【三维设计】人教A版数学选修2-3全册练习:2.1 离散型随机变量及其分布列(含答案解析)
- 格式:doc
- 大小:58.00 KB
- 文档页数:4
高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1. 抛掷一枚质地均匀的硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上或反面向上的次数D.出现正面向上与反面向上的次数之和2. 下列随机变量是离散型随机变量的是()抛5颗骰子得到的点数和;某人一天内接收到的电话次数;某地一年内下雨的天数;某机器生产零件的误差数.A.(1)(2)(3)B.(4)C.(1)(4)D.(2)(3)3. 已知下列随机变量:①10件产品中有2件次品,从中任选3件,取到次品的件数X;②一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X表示该射击手在一次射击中的得分;③刘翔在一次110米跨栏比赛中的成绩X;④在体育彩票的抽奖中,一次摇号产生的号码数X.其中X是离散型随机变量的是()A.①②③B.②③④C.①②④D.③④4. 下列变量中不是随机变量的是().A.某人投篮6次投中的次数B.某日上证收盘指数C.标准状态下,水在100时会沸腾D.某人早晨在车站等出租车的时5. 下列随机变量中不是离散型随机变量的是().A.掷5次硬币正面向上的次数MB.某人每天早晨在某公共汽车站等某一路车的时间TC.从标有数字1至4的4个小球中任取2个小球,这2个小球上所标的数字之和YD.将一个骰子掷3次,3次出现的点数之和X6. 下列随机变量中,不是离散型随机变量的是()A.某无线寻呼台1分钟内接到的寻呼次数XB.某水位监测站所测水位在(0, 18]这一范围内变化,该水位监测站所测水位HC.从装有1红、3黄共4个球的口袋中,取出2个球,其中黄球的个数ξD.将一个骰子掷3次,3次出现的点数和X参考答案与试题解析高中数学人教A版选修2-3 第二章随机变量及其分布 2.1.1 离散型随机变量(2)一、单选题1.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】出现正面向上的次数为0或1,是随机变量【解答】此题暂无解答2.【答案】A【考点】离散型随机变量及其分布列【解析】由离散型随机变量的定义知((1)(2)(3)均是离散型随机变量,而(4)不是,由于这个误差数几乎都是在0附近的实数,无法——列出.【解答】此题暂无解答3.【答案】C【考点】离散型随机变量及其分布列【解析】③中X的值可在某一区间内取值,不能——列出,故不是离散型随机变量【解答】此题暂无解答4.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】由随机变量的概念可知.标准状态下,水在100∘C时会沸腾不是随机变量【解答】此题暂无解答5.【答案】B【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】f】由随机变量的概念可知.某人每天早晨在某公共汽车站等某一路车的时间T不能——举出,故不是离散型随机变量【解答】此题暂无解答6.【答案】B【考点】离散型随机变量及其分布列【解析】利用离散型随机变量的定义直接求解.【解答】解:水位在(0,18]内变化,不能一一举出,故不是离散型随机变量.其余都可以一一举出,故是离散型随机变量.故选B.。
2016-2017学年高中数学人教A 版选修2-3练习:2.1.2-离散型随机变量的分布列DB 项,P (ξ≤2)=P (ξ=2)≠C 47C 68C 1015;C 项,P (ξ=4)=C 47C 68C 1015;D 项,P (ξ≤4)=P (ξ=2)+P (ξ=3)+P (ξ=4)>C 47C 68C 1015.【答案】 C4.抛掷两颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12D.23【解析】 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118, P (X =4)=336=112,所以P (X ≤4)=136+118+112=16. 【答案】 A5.随机变量ξ的概率分布列为P (ξ=n )=an (n +1),n =1,2,3,4,其中a 是常数,则P ⎝ ⎛⎭⎪⎫12<ξ<52的值为( ) A.23 B.34 C.45 D.56【解析】a 1×2+a 2×3+a 3×4+a 4×5= a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15 =45a =1. ∴a =54.∴P ⎝ ⎛⎭⎪⎫12<ξ<52=P (ξ=1)+P (ξ=2)=54×⎝ ⎛⎭⎪⎫11×2+12×3=56.【答案】 D 二、填空题6.若随机变量X 服从两点分布,则P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=________.【解析】 由Y =-2,且Y =3X -2,得X =0, ∴P (Y =-2)=0.8. 【答案】 0.87.设离散型随机变量X 的概率分布列为:则P (X ≤2)=【解析】 P (X ≤2)=1-25=35.【答案】358.某篮球运动员在一次投篮训练中的得分X 的分布列如下表,其中a ,b ,c 成等差数列,且c =ab ,则这名运动员得3【解析】 由题中条件,知2b =a +c ,c =ab ,再由分布列的性质,知a +b +c =1,且a ,b ,c 都是非负数,由三个方程联立成方程组,可解得a =12,b =13,c =16,所以得3分的概率是16. 【答案】16三、解答题9.一个袋中有形状、大小完全相同的3个白球和4个红球.(1)从中任意摸出一球,用0表示摸出白球,用1表示摸出红球,即X ={ 0,摸出白球,1,摸出红球,求X 的分布列;(2)从中任意摸出两个球,用“X =0”表示两个球全是白球,用“X =1”表示两个球不全是白球,求X 的分布列.【解】 (1)X 的分布列如下表:X 0 1 P3747(2)X 的分布列如下表:X 0 1 P1767 10.(2016·大庆高二模拟)8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X 名男同学.(1)求X 的分布列;(2)求去执行任务的同学中有男有女的概率.【解】 (1)X 的可能取值为0,1,2,3.根据公式P (X =k )=C k M C n -k N -M C n N,k =0,1,2,…,m ,其中m =min{M ,n }算出其相应的概率.即X 的分布列为X 0 1 2 3 P15615561528528(2)去执行任务的同学中有男有女的概率为P =P (X =1)+P (X =2)=1556+1528=4556. [能力提升]1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②X表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,X表示取出的4个球的总得分;④X表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①②B.③④C.①②④D.①②③④【解析】由超几何分布的概念知③④符合,故选B.【答案】 B2.