)(12)0(0)t k t k t -+++=≠有两个根12,t t 且1201t t <<<或1201,1t t <<=, 记2()(23)(12)t t k t k ϕ=-+++,则(0)120(1)0k k ϕϕ=+>⎧⎨=-<⎩或(0)120(1)023012k k k ϕϕ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,解得0k >. 故k 的取值范围是(0,)+∞.。
一.基础题组1.【山东省实验中学2017届高三第一次诊,11】已知函数2log ,0,()3,0,x x x f x x >⎧=⎨≤⎩则1()4f f ⎡⎤=⎢⎥⎣⎦.【答案】19考点:分段函数求值2.【湖北省黄石市2017届高三年级九月份调研,4】已知函数()221,1,1x x f x x ax x ⎧+<=⎨+≥⎩,若()()04f f a =,则实数a 等于( ) A .12 B .45C .2D .9 【答案】C 【解析】 试题分析:()()0(2)4242ff f a a a ==+=⇒=,选C.考点:分段函数求值【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.3.【江西南昌市2017届摸底考试,8】若定义域为R 的函数()f x 在(4,)+∞上为减函数,且函数(4)y f x =+为偶函数,则( )A .(2)(3)f f >B .(2)(5)f f >C .(3)(5)f f >D .(3)(6)f f > 【答案】D考点:函数性质4.【山东省肥城市2017届高三上学期升级统测,9】定义在R 上的函数()f x 满足在区间[)1,1-上,(),102,015x m x f x x x --≤<⎧⎪=⎨-≤<⎪⎩, 其中m R ∈,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f m =( ) A .85- B .25- C .35 D .75【答案】B 【解析】试题分析:因为()()11 2.f x f x T +=-⇒=所以59111213()()||22222525f f f f m m ⎛⎫⎛⎫-=⇒-=⇒-=--⇒=- ⎪ ⎪⎝⎭⎝⎭,因此()325(3)(1)1.55f m f f =-=-=-+=-选B. 考点:分段函数性质5.【河南濮阳市一高2017届高三上学期第二次检测,6】“2log (23)1x -<”是“48x >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】试题分析:因为2log (23)1x -<,所以3522x <<,又因为48x >,所以32x > ,所以3522x <<⇒32x >.即“2log (23)1x -<”是“48x >”的充分不必要条件,故选A. 考点:1、对数函数的性质及指数函数的性质;2、充分条件与必要条件.6.【河南濮阳市一高2017届高三上学期第二次检测,6】函数21()log (12)1f x x x =-++的定义域为( ) A .1(0,)2 B .1(,)2-∞ C .1(1,0)(0,)2- D .1(,1)(1,)2-∞-- 【答案】D考点:1、函数的定义域;2、对数函数的.7.【河南濮阳市一高2017届高三上学期第二次检测,3】下列函数中,是偶函数且在(0,)+∞上为增函数的是( )A .cos y x =B .21y x =-+ C .2log ||y x = D .xx y e e -=- 【答案】C【解析】考点:1、函数的奇偶性;2、函数的单调性.8.【河南濮阳市一高2017届高三上学期第二次检测,4】若0.2log 2a =,0.2log 3b =,0.22c =,则( )A .a b c <<B .b a c <<C .b c a <<D .a c b << 【答案】B【解析】试题分析:0.2log y x =是减函数,所以0b a <<,又0c >,所以b a c <<.故选B. 考点:1、对数函数的性质;2、指数函数的性质.9.【河南濮阳市一高2017届高三上学期第二次检测,7】若3x a =,5x b =,则45x 等于( )A . 2abB .2a bC .2a b +D .22a b +【答案】A【解析】试题分析:()22459535x x xx x a b =⨯=⨯=.故选A.考点:指数的运算.10.【河南濮阳市一高2017届高三上学期第二次检测,9】已知函数(12),1,()1log ,13x a ax f x x x ⎧-≤⎪=⎨+>⎪⎩当12x x ≠时,1212()()0f x f x x x -<-,则a 的取值范围是( )A .1(0,]3B .11[,]32C .1(0,]2D .11[,]43【答案】A考点:1、分段函数的解析式;2、分段函数的单调性及数学的转化与划归思想.11.【河南濮阳市一高2017届高三上学期第二次检测,10】若函数2()2(2)||f x x x a x a =+--在区间[-3,1]上不是单调函数,则实数a 的取值范围是 ( )A .[-4,1]B .[-3,1]C .(-6,2)D .(-6,1) 【答案】C考点:1、分段函数的单调性;2、利用导数研究分段函数的极值点.12.【江西九江地区2017届高三七校联考,2】函数229log (1)x y x -=+的定义域是( )A .(1,3)-B .(1,3]-C .(1,0)(0,3)-D .(1,0)(0,3]-【答案】D 【解析】考点:函数定义域13.【江西九江地区2017届高三七校联考,4】幂函数2268()(44)m m f x m m x -+=-+在(0,)+∞为增函数,则m 的值为( )A .1或3B .1 C.3 D .2 【答案】B 【解析】试题分析:22441,6801m m m m m -+=-+>⇒=,选B. 考点:幂函数定义及性质14.【江西九江地区2017届高三七校联考,5】已知函数||()21x f x =-+,定义函数(),0,()(),0.f x x F x f x x >⎧=⎨-<⎩则()F x 是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .非奇非偶函数 【答案】A考点:分段函数奇偶性15.【江西九江地区2017届高三七校联考,7】若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( ) A .(,4)-∞ B .(4,4]- C .(,4)[2,)-∞+∞ D .[4,4)- 【答案】D 【解析】试题分析:由题意得230x ax a -->在区间(,2]-∞-上恒成立且22a≥-,即2(2)(2)30a a ---->且4a ≥-,解得实数a 的取值范围是[4,4)-,选D.考点:复合函数单调性16.【广东海珠区2017届上学期高三综合测试(一),3】设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2),(),(3)f f f π--的大小关系是( )A .(2)()(3)f f f π-<<-B .()(2)(3)f f f π<-<-C .