当前位置:文档之家› 船体结构焊接变形预测与控制方法

船体结构焊接变形预测与控制方法

船体结构焊接变形预测与控制方法
船体结构焊接变形预测与控制方法

船体结构焊接变形预测与控制方法

发表时间:2018-11-06T12:13:40.430Z 来源:《防护工程》2018年第17期作者:杨秀春[导读] 在船舶建造过程中,焊接变形是不可避免的,只要采取有效的方法和措施武汉航道船厂湖北武汉 430000 摘要:在船舶建造过程中,焊接变形是不可避免的,只要采取有效的方法和措施,如选择合适的材料,优化焊接工艺等,从而控制焊接变形,满足船舶强度和使用性能要求,达到良好的经济效益。对此,本文将对船体结构焊接变形预测与控制方法进行探究,以供参考。

关键词:船舶,焊接变形,控制方法在现代造船中,船体结构焊接占据着相当大比例的工作量。在焊接过程中,由于船体结构的特殊性,会导致其焊接后出现局部或整体的变形现象,如果不对其采取及时有效的预防和控制措施,将会导致尺寸精度下降、焊接结构失稳和承载强度降低等严重后果,这不仅会给船体的后续焊接和装配带来极大的影响,造成工程进度的延误,还会使船舶质量无法达到规范和标准规定的质量要求,造成无法换回的损失。因此,根据船体结构焊接变形的产生原因和影响因素,研究船体结构焊接变形的预防和控制措施,对于缩短船舶建造周期和提高船舶建造质量都具有重要的现实意义。 1船体结构焊接变形的成因焊接时局部不均匀的热输入是产生焊接应力与变形的决定因素。而热输入是通过材料因素、制造因素和结构因素所构成的内拘束度和外拘束度而影响热源周围的金属运动,最终形成焊接应力的变形。材料因素是指材料的各项性能指标,一般情况下不能人为的改变,制造因素是指人的活动行为造成的,可以改变,结构因素是设计问题造成的。产生焊接变形最基本和最本质的因素是焊接过程中的热变形和焊接构件的刚性条件,在焊接过程中的热变形受到了构件刚性条件的约束,出现了压塑性变形。与热变形有关的因素有焊接工艺方法﹑焊接参数﹑焊缝数量和断面大小﹑施焊方法﹑材料的热物理性能等,与构件刚性有关的因素有尺寸和形状﹑胎夹具的应用﹑装配焊接程序等。由于实际生产过程中焊接是一个非常复杂的过程,影响焊接变形的不可知因素还有很多想完全照出是不可能的,只有根据主要因素采取相应调节措施,以达到预防和控制焊接变形的目的。 2船体结构焊接变形预测与控制方法 2.1 焊接变形预测研究方法 2.1.1实验法 Masubuchi提出了多种试验方法定量分析薄板结构的弯曲变形,认为各种重要因素如焊接热输入、板厚和板纵横比等都是引起弯曲变形的因素,且通过减小热输入来减少焊接区域尺寸是减轻弯曲变形的有效方法。Greene和 Holzbaur基于实验法提出了各种降低焊接变形的方法,是现代船舶焊接变形控制的基础。

2.1.2热弹塑性有限元分析方法

热弹塑性有限元分析法考虑了焊接材料的非线性,能够动态跟踪应力应变过程以及焊后的残余应力与变形,研究覆盖了焊接过程的各个方面,包括焊接方法、焊接材料、焊接接头形式和焊接参数等信息,可以较准确地仿真整个焊接过程。

2.1.3 固有应变法

与热弹塑性有限元法相比,固有应变法采用弹性有限元法计算,计算工程量相对较小,更适于大型复杂结构的焊接变形预测。为了将固有应变法应用于船体结构焊接变形预测,有必要针对典型船舶产品的典型建造工艺,结合焊接方式、焊接材料、焊接工艺、接头形式及结构的尺寸和形状,建立焊接固有应变的数据库,解决分段制造、总段组装和总段合拢阶段的焊接变形预测问题,为焊接变形的控制提供理论依据。

2.2船体结构焊接变形控制方法 2.2.1船体设计方面

为了控制船体焊接变形,设计院、船厂在设计中采取了各种措施,首先在设计方面,在保证结构有足够强度的前提下,尽量减少焊缝的长度,合理选择坡口形式;对称布置焊缝;适当采用冲压件,以减少焊缝的长度;使用装卡器具装配,以提高装配质量。

2.2.2正确选择焊接工艺,严格遵守焊接程序

(1)在进行船舶的整体建造或分段建造时,都应该从结构中央开始,然后向前后左右逐格进行对称焊接。

(2)在进行船体外板或甲板的对接缝焊接时,错开板缝应先横向后纵向焊接焊缝;而平列板缝则应先纵向后横向焊接焊缝。

(3)在进行总段大接缝等应力较大的接缝焊接时,应进行连续不中断的施焊,直至完成为止。

(4)不同长度的焊缝要采用不同的焊接法。如进行长焊缝(≥ 1m)焊接时,可采用分段退焊法、交替焊法、跳焊法等焊接法;而进行中等长度焊缝(0.5~1m)焊接时,则应采用分中对称焊法。

(5)当单层焊缝和多层焊缝同时存在时,应先焊收缩量较大的多层焊缝,再焊单层焊缝,并且条件允许时,多层焊缝的各层焊缝应采用彼此相反的焊接方向,并错开各焊缝的接头。

2.2.3预制反变形法

所谓反变形法,就是指根据经验或理论计算对焊接变形的大小和方向进行提前预测,然后在焊接前对船体构件或胎架预先施加一个反变形数值,其大小基本等于船体焊接后的变形值,且方向相反。合理采用反变形工艺可以有效降低残余应力和控制焊接变形,从而达到减小甚至消除焊接变形的目的。例如装配时加放焊缝收缩余量、放样时预放反变形量、在制作船体分段的胎架时对胎架结构进行反变形等都属于反变形工艺。