(2016·周口中英文学校月考)设X是一个离散型随机变量,其分布列为:则q为() 【A.1 B.1±2 2C.1+22D.1-22【解析】由分布列性质(2)知12+1-2q+q2=1,解得q=1±22,又由性质(1)知1-2q≥0,∴q≤12,∴q=1-22,故选 D.【答案】 D3.以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图2-1-1中以X表示.如果X=9,分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数Y的分布列.【解析】当X=9时,由茎叶图可知,甲组同学的植树棵数分别是9,9,11,11;乙组同学的植树棵数分别是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵树Y的可能取值为17,18,19,20,21.事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P(Y=17)=216=18.同理可得P(Y=18)=14;P(Y=19)=14;P(Y=20)=14;P(Y=21)=18.所以随机变量Y的分布列为【答案】4.(2016·红球得2分,取到一个黑球得1分,从袋中任取4个球.(1)求得分X的分布列;(2)求得分大于6分的概率.【解】(1)从袋中随机摸4个球的情况为1红3黑,2红2黑,3红1黑,4红.分别得分为5分,6分,7分,8分.故X的可能取值为5,6,7,8.P(X=5)=C14C33C47=435,P(X=6)=C24C23C47=1835,P(X=7)=C34C13C47=1235,P(X=8)=C44C03C47=135.故所求分布列为(2)根据随机变量P(X>6)=P(X=7)+P(X=8)=1235+135=1335.。
[课时达标检测]一、选择题1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为( ) A .2×0.44 B .2×0.45 C .3×0.44 D .3×0.64解析:选C 因为ξ~B(n,0.6),所以E(ξ)=n×0.6,故有0.6n =3,解得n =5.P(ξ=1)=C 15×0.6×0.44=3×0.44.2.设ξ的分布列为又设η=2ξ+5,则E(η)A.76 B.176 C.173 D.323解析:选D E(ξ)=1×16+2×16+3×13+4×13=176,所以E(η)=E(2ξ+5)=2E(ξ)+5=2×176+5=323.3.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E(ξ)等于( )A .0.765B .1.75C .1.765D .0.22解析:选B ξ可能的取值为0,1,2,P(ξ=0)=(1-0.9)×(1-0.85)=0.015,P(ξ=1)=0.9×(1-0.85)+0.85×(1-0.9)=0.22,P(ξ=2)=0.9×0.85=0.765,所以E(ξ)=0×0.015+1×0.22+2×0.765=1.75.4.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是( )A .6B .7.8C .9D .12解析:选B 设此人的得奖金额为X ,则X 的所有可能取值为12,9,6.P(X =12)=C 18C 22C 310=115,P(X =9)=C 28C 12C 310=715,P(X =6)=C 38C 310=715,故E(X)=7.8. 5.节日期间,某种鲜花进价是每束2.5元,售价是每束5元,节后卖不出的鲜花以每束1.6元处理.根据节前的销售情况预测,节日期间这种鲜花的需求量X(束)的分布列如下表.若进这种鲜花500束,则期望利润是( )A .706元B .690元C .754元D .720元解析:选A 节日期间这种鲜花需求量的数学期望E(X)=200×0.20+300×0.35+400×0.30+500×0.15=40+105+120+75=340,则利润Y =5X +1.6(500-X)-500×2.5=3.4X -450,所以E(Y)=3.4E(X)-450=3.4×340-450=706.故期望利润为706元.二、填空题6.某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.解析:设小王选对的个数为X ,得分为Y =5X , 则X ~B(12,0.8),E(X)=np =12×0.8=9.6, E(Y)=E(5X)=5E(X)=5×9.6=48. 答案:487.已知随机变量ξ的分布列为若η=aξ+3,E(η)=73,则a =________.解析:由分布列的性质,得12+13+m =1,即m =16,所以E(ξ)=(-1)×12+0×13+1×16=-13. 则E(η)=E(aξ+3)=aE(ξ)+3=73,即-13a +3=73,得a =2.答案:28.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P(X =0)=112,则随机变量X 的数学期望E(X)=________.解析:因为P(X =0)=112=(1-p)2×13,所以p =12.随机变量X 的可能值为0,1,2,3,因此P(X =0)=112,P(X =1)=23×⎝⎛⎭⎫122+13×⎝⎛⎭⎫122×2=13,P(X =2)=23×⎝⎛⎭⎫122×2+13×⎝⎛⎭⎫122=512,P(X =3)=23×⎝⎛⎭⎫122=16,所以E(X)=0×112+1×13+2×512+3×16=53.答案:53三、解答题9.已知随机变量X 的分布列如下:(1)求m 的值; (2)求E(X);(3)若Y =2X -3,求E(Y).解:(1)由随机变量分布列的性质,得 14+13+15+m +120=1,解得m =16. (2)E(X)=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:由公式E(aX +b)=aE(X)+b ,得E(Y)=E(2X -3)=2E(X)-3=2×⎝⎛⎭⎫-1730-3=-6215.法二:由于Y =2X -3,所以Y 的分布列如下:所以E(Y)=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.10.(天津高考)一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张, 编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X 的分布列和数学期望.解:(1)设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则P(A)=C 12C 35+C 22C 25C 47=67. 所以,取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4. P(X =1)=C 33C 47=135,P(X =2)=C 34C 47=435,P(X =3)=C 35C 47=27,P(X =4)=C 36C 47=47.所以随机变量X 的分布列是随机变量X 的数学期望E(X)=1×135+2×435+3×27+4×47=175.。
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