(2)(3)()f f f π-<-<D .(3)(2)()f f f π-<-< 【答案】C考点:1、函数的奇偶性;2、函数的单调性.17.【河北唐山市2017届上学期高三摸底考,4】设函数(),y f x x R =∈,“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B .【解析】试题分析:当“()y f x =的图象关于原点对称”时,函数()y f x =为奇函数,所以)()(x f x f -=-,所以)()(x f x f =-,所以()y f x =是偶函数;反过来,当“()y f x =是偶函数”时不能推出“()y f x =的图象关于原点对称”例如:2x y =,此时2x y =是偶函数,其图像不关于原点对称.所以“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的必要不充分条件,故应选B .18.【河北唐山市2017届上学期高三摸底考,8】设0x 是方程13xx ⎛⎫= ⎪⎝⎭的解,则0x 所在的范围是( )A .10,3⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭C .12,23⎛⎫ ⎪⎝⎭D .2,13⎛⎫⎪⎝⎭【答案】B . 【解析】试题分析:构造函数x x f x -⎪⎭⎫ ⎝⎛=31)(,所以01031)0(0>=-⎪⎭⎫⎝⎛=f ,031313131)31(213131>⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,021312131)21(212121<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-⎪⎭⎫ ⎝⎛=f ,所以由零点的存在性定理可得函数x x f x-⎪⎭⎫⎝⎛=31)(在11,32⎛⎫ ⎪⎝⎭上存在零点,故应选B .考点:1、函数与方程.19.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,6】设函数311log (2),1()3,1x x x f x x -+-<⎧=⎨≥⎩,求3(7)(log 12)f f -+=( )A .8B .15C .7D .16 【答案】C 【解析】考点:分段函数.20.【湖南永州市2017届高三第一次模拟,4】若2a =,384b =,ln2c =,则( )A .c b a <<B .c a b <<C .a b c <<D .b a c <<【答案】B考点:基本函数.21.【湖北2017届百所重点校高三联考,5】“11e eb dx x≤⎰”是“函数()2,03,0xx x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 【解析】试题分析:因e e b 1lnln -≤,即2≤b ;因函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数,故21≤+b ,即1≤b ,故2≤b 是1≤b 的必要非充分条件,应选B.考点:充分必要条件及运用.【易错点晴】本题是一道函数的单调性和充分必要条件整合在一起的综合问题.求解这类问题时,要充分借助题设条件,先搞清楚判定哪个命题是哪个命题的条件,再将问题转换为判定在一个命题成立的前提下,另一个命题的真假问题.本题求解时,要先将不等式“11eeb dx x≤⎰”翻译成2≤b 成立的前提下,命题“函数()2,03,0x x x f x b x ⎧+>=⎨+≤⎩是在R 上的单调函数”是否成立的问题,当然这里要用到绝对值函数语指数函数的性质.验证必要性时,要考察这个命题的逆命题的真伪.显然命题不真;反之成立,故应选B.22.【江西九江地区2017届高三七校联考,13】若方程210x mx m -+-=有两根,其中一根大于2,另一根小于2的充要条件是__________. 【答案】3m >【解析】考点:二次函数实根分布23.【江西九江地区2017届高三七校联考,15】若函数3211(),22()1log,2xaxf xx x-⎧≤⎪⎪=⎨⎪>⎪⎩(0a>,且1a≠)的值域是R,则实数a的取值范围是________.【答案】2[,1)2考点:分段函数值域【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.24.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,14】已知定义在R上的偶函数()f x在[0,)+∞上单调递减,且(1)0f=,则不等式(2)0f x-≤的解集是__________.【答案】(,1][3,)-∞+∞【解析】试题分析:因为()f x在R上为单调递减的偶函数,且(1)0f=,所以不等式(2)0f x-≤等价于|2|1x-≥,解得3x≥或1x≤,所以等式(2)0f x-≤的解集为(,1][3,)-∞+∞.考点:1、函数的奇偶性;2、函数的单调性;3、不等式的解法.25.【江苏南通市如东县、徐州丰县2017届10月联考,2】函数1()lg(1)1f x xx=++-的定义域是▲.【答案】()()1,11,-⋃+∞考点:定义域26.【江苏南通市如东县、徐州丰县2017届10月联考,4】设幂函数()f x kx α=的图象经过点()4,2,则k α+=▲ . 【答案】32【解析】试题分析:由题意得11,422k αα==⇒=∴32k α+=考点:幂函数定义27.【江苏南通市如东县、徐州丰县2017届10月联考,5】计算121(lg lg 25)1004--÷= ▲ .【答案】-20 【解析】试题分析:11211(lg lg 25)100lg 10204100---÷=÷=-考点:对数式运算28.【江苏南通市如东县、徐州丰县2017届10月联考,7】已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .【答案】2- 【解析】试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=-29.【江苏南通市如东县、徐州丰县2017届10月联考,8】已知()f x 为定义在R 上的偶函数,当0x ≥时,()22x f x =-,则不等式()16f x -≤的解集是 ▲ .【答案】[]2,4- 【解析】试题分析:当0x ≥时,()22xf x =-单调递增,又()33226f =-=()16|1|324f x x x ∴-⇒-≤⇒-≤≤≤考点:利用函数性质解不等式30.【四川巴中市2017届“零诊”,14】若31044=+-x x ,则=4log 3x .【答案】1±.考点:对数的运算.二.能力题组1.【山东省实验中学2017届高三第一次诊,10】已知定义在R 上的偶函数()f x 满足(4)()f x f x -=,且(1,3]x ∈-时,21cos ,13,()2,11,x x f x x x π⎧+<≤⎪=⎨⎪-<≤⎩则()()lg ||g x f x x =-的零点个数是( ) A .9 B .10C .18D .20【答案】C 【解析】试题分析:(4)()()4f x f x f x T -==-⇒=,只需考虑(0,10]x ∈上()y f x =与lg y x =交点个数,在第一个周期(0,4]x ∈上有3个交点,第二个周期(4,8]x ∈上有4个交点,在 (8,10]x ∈上有2个交点,共有9个交点,因此零点个数一共是18个,选C. 考点:函数零点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.2.【云南省、四川省、贵州省2017届高三上学期百校大联考数学,7】设e 是自然对数的底,0a >且1a ≠,0b >且1b ≠,则“log 2log a b e >”是“01a b <<<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B3.【河南濮阳市一高2017届高三上学期第二次检测,11】函数2()xf x x a=+的图象可能是( )A .(1)(3)B .(1)(2)(4)C .(2)(3)(4)D .(1)(2)(3)(4) 【答案】C【解析】试题分析:取0a =,可知(4)正确;取4a =-,可知(3)正确;取1a =,可知(2)正确;无论a 取何值都无法作出(1).故选C.考点:1、函数的图象和性质;2、选择题的“特殊值法”.【方法点睛】本题主要考查函数的图象和性质、选择题的“特殊值法”,属于难题.特殊值法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.4.【江西九江地区2017届高三七校联考,6】已知正方体1111ABCD A B C D -的棱长为1,E 、F 分别是边1AA 、1CC 的中点,点M 是1BB 上的动点,过三点E 、M 、F 的平面与棱1DD 交于点N ,设BM x =,平行四边形EMFN 的面积为S ,设2y S =, 则y 关于x 的函数()y f x =的解析式为( )A .23()222f x x x =-+,[0,1]x ∈B .23()222f x x x =-++,[0,1]x ∈ C .3()2f x x =-,[0,1]x ∈ D .3()2f x x =-,[0,1]x ∈【答案】A考点:函数解析式5.【江西九江地区2017届高三七校联考,8】函数221x x e x y e =-的大致图象是( )A .B .C .D .【答案】A 【解析】考点:函数图像与性质【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.6.【江西九江地区2017届高三七校联考,11】已知函数()f x 和(1)f x +都是定义在R 上的偶函数,若[0,1]x ∈时,1()()2x f x =,则( )A .15()()32f f ->B .15()()32f f -<C .15()()32f f -=D .19()()32f f -<【解析】试题分析:()(),(1)(1)(2)()f x f x f x f x f x f x =-+=-+⇒+=-,所以5111(2)()2,()()()()2233f x f x T f f f f +=⇒==<=-,选A.考点:函数对称性与周期性7.【广东海珠区2017届上学期高三综合测试(一),8】已知函数()ln ||f x x x =-,则()f x 的图象大致为( )【答案】A【解析】试题分析:因为0x <时()()ln f x x x =--,()f x 在(0,)+∞上递增,0x >时,1()ln ,'()1f x x x f x x=-=-,可得()f x 在(0,1)上递减,在(1,)+∞上递增,所以只有选项A 合题意,故选A.考点:1、函数的图象和性质;2、利用导数研究函数的单调性.8.【河北衡水中学2017届上学期一调,6】函数()21cos 1e xf x x ⎛⎫=-⎪+⎝⎭的图象的大致形状是( ) A . B .C .D .【答案】B考点:函数的奇偶性及函数的图象.9.【湖南永州市2017届高三第一次模拟,12】已知函数()()()11 232 [2)x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,,,则函数()()cos g x f x x π=-在区间[]08,内所有零点的和为( )A .16B .30C .32D .40 【答案】C 【解析】10.【湖北2017届百所重点校高三联考,8】函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】试题分析:从题设中提供的解析式中可以看出1,0±≠x ,且当0>x 时, x x y ln =,由于x y ln 1/+=,故函数x x y ln =在区间)1,0(e 单调递减;在区间),1(+∞e单调递增.由函数图象的对称性可知应选D. 考点:函数图象的性质及运用.11.【湖北2017届百所重点校高三联考,11】设函数()()()211,ln 31f x x g x ax x =-+=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为( ) A .94 B .2 C .92D .4 【答案】A考点:函数的图象和性质及运用.12.【四川巴中市2017届“零诊”,11】定义在R 上的奇函数)(x f 和偶函数)(x g 满足:xe x g xf =+)()(,给出如下结论:①2)(x x e e x f --=且)2()1(0g f <<;②R x ∈∀,总有1)]([)]([22=-x f x g ; ③R x ∈∀,总有0)()()()(=+--x g x f x g x f ; ④R x ∈∃0,使得)()(2)2(000x g x f x f >. 其中所有正确结论的序号是( )A .①②③B .②③C .①③④D .①②③④ 【答案】A. 【解析】试题分析:由题意得,()()()2()()()()()2x x x x x xe ef x f xg x e f x g x f x g x e e eg x ---⎧+=⎪⎧+=⎪⎪⇒⎨⎨-+-=-+=+⎪⎩⎪=⎪⎩,①:1220(1)(2)222e e e e e f g ---+<=<<=,故①正确;②:2222[()][()]()()122x x x x e e e e g x f x --+--=-=,故②正确;③:()()()()()()()()0f x g x f x g x f x g x f x g x --+=-+=,故③正确;④:000000220002()()2(2)222x x x x x x e e e e e e f x g x f x ----+-=⋅⋅==,故④错误,即正确的结论为①②③,故选A.考点:函数的性质.13.【江西九江地区2017届高三七校联考,16】给出下列四个命题:①函数()log (21)1a f x x =--的图象过定点(1,0);②已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()(1)f x x x =+,则()f x 的解析式为2()||f x x x =-;③函数1||1y x =-的图象可由函数1||y x =图象向右平移一个单位得到;④函数1||1y x =-图象上的点到点(0,1)距离的最小值是3.