离散型随机变量及其分布列2.1.1离散型随机变量预习课本P44~45,思考并完成以下问题1.随机变量和离散型随机变量的概念是什么?随机变量是如何表示的?2.随机变量与函数的关系?[新知初探]1.随机变量(1)定义:在一个对应关系下,随着试验结果变化而变化的变量称为随机变量.(2)表示:随机变量常用字母X,Y,ξ,η等表示.2.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3.随机变量和函数的关系随机变量和函数都是一种映射,随机变量把随机试验的结果映射为实数,函数把实数映射为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.()(2)手机电池的使用寿命X是离数型随机变量.()答案:(1)√(2)×2.下列变量中,是离散型随机变量的是()A.到2016年5月1日止,我国被确诊的爱滋病人数B.一只刚出生的大熊猫,一年以后的身高C.某人在车站等出租车的时间D.某人投篮10次,可能投中的次数答案:D3.袋中有大小相同的红球6个,白球5个,从袋中无放回的条件下每次任意取出一个球,直到取出的球是白色为止,所需要的取球次数为随机变量X,则X的可能取值为() A.1,2,…,6B.1,2,…,7C.1,2,…,11D.1,2,3,…答案:B4.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.答案:300, 100, -100, -300[典例](1)抛掷一枚均匀硬币一次,随机变量为()A.抛掷硬币的次数B.出现正面的次数C.出现正面或反面的次数D.出现正面和反面的次数之和(2)6件产品中有2件次品,4件正品,从中任取1件,则可以作为随机变量的是()A.取到的产品个数B.取到的正品个数C.取到正品的概率D.取到次品的概率[解](1)抛掷一枚硬币一次,可能出现的结果是正面向上或反面向上.以某一个为标准,如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1,故选B.而A项中抛掷次数就是1,不是随机变量;C项中标准不明;D项中,出现正面和反面的次数之和为必然事件,试验前便知是必然出现的结果,也不是随机变量.(2)由随机变量的定义知,随机变量是随机试验的结果,排除C、D项,又取到的产品个数是一个确定值,排除A项.故选B项.[答案](1)B(2)B判断一个试验是否是随机试验,依据是这个试验是否满足随机试验的三个条件,即(1)试验在相同条件下是否可重复进行;(2)试验的所有可能的结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.[活学活用]指出下列哪些是随机变量,哪些不是随机变量,并说明理由:(1)某人射击一次命中的环数;(2)掷一枚质地均匀的骰子,出现的点数;(3)某个人的属相随年龄的变化.解:(1)某人射击一次,可能命中的所有环数是0,1,…,10,而且出现哪一个结果是随机的,因此命中的环数是随机变量.(2)掷一枚骰子,出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪一个结果是随机的,因此出现的点数是随机变量.(3)一个人的属相在他出生时就确定了,不随年龄的变化而变化,因此属相不是随机变量.离散型随机变量的判定[典例]指出下列随机变量是否是离散型随机变量,并说明理由.(1)湖南矮寨大桥桥面一侧每隔30米有一路灯,将所有路灯进行编号,其中某一路灯的编号X;(2)在一次数学竞赛中,设一、二、三等奖,小明同学参加竞赛获得的奖次X;(3)丁俊晖在2016年世锦赛中每局所得的分数.[解](1)桥面上的路灯是可数的,编号X可以一一列出,是离散型随机变量.(2)小明获奖等次X可以一一列出,是离散型随机变量.(3)每局所得的分数X可以一一列举出来,是离散型随机变量.判断离散型随机变量的方法(1)明确随机试验的所有可能结果.(2)将随机试验的结果数量化.(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.[活学活用]下列随机变量中不是离散型随机变量的是________(填序号).①广州白云机场候机室中一天的旅客数量X;②广州某水文站观察到一天中珠江的水位X;③某工厂加工的某种钢管,外径与规定的外径尺寸之差X;④虎门大桥一天经过的车辆数X.解析:①④中的随机变量X的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量,②中的随机变量X可以取某一区间内的一切值,但无法按一定次序一一列出,故不是离散型随机变量.③中X的取值为某一范围内的实数,无法全部列出,不是离散型随机变量,故不是离散型随机变量.答案:②③(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,取后不放回,直到取出的球是白球为止,所需要的取球次数.(2)从标有数字1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和.[解](1)设所需的取球次数为X, 则X=1,2,3,4,...,10,11,X=i表示前(i-1)次取到的均是红球,第i次取到白球,这里i=1,2,3,4, (11)(2)设所取卡片上的数字之和为X, 则X=3,4,5, (11)X=3, 表示“取出标有1,2的两张卡片”;X=4, 表示“取出标有1,3的两张卡片”;X=5, 表示“取出标有2,3或1,4的两张卡片”;X=6, 表示“取出标有2,4或1,5的两张卡片”;X=7, 表示“取出标有3,4或2,5或1,6的两张卡片”;X=8, 表示“取出标有2,6或3,5的两张卡片”;X=9, 表示“取出标有3,6或4,5的两张卡片”;X=10, 表示“取出标有4,6的两张卡片”;X=11, 表示“取出标有5,6的两张卡片”.[一题多变]1.[变条件]若本例(2)中条件不变,所取卡片上的数字之差的绝对值为随机变量ξ,请问ξ有哪些取值?其中ξ=4表示什么含义?解:ξ的所有可能取值有:1,2,3,4,5.ξ=4表示“取出标有1,5或2,6的两张卡片”.2.[变条件,变问法]甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”,用X表示需要比赛的局数,写出X所有可能的取值,并写出表示的试验结果.解:根据题意可知X的可能取值为4,5,6,7.X=4表示共打了4局,甲、乙两人有1人连胜4局.X=5表示在前4局中有1人输了一局,最后一局此人胜出.X=6表示在前5局中有1人输了2局,最后一局此人胜出.X=7表示在前6局中,两人打平,后一局有1人胜出.解答用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值对应的意义,即一个随机变量的取值对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.层级一学业水平达标1.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量;②解答高考数学乙卷的时间是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量.其中正确的个数是()A.1B.2C.3 D.4解析:选D由随机变量的概念可以直接判断①②③④都是正确的.2.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是()A.X和ξB.只有YC.Y和ξD.