其中所有正确命题的序号是_________. 【答案】②④考点:函数性质14.【河北省衡水中学2017届高三上学期第三次调,16】已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x的方程()()210fx bf x -+=有8个不同根,则实数b 的取值范围是______________.【答案】1724b <≤考点:1、分段函数;2、函数的图象;3、方程的根.【方法点睛】方程解的个数问题解法:研究程)(x g 0=的实根常将参数移到一边转化为值域问题.当研究程)(x g 0=的实根个数问题,即方程)(x g 0=的实数根个数问题时,也常要进行参变分离,得到)(x f a =的形式,然后借助数形结合(几何法)思想求解;也可将方程化为形如)()(x h x f =,常常是一边的函数图像是确定的,另一边的图像是动的,找到符合题意的临界值,然后总结答案即可.15.【江苏南通市如东县、徐州丰县2017届10月联考,10】已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 【答案】43【解析】试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33a b b b b b a a a a +=⇒+=⇒=或(舍),因此3a b =,因为b a a b =,所以3333,13,33b b b b b b b b a =⇒=>⇒==43a b +=考点:指对数式运算16.【山东省肥城市2017届高三上学期升级统测,15】已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点, 则a 的取值范围是 .【答案】()11,5,973⎛⎫⎪⎝⎭考点:函数交点【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.17.【湖北2017届百所重点校高三联考,16】设函数()f x 对任意实数x 满足()()1f x f x =-+,且当01x ≤≤时,()()1f x x x =-,若关于x 的方程()f x kx =有3个不同的实数根,则k 的取值范围是___________. 【答案】(){}526,1322--+【解析】试题分析:因()()1f x f x =-+,故)()2(x f x f =+,即函数)(x f 是周期为2的周期函数,画出函数函数]1,0[),(∈=x x f y 的图象,再借助函数满足的条件()()1f x f x =-+及图象的对称性,画出函数)(x f y =的图象如图,结合图象可得12+=-kx x x ,故04)1(2>-+=∆k k ,解之可得1625<<-k 或223+-=k ,故应填(){}526,1322--+.y=kx+1yx-2-1O -2-12121考点:函数的图象等有关知识的综合运用.【易错点晴】函数图象和性质是高中数学教与学中的重点和难点之一,也是高考和各级各类考试的热点内容.本题以函数零点的个数的形式将二次函数与一次函数的零点问题进行有机地整合,有效地考查和检测学生综合运用所学知识去分析问题解决问题的能力.求解时,先探求函数的周期性,再画出函数的图象,然后借助函数的图象进行分析探求建立不等式,进而求得实数k 的取值范围是(){}526,1322--+.18.【河南濮阳市一高2017届高三上学期第二次检测,15】若“m a >”是“函数11()()33x f x m =+-的图象不过第三象限”的必要不充分条件,则实数a 能取的最大整数为__________. 【答案】1-三.拔高题组1.【河北省衡水中学2017届高三摸底联考,11】已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()fx a a R =∈实根个数不可能为 ( )A . 2个B .3个C . 4个D .5 个 【答案】D考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;函数与方程是最近高考的热点内容之一,解决方法通常是用零点存在定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.2.【河北衡水中学2017届上学期一调,10】已知()11,01,22,1,x x x f x x -⎧+≤<⎪=⎨⎪≥⎩存在210x x >≥,使得()()12f x f x =,则()12x f x 的取值范围为( )A .2112⎫-⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .24⎫⎪⎪⎣⎭D .2212⎫-⎪⎪⎣⎭【答案】A 【解析】考点:对数函数的图象及二次函数的性质.3.【河南百校联考2017届高三9月质检,9】已知()1145279722,,,log 979x x f x a b c --⎛⎫⎛⎫=-=== ⎪ ⎪⎝⎭⎝⎭,则()()(),,f a f b f c 的大小顺序为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a << 【答案】B 【解析】试题分析:()22xxf x -=-为单调递增函数,而11144527997,log 09779a b c -⎛⎫⎛⎫⎛⎫==>==< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()()()f c f b f a <<,选B.考点:比较大小4.【河北邯郸2017届9月联考,12】已知函数42412sin4()22x x x f x x +++=+,则122016()()()201720172017f f f +++=( ) A .2017 B .2016 C .4034 D .4032 【答案】D .考点:1、函数的基本性质;2、函数的奇偶性;3、函数的综合应用.【思路点睛】本题主要考查了函数的基本性质、函数的奇偶性和函数的综合应用,考查学生综合知识能力,属中档题.其解题的一般思路为:首先将已知条件进行化简并得到222sin 2)21(xx x x f ++=+,并令222sin )21(xx x x g +=+,进而可判断出其奇偶性,再由奇函数的图像与性质可得出所求的结果即可.其解题的关键是正确的化简变形并判断出函数的奇偶性.5.【河南濮阳市一高2017届高三上学期第二次检测,21】(本小题满分12分)已知函数()22xxf x -=+. (1)求方程5()2f x =的根; (2)求证:()f x 在[0,)+∞上是增函数;(3)若对于任意[0,)x ∈+∞,不等式(2)()f x f x m ≥-恒成立,求实数m 的最小值. 【答案】(1)1x =或1x =-;(2)证明见解析;(3)0.(2)证明:设120x x ≤<,则211211221212(22)(12)()()22(22)022x x x x x x x x x x f x f x +-----=+-+=<, ∴12()()f x f x <,∴()f x 在[0,)+∞上是增函数. (3)由条件知2222(2)22(22)2(())2xx x x f x f x --=+=+-=-.因为(2)()f x f x m ≥-对于[0,)x ∈+∞恒成立,且()2f x ≥,2()(2)()[()]2m f x f x f x f x ≥-=-+.又0x ≥,∴由(2)知()f x 最小值为2, ∴()2f x =时,m 最小为2-4+2=0.考点:1、简单的指数方程;2、单调性的证明方法及不等式恒成立问题.【方法点晴】本题主要考查、简单的指数方程、单调性的证明方法及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(3)是利用方法①求得m 的最小值的.6.【河南濮阳市一高2017届高三上学期第二次检测,18】(本小题满分12分)设222()(log )2log (0)f x x a x b x =-+>.当14x =时,()f x 有最小值-1. (1)求a 与b 的值;(2)求满足()0f x <的x 的取值范围. 【答案】(1)23a b =-⎧⎨=⎩;(2)11(,)82x ∈.考点:1、二次函数配方法求最值;2、简单的对数不等式.7.【江西九江地区2017届高三七校联考,17】(本小题满分10分)设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)2f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间3[0,]2上的值域. 【答案】(1)2a =,(2)215[log ,2]4【解析】试题分析:(1)由(1)2f =的log 42a =,解得2a =(2)因为22()log [(1)4]f x x =--+,所以当(1,1]x ∈-时,()f x 是增函数;当(1,3)x ∈时,()f x 是减函数.因此()f x 在区间3[0,]2上的值域是考点:函数定义域与值域8.【江西九江地区2017届高三七校联考,19】(本小题满分12分)已知二次函数()f x 的对称轴2()x f x =-,的图象被x 轴截得的弦长为3(0)1f =. (1)求()f x 的解析式;(2)若1(())2x f k >对[1,1]x ∈-恒成立,求实数k 的取值范围. 【解析】试题分析:(1)由题意可得二次函数两个零点,所以用零点式设()(23)(23)f x a x x =++,再根据(0)1f =解得1a =(2)不等式恒成立问题一般转化为对应函数最值问题min 1(())2x f k >,而求函数最值,先确定内函数值域11()[,2]22x t =∈,即为外函数定义域,再根据二次函数对称轴与定义区间位置关系得最小值由(0)11f a =⇒=,∴2()(23)(23)41f x x x x x =++=++;………………6分(2)当[1,1]x ∈-时,11()[,2]22xt =∈,………………8分 ∵()f x 开口向上,对称轴为2x =-.∴()f t 在1[,2]2t ∈上单调递增.………………9分 ∴min113()()24f t f ==.所以实数k 的取值范围是13(,)4-∞.………………12分 考点:二次函数解析式及最值【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.9.【江苏南通市如东县、徐州丰县2017届10月联考,16】(本小题满分14分)已知函数()33x x f x λ-=+⋅()R λ∈(1) 当1λ=时,试判断函数()33x x f x λ-=+⋅的奇偶性,并证明你的结论;【答案】(1) 偶函数(2) 27λ-≤考点:函数奇偶性,不等式恒成立问题【思路点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.10.【江苏南通市如东县、徐州丰县2017届10月联考,19】(本小题满分16分)已知函数()133x x af x b+-+=+.(1) 当1a b ==时,求满足()3x f x =的x 的取值;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值. 【答案】(1) 1x =- (2) ①()1,-+∞,②6 【解析】试题分析:(1)根据+1333x x =⋅ ,可将方程()3xf x =转化为一元二次方程:()2332310x x ⋅+⋅-=,再根据指数函数范围可得133x= ,解得1x =- (2) ①先根据函数奇偶性确定a b ,值:1,3a b ==,再利用单调性定(2) 因为()f x 是奇函数,所以()()0f x f x -+=,所以1133033x x x x a ab b-++-+-++=++ 化简并变形得:()()333260x xa b ab --++-=要使上式对任意的x 成立,则30260a b ab -=-=且解得:1133a a b b ⎧==-⎧⎪⎨⎨==-⎪⎩⎩或,因为()f x 的定义域是R ,所以13a b =-⎧⎨=-⎩舍去 所以1,3a b ==, 所以()13133x x f x +-+=+ ………………………………………6分①()131********x x x f x +-+⎛⎫==-+ ⎪++⎝⎭对任意1212,,x x R x x ∈<有: ()()()()211212121222333331313131x x x x x x f x f x ⎛⎫-⎛⎫⎪-=-=⎪ ⎪++++⎝⎭⎝⎭因为12x x <,所以21330x x ->,所以()()12f x f x >,因此()f x 在R 上递减. ………………………………………8分因为()()2222f t t f t k -<-,所以2222t t t k ->-,所以440t ∆=+>,解得:1t >-,所以k 的取值范围为()1,-+∞ ………………………………………10分 ②因为()()()12333x xf xg x -⋅+=-⎡⎤⎣⎦,所以()()3323x x g x f x --=-考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题。
2023-2024学年山东省烟台市高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合A={1,2m,m2﹣m},且0∈A,则m的值为()A.0B.1C.0或1D.0或﹣12.命题“∀x∈R,x2﹣x>0”的否定为()A.∃x∈R,x2﹣x≤0B.∃x∈R,x2﹣x>0C.∀x∈R,x2﹣x≤0D.∀x∈R,x2﹣x<03.已知a>b,且ab≠0,则()A.a2>ab B.a2>b2C.1a <1bD.1ab2>1a2b4.某地民用燃气执行“阶梯气价”,按照用气量收费,具体计费方法如下表所示.若某户居民去年缴纳的燃气费为868元,则该户居民去年的用气量为()A.180m3B.220m3C.260m3D.320m35.在同一坐标系内,函数y=x m(x>0)和y=mx+1m的图象可能是()A.B.C.D.6.若函数y=ax2(a≠0)的图象恒在y=2x﹣1图象的上方,则()A.a>1B.a≥1C.0<a<1D.0<a≤17.若f(x)={⬚在(﹣∞,+∞)上单调递减,则实数a的取值范围为()A.(0,3)B.(0,3]C.(2,3)D.[2,3]8.已知f (x )是定义在R 上的奇函数,且在(﹣∞,0)上单调递增,若f (﹣2)=0,则(x +1)(f (x )﹣2f (﹣x ))<0的解集是( ) A .(﹣2,0)∪(0,2) B .(﹣2,0)∪(1,2)C .(﹣2,﹣1)∪(0,2)D .(﹣2,﹣1)∪(1,2)二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分。