只有ξ解析:选B某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B.3.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.两颗都是2点B.一颗是3点,另一颗是1点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:选Dξ=4表示两颗骰子的点数和为4.4.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A .25B .10C .9D .5解析:选C 第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.故选C .5.对一批产品逐个进行检测,第一次检测到次品前已检测的产品个数为ξ,则ξ=k 表示的试验结果为( )A .第k -1次检测到正品,而第k 次检测到次品B .第k 次检测到正品,而第k +1次检测到次品C .前k -1次检测到正品,而第k 次检测到次品D .前k 次检测到正品,而第k +1次检测到次品解析:选D ξ就是检测到次品前正品的个数,ξ=k 表明前k 次检测到的都是正品,第k +1次检测到的是次品.6.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为X ,则X 的可能取值为________.解析:甲可能在3次射击中,一次未中,也可能中1次,2次,3次.答案:0,1,2,37.在8件产品中,有3件次品,5件正品,从中任取3件,记次品的件数为ξ,则{ξ<2}表示的试验结果是________.解析:应分ξ=0和ξ=1两类.ξ=0表示取到3件正品;ξ=1表示取到1件次品、2件正品.故{ξ<2}表示的试验结果为取到1件次品、2件正品或取到3件正品.答案:取到1件次品、2件正品或取到3件正品8.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的球的最大号码,用(x ,y ,z )表示取出的三个球编号为x ,y ,z (x <y <z ),则ξ=5表示的试验结果构成的集合是____________________________________________________.解析:从6个球中选出3个球,其中有一个是5号球,其余的2个球是1,2,3,4号球中的任意2个.∴试验结果构成的集合是{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}.答案:{(1,2,5),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)}9.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件次品、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为ξ,写出ξ的可能取值.解:ξ的可能取值为0,1,2.ξ=0表示在两天检查中均发现了次品.ξ=1表示在两天检查中有1天没有检查到次品,1天检查到了次品.ξ=2表示在两天检查中没有发现次品.10.已知在10件产品中有2件不合格品,现从这10件产品中任取3件,这是一个随机现象.(1)写出该随机现象所有可能出现的结果.(2)试用随机变量来描述上述结果.解:(1)从10件产品中任取3件,所有可能出现的结果是:“不含不合格品”“恰有1件不合格品”“恰有2件不合格品”.(2)令X表示取出的3件产品中的不合格品数.则X所有可能的取值为0,1,2,对应着任取3件产品所有可能出现的结果.即“X=0”表示“不含不合格品”;“X=1”表示“恰有1件不合格品”;“X=2”表示“恰有2件不合格品”.层级二应试能力达标1.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,阻值在950 Ω~1 200 Ω之间;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④解析:选A①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量.2.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚2点,第二枚6点D.第一枚6点,第二枚1点解析:选D只有D中的点数差为6-1=5>4,其余均不是,应选D.3.袋中装有10个红球,5个黑球,每次随机抽取一个球,若取得黑球,则另换一个红球放回袋中,直到取到红球为止,若抽取的次数为X,则表示“放回5个球”的事件为() A.X=4 B.X=5C.X=6 D.X≤4解析:选C第一次取到黑球,则放回1个球,第二次取到黑球,则共放回2个球…,共放了五回,第六次取到了红球,试验终止,故X=6.4.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为y,则y所有可能值的个数是()A.25 B.10C.7 D.6解析:选C∵y表示取出的2个球的号码之和,又1+2=3,1+3=4,1+4=5,1+5=6,2+3=5,2+4=6,2+5=7,3+4=7,3+5=8,4+5=9,故y的所有可能取值为3,4,5,6,7,8,9,共7个.5.一串钥匙有5把,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数X的最大值可能为________.解析:由题意可知X取最大值时只剩下一把钥匙,但锁此时未打开,故试验次数为4.答案:46.一用户在打电话时忘了号码的最后四位数字,只记得最后四位数字两两不同,且都大于5,于是他随机拨最后四位数字(两两不同),设他拨到所要号码时总共拨的次数为ξ,则随机变量ξ的所有可能取值的种数为________.解析:由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有A44=24种.答案:247.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ;(2)抛掷甲、乙两枚骰子,所得点数之和Y.解:(1)ξ可取0,1,2.ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2.(2)Y的可能取值为2,3,4,…,12.若以(i,j)表示抛掷甲、乙两枚骰子后骰子甲得i点且骰子乙得j点,则{Y=2}表示(1,1);{Y=3}表示(1,2),(2,1);{Y=4}表示(1,3),(2,2),(3,1);…;{Y=12}表示(6,6).8.写出下列随机变量可能的取值,并说明随机变量所表示的随机试验的结果.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.解:因为x,y可能取的值为1,2,3,所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,所以ξ可能的取值为0,1,2,3,用(x,y)表示第一次抽到卡片号码为x,第二次抽到卡片号码为y,则随机变量ξ取各值的意义为:ξ=0表示两次抽到卡片编号都是2,即(2,2).ξ=1表示(1,1),(2,1),(2,3),(3,3).ξ=2表示(1,2),(3,2).ξ=3表示(1,3),(3,1).2.1.2离散型随机变量的分布列预习课本P46~48,思考并完成以下问题1.离散型随机变量的分布列的定义是什么?2.离散型随机变量分布列的性质是什么?3.两点分布和超几何分布的定义是什么?[新知初探]1.离散型随机变量的分布列(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n, X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则称表:为离散型随机变量X的概率分布列,简称为X的分布列.用等式可表示为P(X=x i)=p i,i=1,2,…,n, 也可以用图象来表示X的分布列.(2)离散型随机变量的分布列的性质①p i≥0,i=1,2,…,n;② i =1np i =1.[点睛] 对离散型随机变量分布列的三点说明(1)离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值, 而且也能看出取每一个值的概率的大小, 从而反映出随机变量在随机试验中取值的分布情况.(2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各值的概率之和.(3)离散型随机变量可以用分布列、解析式、图象表示.2.两个特殊分布(1)两点分布随机变量X 的分布列是:则称离散型随机变量X 服从两点分布,称p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X=k }发生的概率P (X =k )=C k M C n -k N -M C n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称分布列X 服从超几何分布.[点睛] (1)超几何分布的模型是不放回抽样.(2)超几何分布中的参数是M ,N ,n .(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数.( )(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( )(3)超几何分布的总体里只有两类物品.( ) 答案:(1)× (2)× (3)√2.设离散型随机变量ξ的概率分布如下表:则p 的值为( ) A .12B .16C .13D .14答案:C3.若随机变量X 服从两点分布, 且P (X =0)=0.8,P (X =1)=0.2,令Y =3X -2,则P (Y =-2)=________.答案:0.84.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)=_______.答案:316[典例] 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的3只球中的最大号码,写出随机变量ξ的分布列.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大号码为3,则其他两只球的编号只能是1,2,故有P (ξ=3)=C 22C 35=110;当ξ=4时,即取出的三只球中最大号码为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P (ξ=4)=C 23C 35=310;当ξ=5时,即取出的三只球中最大号码为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P (ξ=5)=C 24C 35=610=35.因此,ξ的分布列为ξ 3 4 5 P11031035求离散型随机变量分布列的步骤(1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率;(3)列表对应,即为分布列. [活学活用]某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列.解:将O ,A ,B ,AB 四种血型分别编号为1,2,3,4,则X 的可能取值为1,2,3,4. P (X =1)=C 110C 145=29, P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845, P (X =4)=C 115C 145=13.故其分布列为X 1 2 3 4 P2941584513离散型随机变量分布列的性质[典例] 设随机变量ξ的分布列为P (ξ=k )=a ⎝⎛⎭⎫13k.(k =1,2,…,n ),求实数a 的值. [解] 依题意,有P (ξ=1)=13a ,P (ξ=2)=⎝⎛⎭⎫132a ,…,P (ξ=n )=⎝⎛⎭⎫13n a , 由P (ξ=1)+P (ξ=2)+…+P (ξ=n )=1, 知a ⎝⎛⎭⎫13+132+…+13n =1. 则a ·13⎝⎛⎭⎫1-13n 1-13=1.∴a =2×3n3n -1.离散型随机变量的分布列的性质的应用(1)通过性质建立关系,求得参数的取值或范围,进一步求出概率,得出分布列. (2)求对立事件的概率或判断某概率是否成立. [活学活用]1.设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________. 解析:由条件知P (ξ=k )=112,k =5,6,…,16,P (ξ<x )=112,故5<x ≤6. 答案:(5,6]2.设随机变量X 的分布列P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.解析:由已知得随机变量X 的分布列为X 1 2 3 Pk2k 4k 8∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.答案:37两点分布[典例] 袋中有5个白球,6个红球,从中摸出两球,记X =⎩⎪⎨⎪⎧0,两球全红,1,两球非全红,求随机变量X 的分布列.[解] 由题意知,X 服从两点分布,P (X =0)=C 26C 211=311,所以P (X =1)=1-311=811.所以随机变量X 的分布列为X 0 1 P311811两点分布的4个特点(1)两点分布中只有两个对应结果,且两结果是对立的; (2)两点分布中的两结果一个对应1,另一个对应0;(3)由互斥事件的概率求法可知,已知P (X =0)(或P (X =1)),便可求出P (X =1)(或P (X =0)).(4)在有多个结果的随机试验中,如果我们只关心一个随机事件是否发生,就可以利用两点分布来研究它.[活学活用]已知一批200件的待出厂产品中,有1件不合格品,现从中任意抽取2件进行检查,若用随机变量X 表示抽取的2件产品中的次品数,求X 的分布列.解:由题意知,X 服从两点分布,P (X =0)=C 2199C 2200=99100,所以P (X =1)=1-99100=1100. 所以随机变量X 的分布列为X 0 1 P991001100超几何分布[典例] 从一批含有13件正品、2件次品的产品中,不放回地任取3件,求取得次品数ξ的分布列.[解] 设随机变量ξ表示取出次品的件数,则ξ服从超几何分布,其中N =15,M =2,n =3,ξ的可能的取值为0,1,2,它相应的概率依次为P (ξ=0)=C 02C 313C 315=2235;P (ξ=1)=C 12C 213C 315=1235;P (ξ=2)=C 22C 113C 315=135.所以ξ的分布列为ξ 0 1 2 P22351235135求解超几何分布问题的注意事项(1)在产品抽样检验中,如果采用的是不放回抽样,则抽到的次品数服从超几何分布.