9.以下各组函数中,表示同一函数的有( ) A .y =√x 2,y =|x | B .y =√x ⋅√x +1,y =√x 2+xC .y =x +1,y =t +1D .y =x +2,y =x 2−4x−210.给定集合M ,N ,定义M ﹣N ={x |x ∈M ,且x ∉N }.若M ={x |﹣2≤x ≤2},N ={y |y =x +1x+1,x >﹣1},则( ) A .N ={y |y ≥1} B .M ﹣N ={x |﹣2≤x <1}C .N ﹣M ={x |x ≥2}D .N ﹣(N ﹣M )={x |1≤x ≤2}11.已知a >0,b >0,2a +b =1则( ) A .ab 的最大值为18B .1a+2b的最小值为6C .a −18b 的最大值为0D .a +18b 的最小值为1812.德国数学家康托尔是集合论的创立者,为现代数学的发展作出了重要贡献.某数学小组类比拓扑学中的康托尔三等分集,定义了区间[0,1]上的函数f (x ),且满足:①任意0≤x 1<x 2≤1,f (x 1)≤f (x 2);②f(x)=2f(x4);③f (x )+f (1﹣x )=1,则( ) A .f (x )在[0,1]上单调递增 B .f (x )的图象关于点(12,12)对称C .当x =116时,f(x)=14D .当x ∈[116,1516]时,f(f(x))=12三、填空题:本题共4小题,每小题5分,共20分。
山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。
山东省实验中学2023-2024学年高二下学期期中考试数学试题(考试时间:120分钟 试卷满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.展开式中 的系数为( )A. B. C. 30D. 902. 若是区间上的单调函数,则实数的取值范围是( )A. B. C. 或 D.3. 2020年是脱贫攻坚年,为顺利完成“两不愁,三保障”,即农村贫困人口不愁吃、不愁穿,农村贫困人口义务教育、基本医疗、住房安全有保障,某市拟派出6人组成三个帮扶队,每队两人,对脱贫任务较重的甲、乙、丙三县进行帮扶,则不同的派出方法种数共有A. 15 B. 60 C. 90 D. 5404. 若,则( )A. B. C. D. 5. 在5个大小相同的球中有2个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率是( )A.B.C.D.6. 随机变量ξ的分布列如下:其中,则等于( )A.B.()()6231x x --3x 90-30-()32112132f x x x x =-+++()1,4m m -+m 5m ≤-3m ≥5m ≤-3m ≥53m -≤≤2022220220122022(32)x a a x a x a x -=++++ 2022a a =2022220221()220222(320223()2110142512ξ1-01Pabc2b a c =+(1)P ξ=1314C.D.7. 蜂房绝大部分是一个正六棱柱的侧面,但它的底部却是由三个菱形构成的三面角. 18世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸. 令人惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是,所有的锐角都是. 后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度. 从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”. 如图所示是一个蜂巢和部分蜂巢截面. 图中竖直线段和斜线都表示通道,并且在交点处相遇.现在有一只蜜蜂从入口向下(只能向下,不能向上)运动,蜜蜂在每个交点处向左到达下一层或者向右到达下一层的可能性是相同的.蜜蜂到达第层(有条竖直线段)第通道(从左向右计)的不同路径数为. 例如:,. 则不等式的解集为()A. B. C. D. 8. 已知函数,若恰有四个不同的零点,则a 取值范围为()A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知A ,B ,C 为随机事件,则下列表述中不正确的是( )A B. C. D. 10. 对于函数,下列说法中正确是( )A. 存在有极大值也有最大值.的122310928'︒7032'︒n n m (),A n m ()3,11A =()4,23A =()10,81A m ≤{}1,2,3,7,8,9{}1,2,3,8,9,10{}1,2,3,9,10,11{}4,5,6,7,8()xf x x e =()()()21g x fx af x =-+()2,∞+1,e e⎛⎫++∞ ⎪⎝⎭12,e e ⎛⎫+⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()()()P AB P A P B =()()()P B C A P B A P C A ⋃=+()1P A A =()()P A B P AB ≥()222272exx x f x +-=()f xB. 有三个零点C. 当时,恒成立D. 当时,有3个不相等的实数根11. 在信道内传输信号,信号的传输相互独立,发送某一信号时,收到的信号字母不变的概率为,收到其他两个信号的概率均为.若输入四个相同的信号的概率分别为,且.记事件分别表示“输入”“输入”“输入”,事件表示“依次输出”,则( )A. 若输入信号,则输出信号只有两个的概率为B.C.D. 三、填空题:本题共3小题,每小题5分,共15分.12. 若,则实数a 取值范围为________13. 编号为A 、B 、C 、D 、E 的5种蔬菜种在如图所示的五块实验田里,每块只能种一种蔬菜,要求A 品种不能种在1,2试验田里,B 品种必须与A 种在相邻的两块田里,则不同的种植方法种数为________14. 设为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,;当两条棱异面时,;当两条棱平行时,的值为两条棱之间的距离,则数学期望=________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.