(2)在超几何分布公式中P (X =k )=C k M C n -kN -MC n N,k =0,1,2,…,m ,其中m =min{M ,n }.这里N 是产品总数,M 是产品中次品数,n 是抽样的样品数.(3)如果随机变量X 服从超几何分布,只要代入公式即可求得相应概率,关键是明确随机变量X 的所有取值.(4)当超几何分布用表格表示较繁杂时,可用解析式法表示. [活学活用]袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球得0分,从袋中任取4个球.(1)求得分X 的分布列. (2)求得分不小于6分的概率. 解:(1)从袋中随机摸4个球的情况为:1红3黑,2红2黑,3红1黑,4红共四种情况,分别得分为2分,4分,6分,8分,故X 的可能取值为2,4,6,8.P (X =2)=C 14C 33C 47=435;P (X =4)=C 24C 23C 47=1835;P (X =6)=C 34C 13C 47=1235;P (X =8)=C 44C 03C 47=135.所以X 的分布列为X 2 4 6 8 P43518351235135(2)由(1)中分布列得P (X ≥6)=P (X =6)+P (X =8)=1335.层级一 学业水平达标1.下列问题中的随机变量不服从两点分布的是( ) A .抛掷一枚骰子,所得点数为随机变量X B .某射手射击一次,击中目标的次数为随机变量XC .从装有5个红球,3个白球的袋中取1个球,令随机变量X =⎩⎪⎨⎪⎧1 取出白球0 取出红球D .某医生做一次手术,手术成功的次数为随机变量X解析:选A A 中随机变量X 的取值有6个,不服从两点分布,故选A .2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)=( )A .0B .12C .13D .23解析:选C 由题意,“ξ=0”表示试验失败,“ξ=1”表示试验成功,设失败率为p ,则成功率为2p ,则ξ的分布列为∵p +2p =1,∴p =13,即P (ξ=0)=13.3.某射手射击所得环数X 的分布列为A .0.28B .0.88C .0.79D .0.51解析:选C P (ξ>7)=P (ξ=8)+P (ξ=9)+P (ξ=10)=0.28+0.29+0.22=0.79. 4.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10. 现从中任取4个球,有如下几种变量:①X 表示取出的球的最大号码;②Y 表示取出的球的最小号码;③取出一个黑球记2分,取出一个白球记1分,ξ表示取出的4个球的总得分;④η表示取出的黑球个数.这四种变量中服从超几何分布的是( ) A .①② B .③④ C .①②④D .①②③④解析:选B 依据超几何分布的数学模型及计算公式知③④属超几何分布.5.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是( )A .1120B .724C .710D .37解析:选B 取出的红球服从超几何分布,故P =C 37·C 03C 310=724.6.随机变量η的分布列如下:则x =解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P(η=1)+P(η=2)+P(η=3)=0.2+0.35=0.55.答案:00.557.从装有3个红球、2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布列为________.解析:P(ξ=0)=C22C25=0.1,P(ξ=1)=C13C12C25=0.6,P(ξ=2)=C23C25=0.3.答案:8.一批产品分为四级,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量ξ,则P(ξ>1)=________.解析:依题意,P(ξ=1)=2P(ξ=2),P(ξ=3)=12P(ξ=2),P(ξ=3)=P(ξ=4),由分布列性质得P(ξ=1)+P(ξ=2)+P(ξ=3)+P(ξ=4)=1,则4P(ξ=2)=1,即P(ξ=2)=14,P(ξ=3)=P(ξ=4)=18.∴P(ξ>1)=P(ξ=2)+P(ξ=3)+P(ξ=4)=1 2.答案:1 29.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率.解:由题意知,ξ服从超几何分布,则P(ξ=k)=C k2·C3-k4C36,k=0,1,2.(1)ξ可能取的值为0,1,2.所以ξ的分布列为(2)由(1)知,“所选3人中女生人数ξ≤1”的概率为P(ξ≤1)=P(ξ=0)+P(ξ=1)=4 5.10.为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:(1)从这18名队员中随机选出两名,求两人来自同一队的概率;(2)中国女排奋力拼搏,战胜了韩国队获得冠军,若要求选出两位队员代表发言,设其中来自北京队的人数为ξ,求随机变量ξ的分布列.解:(1)“从这18名队员中选出两名,两人来自于同一队”记作事件A ,则P (A )=C 24+C 26+C 23+C 25C 218=29. (2)ξ的所有可能取值为0,1,2.∵P (ξ=0)=C 214C 218=91153,P (ξ=1)=C 14C 114C 218=56153,P (ξ=2)=C 24C 218=6153,∴ξ的分布列为层级二 应试能力达标…,n ,如果P (ξ<4)=0.3,那么( )A .n =3B .n =4C .n =10D .n =9解析:选C 由ξ<4知ξ=1,2,3,所以P (ξ=1)+P (ξ=2)+P (ξ=3)=0.3=3n ,解得n=10.2.随机变量ξ的分布列为其中a ,b ,c 成等差数列,则P (|ξ|=1)等于( ) A .13 B .14C .12D .23解析:选D ∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13.∴P (|ξ|=1)=a +c =23.3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A .C 480C 610C 10100B .C 680C 410C 10100C .C 480C 620C 10100D .C 680C 420C 10100解析:选D 从袋中任取10个球,其中红球的个数X 服从参数为N =100,M =80,n=10的超几何分布,故恰有6个红球的概率为P (X =6)=C 680C 420C 10100.4.已知在10件产品中可能存在次品,从中抽取2件检查,其次品数为ξ,已知P (ξ=1)=1645,且该产品的次品率不超过40%,则这10件产品的次品率为( )A .10%B .20%C .30%D .40%解析:选B 设10件产品中有x 件次品,则P (ξ=1)=C 1x ·C 110-x C 210=x (10-x )45=1645,∴x =2或8.∵次品率不超过40%,∴x =2,∴次品率为210=20%. 5.设随机变量ξ的分布列为P (ξ=k )=ak (k =1,2,…,n ),则常数a =________. 解析:由分布列的性质可得,a (1+2+…+n )=1, 所以a =2n (n +1).答案:2n (n +1)6.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为________.解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:272207.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的概率分布列. 解:(1)P =1-C 26C 210=1-1545=23,。
课时作业(十三)1.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率答案 C解析对于A中取到产品的件数是一个常量不是变量,B、D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.2.下列随机变量中不是离散型随机变量的是()A.盒子里有除颜色不同,其他完全相同的红球和白球各5个,从中摸出3个球,白球的个数XB.小明回答20道选择题,答对的题数XC.某人早晨在车站等出租车的时间XD.某人投篮10次投中的次数X答案 C3.一串钥匙有5枚,只有一把能打开锁,依次试验,打不开的扔掉,直到找到能开锁的钥匙为止,则试验次数ξ的最大值可能为()A.5 B.2C.3 D.4答案 D4.随机变量ξ1是某城市1天之中发生的火警次数,随机变量ξ2是某城市1天之内的温度,随机变量ξ3是某火车站1小时内的游客流动人数.这三个随机变量中为离散型随机变量的是________.答案 ξ1,ξ3解析 火警次数与游客流动人数均为离散型的,而一天之内的温度是一个连续不断变化的数,不是离散型的.5.100粒玉米种子中有4粒被虫蛀,从中任取3粒当种子,设可能含有的被虫蛀的种子X 粒,则X 的可能取值为________.答案 0,1,2,36.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为X ,则X =3表示的试验结果是________.答案 共抽取3次,前2次均是正品,第3次是次品解析 X =3表示前2次均是正品,第3次是次品.7.在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________________.答案 300,100,-100,-300解析 可能回答全对,两对一错,两错一对,全错四种结果,相应得分为300分,100分,-100分,-300分.8.甲进行3次射击,甲击中目标的概率为12,记甲击中目标的次数为X ,则X 的可能取值为________.答案 0,1,2,3解析 甲可能在3次射击中,一次未中,也可能中1次,2次,3次.9.甲、乙两队员进行乒乓球单打比赛,规定采用“七局四胜制”,用X 表示需要比赛的局数,写出X 所有可能的取值,并写出表示的试验结果.解析 根据题意可知X 的可能取值为4,5,6,7.X =4表示共打了4局,甲、乙两人有1人连胜4局.X =5表示在前4局中有1人输了一局,最后一局此人胜出.X =6表示在前5局中有1人输了2局,最后一局此人胜出.X =7表示在前6局中,两人打平,后一局有1人胜出.►重点班选做题10.某校为学生定做校服,规定凡身高不超过160 cm 的学生交校服费80元.凡身高超过160 cm 的学生,身高每超出1 cm 多交5元钱(不足1 cm 时按1 cm 计),若学生应交的校服费为η,学生身高用ξ表示,则η和ξ是否为离散型随机变量?解析 由于该校的每一个学生对应着唯一的身高,并且ξ取整数值(不足1 cm 按1 cm 计),因此ξ是一个离散型随机变量.而η=⎩⎨⎧ 80(ξ≤60),(ξ-160)×5+80(ξ>160),所以η也是一个离散型随机变量.11.某车间三天内每天生产10件某产品,其中第一天,第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内得分为ξ,写出ξ的可能取值.解析 ξ的可能取值为0,1,2.ξ=0表示在两天检查中均发现了次品.ξ=1表示在两天检查中有1天没有检查到次品,1天检查到了.ξ=2表示在两天检查中没有发现次品.12.写出下列随机变量可能取的值,并说明随机变量所取的值所表示的随机试验的结果:(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取一个球(取出的球不再放入袋中),直到取出的球是白球为止所需要的取球次数;(2)袋中有大小相同的红球10个,白球5个,从袋中每次任取一个球,若取出一个白球则结束,若取出一个红球则放回袋中继续从袋中任意取出一个球,直到取出的球是白球为止所需要的取球次数.思路分析先分析判断是否为随机变量,是何种类型的随机变量,这个随机变量用什么字母表示,它可以取哪些值?解析(1)设所需的取球次数为ξ,则ξ可取1,2,...,11.ξ=i表示前i-1次取出的是红球,第i次取出的是白球,这里i=1,2,3, (11)(2)设所需的取球次数为ξ,则ξ可取所有的正整数.ξ=i表示前i-1次取出的是红球,第i次取出的是白球,这里i=1,2,3,….1.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为X,则“X>4”表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点答案 D2.某人在打电话时忘记了号码的最后三个数字,只记得最后三个数字两两不同,且都大于5,于是他随机拨最后三个数字(两两不同),设他拨到所要号码的次数为X,则随机变量X的可能取值有() A.22种B.23种C.24种D.25种答案 C。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师 大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和 检测题分享给需要的朋友。
本资源创作于2020年8月,是当前最新版本的教材资源。
包含本课对应 内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
高中数学系列2—3单元测试题(2.1)一、选择题:1、如果X 是一个离散型随机变量,则假命题是( ) A. X 取每一个可能值的概率都是非负数; B. X 取所有可能值的概率之和为1;C. X 取某几个值的概率等于分别取其中每个值的概率之和;D. X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( ) A .①; B .②; C .③; D .①③3、设离散型随机变量ξ的概率分布如下,则a 的值为( )X1 2 3 4P16 13 16aA .12 B .16 C .13 D .144、设随机变量X 的分布列为()()1,2,3,,,kP X k k n λ===⋯⋯,则λ的值为( )A .1;B .12; C .13; D .145、已知随机变量X 的分布列为:()12k p X k ==, ,3,2,1=k ,则()24p X <≤=( )A.163B. 41C. 161D. 165 6、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6C. 10D. 无法确定7、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( ) A. 一枚是3点,一枚是1点 B. 两枚都是2点C. 两枚都是4点D. 