的的()f x x ⎫∈+∞⎪⎪⎭()0f x >450,2e a ⎛⎫∈ ⎪⎝⎭()f x a =,,M N P ()01αα<<12α-,,MMMM NNNN PPPP 123,,p p p 1231p p p ++=111,,M N P MMMM NNNN PPPP D MNPM MMMM M ()221αα-()22112P D M αα-⎛⎫= ⎪⎝⎭()3112P D P αα-⎛⎫= ⎪⎝⎭()()1112311p P M D p ααα=-+-e ln()x ax x ax -≥-+ξ0ξ=1ξ=ξE ξ15. 在二项式的展开式中,已知第2项与第8项的二项式系数相等.(1)求展开式中各项系数之和;(2)求展开式中二项式系数最大的项;(3)求展开式中的有理项.16. 学生甲想加入校篮球队,篮球教练对其进行投篮测试.测试规则如下:①投篮分为两轮,每轮均有两次机会,第一轮在罚球线处,第二轮在三分线处;②若他在罚球线处投进第一球,则直接进入下一轮,若第一次没投进可以进行第二次投篮,投进则进入下一轮,否则不预录取;③若他在三分线处投进第一球,则直接录取,若第一次没投进可以进行第二次投篮,投进则录取,否则不予录取.已知学生甲在罚球线处投篮命中率为,在三分线处投篮命中率为.假设学生甲每次投进与否互不影响.(1)求学生甲被录取的概率;(2)在这次测试中,记学生甲投篮的次数为,求的分布列.17. 已知函数在点处切线与直线垂直.(1)求的值;(2)求的单调区间和极值.18. 人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.19. 已知函数,.的1n⎫⎪⎭3423X X ()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 12()23ln f x a x ⎛⎫=+⎪⎝⎭R a ∈(1)若的定义域为,值域为,求的值;(2)若,且对任意的,当,时,总满足,求的取值范围.(附加题)20. 帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m ,n ,函数在处的阶帕德近似定义为:,且满足:,,,…,.(注:,,,,…;为的导数)已知在处的阶帕德近似为.(1)求实数a ,b 的值;(2)比较与的大小;(3)若在上存在极值,求的取值范围.()f x {|0,R}x x x ≠∈R a 0a >1,13c ⎡⎤∈⎢⎥⎣⎦1x 2x ∈()()12ln2f x f x -≤a ()f x 0x =[,]m n 011()1mm nn a a x a x R x b x b x+++=+++ (0)(0)f R =(0)(0)f R ''=(0)(0)f R ''''=()()(0)(0)m n m n f R ++=[]()()f x f x '='''[]()()f x f x ''''''=[](4)()()f x f x ''''=(5)(4)()()f x f x '⎡⎤=⎣⎦()()n f x (1)()n f x -()ln(1)f x x =+0x =[]1,1()1ax R x bx=+()f x ()R x ()1()()()2f x h x m f x R x ⎛⎫=-- ⎪⎝⎭(0,)+∞m山东省实验中学2023-2024学年高二下学期期中考试数学试题简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AB【10题答案】【答案】CD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】30【14题答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)0(2)(3)有理项为,,【16题答案】【答案】(1)(2)分布列略【17题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【18题答案】【答案】(1) (2)①;②方案二中取到红球的概率更大.【19题答案】【答案】(1) (2)(附加题)【20题答案】【答案】(1),; (]0,e 4370x -228x -156x --1563a =-(),1-∞-()3,+∞()1,3-()f x ()263e f =()212e f -=-1120190a =45,7∞⎡⎫+⎪⎢⎣⎭1a =12b =(2)答案略;(3).10,2⎛⎫ ⎪⎝⎭。
山东省烟台市实验中学2017届高三上学期期中考试第Ⅰ卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.已知全集2,{|1},{|20}U R A x x B x x x ==>=->,则()U C A B = ( ) A .{}|01x x ≤≤B .{}|1x x ≥C .{}|2x x ≤D .{}|02x x ≤≤2.设函数()()23,(2)f x x g x f x =++=,则()g x 的表达式是( ) A .21x +B .21x -C .23x -D .27x +3.设实数a =log 32,b =log 0.84,c =20.3,则( ) A .a >c >bB .b >c >aC .c >b >aD .c >a >b4.函数f (x )=log 2x -12x +5的零点个数为( )A .0B .1C .3D .25.若0απ<<,3tan()4πα-=,则cos α=( ) A .25-B .45C .45-D .356.已知函数y =ln e x -e -xe x +e-x 的图象大致为( )7.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次(n *N ∈)涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( ) A .略有盈利B .略有亏损C .没有盈利也没有亏损D .无法判断盈亏情况8.若函数()2sin(),3f x x x πω=+∈R ,又()2,()0f m f n =-=,且||m n -的最小值为34π,则正数的值是( ) A .23B .43C .13D .329.在定义域为R 的四个函数:y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( )ωA .4B .3C .2D .110.为了得到函数y =3cos2x 的图象,只需把函数y =3sin(2x +6π)的图象上所有的点( ) A .向右平移6π个单位长度 B .向左平移6π个单位长度 C .向右平移3π个单位长度D .向左平移3π个单位长度第Ⅱ卷(共100分)二、填空题(本大题共5个小题,每小题5分,共25分)11.已知函数f (x -2)=⎩⎪⎨⎪⎧1+x 2,x >2,2-x ,x ≤2,则f (1)=________.12.函数2()sin (2)4f x x π=-的最小正周期是________.13.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2.则m 的取值范围是_______. 14.已知函数g (x )=2x -a2x +a为其定义域上的奇函数,则a =________.15.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”. 给出下列函数:①f (x )=sin x cos x ;②f (x )=2sin 2x +1;③()2sin()4f x x π=+;④()sin 3cos f x x x =+. 其中是“同簇函数”的为________.三、解答题:本大题共6小题,共75分.16.(12分)已知二次函数f (x )=ax 2+bx +2(a ,b ∈R )(1)若此二次函数f (x )的最小值为f (-1)=1,求f (x )的解析式,并写出其单调区间; (2)在(1)的条件下,f (x )>x +m 在区间[1,3]上恒成立,试求m 的范围.17.(12分)已知函数()log (01)a f x b x a a =+>≠且的图像经过点(4,1)和(1,-1) (1)求函数()f x 的解析式;(2)令()2(1)(),()g x f x f x g x =+-求的最小值及取最小值时x 的值.18.(12分)已知函数()22sin 2sin cos 3cos ,y x x x x x R =++∈ (1)求函数的最小正周期; (2)求函数的单调增区间;(3)求x 取何时,函数取得最大值为多少.19.(满分12分)已知函数f (x )=2a 4x -2x -1. (1)当a =1时,求函数f (x )在x ∈[-3,0]的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围.20.(13分)设2()6ln 15f x ax bx x =-++,其中a R ∈,曲线()y f x =在x =1和x =6处的切线都与直线132y x =-+垂直. (1)确定的值;(2)求函数的单调区间与极值.21.(满分14分)已知函数()32()231f x x ax x R =-+∈. (1)若()f x 在x =2处取得极值,求实数a 的值; (2)求()f x 的单调递增区间;(3)求函数()f x 在闭区间[0,2]的最小值.,a b ()f x参考答案一、选择题1-5 ABDDC 6-10 CBACB 二、填空题:11. 10 12. π2 13. [1,2] 14. ±1 15. ③④三、解答题16.解:(1)由题意有f (-1)=a -b +2=1,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +2,单调减区间为(-∞,-1),单调增区间为(-1,+∞). (2)f (x )>x +m 在区间[1,3]上恒成立, 即为x 2+x +2>m 在[1,3]上恒成立. 设g (x )=x 2+x +2,x ∈[1,3],则g (x )在[1,3]上递增,∴g (x )min =g (1)=4. ∴m <4,即m 的取值范围为(-∞,4). 17. 解:(1)由已知,得log 41,log 11a ab b +=⎧⎨+=-⎩(01)a a >≠且,解得21a b =⎧⎨=-⎩,故2()log 1f x x =- (0)x >(2)由于[]22()2(1)()2log (1)1(log 1)g x f x f x x x =+-=+---即()g x 222(1)1log 1log (2)1(0)x x x x x+=-=++-> 故221()log (2)1log (22)1 1.g x x x=++-≥+-= 于是,当1x =时,()g x 取得最小值1.18.解:将22sin 2sin cos 3cos ,y x x x x x R =++∈整理得sin 2cos222sin(2)24y x x x π=++=++.(1)函数的最小正周期22T ππ==; (2)由函数为增函数,则222242k x k πππππ-≤+≤+,(k Z ∈).则388k x k ππππ-≤≤+(k Z ∈), 那么函数的单调递增区间是3[,]88k k ππππ-+,(k Z ∈).(3)()2=2=,428x k x k k Z πππππ+++∈令,解得 ,此时函数取到最大值为2+2.19.解:(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t ∈⎣⎡⎦⎤18,1,故y =2t 2-t -1=2⎝⎛⎭⎫t -142-98,t ∈⎣⎡⎦⎤18,1,故值域为⎣⎡⎦⎤-98,0 (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解. 解法一:记g (x )=2ax 2-x -1, 当a =0时,解为x =-1<0,不可;当a <0时,开口向下,对称轴x =14a <0,过点(0,-1),也不可;当a >0时,开口向上,对称轴x =14a >0,过点(0,-1),必有一个根为正.所以a >0.解法二:方程2ax 2-x -1=0可化为a =x +12x 2=12⎝⎛⎭⎫1x +122-18, ∴a 的范围即为函数g (x )=12⎝⎛⎭⎫1x +122-18在(0,+∞)上的值域 所以a >0.20.解:(1)因 所以由题意得,得故. (2)由(1)知,(x >0), f '(x )=x -5+=.令f '(x )=0,解得x 1=2,x 2=3.当0<x <2或x >3时,f '(x )>0,故f (x )在(0, 2),(3,+∞)上为增函数; 当2<x <3时,f '(x )<0,故f (x )在(2, 3)上为减函数. 由此可知f (x )在x =2处取得极大值f (2)=7+6ln2, 在x =3处取得极小值f (3)=+6ln3. 2()6ln 15f x ax bx x =-++6'()2f x ax b x =-+'(1)2,'(6)2f f ==⎩⎨⎧=+-=+-2112262b a b a 1,52a b ==21()56ln 152f x x x x =-++6x 23x x x(-)(-)9221.解:(1)2()66f x x ax '=-,因为()f x 在2x =处取得极值,所以(2)0f '=,解得2a =. (2)()6()f x x x a '=-,①当0a =时,2()60f x x '=≥,则()f x 在(),-∞+∞上为增函数; ②当0a <时,由()6(0f x x x a '=->) 得x a <或0x >; ③当0a >时,由()6(0f x x x a '=->)得x a >或0x <. 即当0a =时,()f x 的单调增区间为(),-∞+∞; 当0a <时,()f x 的单调增区间为(),a -∞和()0,+∞; 当0a >时,()f x 的单调增区间为(),0-∞和(),a +∞. (3)①当0a ≤时,由(Ⅱ)可知,()f x 在[]0,2上单调递增, 所以()f x 的最小值为(0)1f =;②当02a <<时,可知,()f x 在[)0,a 上单调递减,在(],2a 上单调递增, 所以()f x 的最小值为3()1f a a =-;③当2a ≥时,可知,()f x 在[]0,2上单调递减, 所以()f x 的最小值为(2)1712f a =-. 即当0a ≤时,()f x 的最小值为(0)1f =; 当02a <<时,()f x 的最小值为3()1f a a =-; 当2a ≥时,()f x 的最小值为(2)1712f a =-.。