一枚是3点,一枚是1点或两枚都是2点 8、设随机变量X 的分布列为()()21,2,3,,,kP X k k n λ==⋅=⋯⋯,则λ的值为( )A .1;B .12; C .13; D .14二、填空题:9 、下列表中能成为随机变量X 的分布列的是 (把全部正确的答案序号填上)()12,1,2,3,,21k n P X k k n -===-10、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为11、一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为 三、解答题:12、某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量 (1)求租车费η关于行车路程ξ的关系式; (2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?13、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.14、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、D3、C4、B5、A6、C7、D8、C 二、填空题:9、 ③④ 10、13579,1,,2,,3,,4,,52222211、 3,4,5三、解答题:12、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟.X -1 0 1 p 0.30.40.4X1 2 3p0.40.7 -0.1X5 0 -5 p0.30.60.1②()1,2,3,4,5,P X k k k===④⑤13、解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴ 44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. X 10 -1 P74 71 7214、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X 24 8 16 ...n 2 ... P21 4181 161 ... n 21 ...∴ (10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.。
[课时达标检测]
一、选择题
1.下列不是离散型随机变量的是( ) ①某机场候车室中一天的游客量为X ; ②某寻呼台一天内收到的寻呼次数为X ; ③某水文站观察到一天中长江的水位为X ; ④某立交桥一天经过的车辆数为X. A .①中的X B .②中的X C .③中的X
D .④中的X
解析:选C ①②④中随机变量X 可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;③中的X 可以取某一区间内的一切值,无法按一定次序一一列出,故其不是离散形随机变量.
2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P(X =0)=( )
A .0 B.12 C.13
D.23
解析:选C 设失败率为p ,则成功率为2p ,应有:p +2p =1,所以p =1
3,即P(X =0)
=13
. 3.若随机变量X 的分布列为P(X =i)=i
2a (i =1,2,3),则P(X =2)等于( )
A.19
B.16
C.14
D.13
解析:选D 由分布列的性质,可得12a +22a +32a =1,解得a =3,则P(X =2)=22a =1
3.
4.某10人组成兴趣小组,其中有5名团员.从这10人中任选4人参加某项活动,用X 表示4人中的团员人数,则P(X =3)=( )
A.4
21 B.921 C.621
D.521
解析:选D P(X =3)=C 35C 15
C 410=521
.
5.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中
白球的个数记为X ,则下列概率等于C 122C 14+C 2
22
C 226
的是( )
A .P(0<X≤2)
B .P(X≤1)
C .P(X =1)
D .P(X =2)
解析:选B 本题相当于最多取出1个白球的概率,也就是取到1个白球或没有取到白球.
二、填空题
6.抛掷两颗骰子,设所得点数之和为X ,那么X =4表示的随机试验结果是________. 解析:抛掷一颗骰子,可能出现的点数是1,2,3,4,5,6,而X 表示抛掷两颗骰子所得到的点数之和,所以X =4=1+3=3+1=2+2表示的随机试验结果是一颗是1点、另一颗是3点,或者两颗都是2点.
答案:一颗是1点、另一颗是3点,或者两颗都是2点
7.某班有50名学生,其中15人选修A 课程,另外35人选修B 课程,从班级中任选两名学生,他们是选修不同课程的学生的概率是________.
解析:将50名学生看做一批产品,其中选修A 课程为不合格品,选修B 课程为合格品,随机抽取两名学生,X 表示选修A 课程的学生数,则X 服从超几何分布,其中N =50,M =15,n =2.
依题意所求概率为P(X =1)=C 115C 2-
1
50-15
C 2
50=37
. 答案:3
7
8.从装有除颜色外其余均相同的3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,随机变量ξ的概率分布列如下:
则x 1,x 2,x 3的值分别为解析:ξ的可能取值为0,1,2.P(ξ=0)=C 22
C 25
=0.1,
P(ξ=1)=C 13C 12C 25=0.6,P(ξ=2)=C 23
C 25
=0.3.
答案:0.1,0.6,0.3 三、解答题
9.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:
将频率视为概率,解答下列问题:
(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;
(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X 1,生产一辆乙品牌轿车的利润为X 2,分别求X 1,X 2的分布列;
解:(1)设“甲品牌轿车首次出现故障发生在保修期内”为事件A ,则P(A)=2+350=1
10.
(2)依题意得,X 1的分布列为:
X 2的分布列为:
10.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6道试题,乙能答对其中的8道试题.规定每次考试都从备选题中随机抽出3题进行测试,答对一题得5分,答错一题得0分.
求:(1)甲答对试题数X 的分布列; (2)乙所得分数Y 的分布列. 解:(1)X 的可能取值为0,1,2,3. P(X =0)=C 34
C 310=4120=130
,
P(X =1)=C 24C 16
C 310=36120=310,
P(X =2)=C 14C 26
C 310=60120=12
,
P(X =3)=C 36
C 310=20120=16
.
所以甲答对试题数X 的分布列为
(2)乙答对试题数可能为1,2,3,所以乙所得分数Y =5,10,15.
P(Y =5)=C 22C 18
C 310=8120=115,
P(Y =10)=C 12C 28
C 310=56120=715
,
P(Y =15)=C 38
C 310=56120=715.
所以乙所得分数Y 的分布列为。