2.2.4刚性固定法

由于刚性大的船体构件焊后变形小,因此,如果焊前加强构件的刚性,同样也可以减小焊接变形。所以,刚性固定法是在没有反变形的情况下,将构件加以固定来限制焊接变形。此种方法对角变形和波浪变形比较有效。

2.2.5预热法

焊接变形的影响因素与控制

摘要 焊接过程是对焊件的局部进行高温加热使其达到融化状态,随后快速冷却结晶形成焊缝,由于急剧的非平衡加热及冷却,结构将不可避免地产生焊后残余变形、应力以及金属组织的变化。焊接应力与变形直接影响焊件的尺寸精度、强度、刚度、稳定性以及耐腐蚀性能等。是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。焊接应力与变形过大时,不仅给产品制造工艺增加困难,还会因焊接裂纹或变形过大无法矫正而导致构件报废,造成巨大经济损失。本文主要阐述焊接变形的影响因素、控制措施和方法。 关键词:焊接变形;影响因素;控制措施

目录 第一章 1页

第一章焊接应力 在没有外力的情况下,物体内部存在的应力称为内应力,内应力在物体内部自相平衡,即物体内部各方向的内应力总和等于零,内应力对于任何一点的力矩总和等于零。常见的内应力有以下几种: 1、热应力:又称温度应力。它是在不均匀加热及冷却过程中所产生的应力,它与加热温度和加热不均匀程度、焊件的钢度以及焊件材料的热物理性能等因素有关。 2、相变应力:金属发生相变时,由于体积发生变化而引起的应力。 3、装配应力:在装配和安装过程中产生的应力。例如:紧固螺栓、热套结构等均匀有内应力产生。 4、残余应力:当构件上承受局部荷载或经受不均匀加热时,都会在局部地区产生塑性应变。当局部外载撤去后或热源离去,构件温度恢复到原始的均匀状态时,由于构件内部发生了不能恢复的塑性变形,因而产生了内应力,即残余应力。残留下来的变形即残余变形。 焊接过程中焊件的热应力是随时间而变化的瞬时应力,焊后残余下来,即为残余应力。按照焊接应力在空间的方向可以分为单项应力、双向应力和三项应力。薄板对接时,可以认为是双向应力。大厚度焊件的焊缝,三个焊缝的交叉处以及存在裂缝、加渣等缺陷通常出现三向应力,三相应力使材料的塑性降低、容易导致脆性断裂,它是一种最危险的应力状态。 第二章焊接变形 一、焊接变形发生的原因 钢材的焊接通常采用熔化焊方法,把焊接局部连接处加热至溶化状态形成熔池,待其冷却结晶后形成焊缝,使原来分开的钢材连接成整体。由于焊接加热时还焊接接头局部加热不均匀,金属冷却后沿焊缝纵向收缩时受到焊件低温部分的阻碍,使焊缝及其附近区域受拉应力,远离焊缝区域受压应力。因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形,焊接完成并冷却至常温后该塑性变形残留下来,焊接变形因此产生。 二、焊接变形的主要形式

焊接变形控制方法

1、利用反变形法控制焊接变形 为了抵消和补偿焊接变形,在焊前进行装配时,先将工件向与焊接变形相反的方向进行人为的变形,这种方法称为反变形法。反变形法是生产中最常用的方法,通常适用于控制焊件的角变形和弯曲变形。 2、用刚性固定法控制焊接变形 利用夹具、支撑、专用胎具、定位焊等方法来增大结构的刚性,减小焊接变形的方法称为刚性固定法。刚性固定法简单易行,是生产中常用的一种减小焊接变形的方法。生产中常用刚性固定配合反变形来控制焊接变形。 3、选择合理的装焊顺序控制焊接变形 同一焊接结构,采用不同的装焊顺序,所引起的焊接变形量往往不同,应选择引起焊接变形最小的装焊顺序。一般采取先总装后焊接的顺序,结构焊后焊接变形较小。 4、选择合理的焊接顺序控制焊接变形 当焊接结构上有多条焊缝时,不同的焊接顺序将会引起不同的焊接变形量。合理的焊接顺序是指:当焊缝对称布置时,应采用对称焊接;当焊缝不对称布置时,应先焊焊缝小的一侧。此外,采用跳焊法、分段退焊法等控制焊接变形均有较好的效果。 5、散热法 散热法又称强迫冷却法。就是把焊接处热量散走,使焊缝附近的金属受热面大大减小,达到减小变形的目的。散热法有水浸法和散热垫法。 6、锤击法 利用锤击焊缝使焊缝延伸,就能在一定程度上克服由焊缝收缩所引起的变形。例如,薄板对接焊后会产生波浪变形,就可以用锤在焊缝长度方向上对焊缝进行锤击来克服其变形。 7、选择合理的焊接方法 选用能量比较集中的焊接方法如CO2气体保护焊、等离子弧焊来代替气焊和手工电弧焊进行薄板焊接,可减小变形量。 焊接电弧 焊接电弧是一种强烈的持久的气体放电现象。在这种气体放电过程中产生大量的热能和强烈的光辉 。通常,气体是不导电的,但是在一定的电场和温度条件下,可以使气体离解而导电。 焊接电弧就是在一定的电场作用下,将电弧空间的气体介质电离 ,使中性分子或原子离解为带正电荷的正离子和带负电荷的电子(或负离子), 这两种带电质点分别向着电场的两极方向运动,使局部气体空间导电,而形成电弧。 1、焊缝位置的影响 2.结构的刚性对焊接变形的影响3、装配和焊接顺序对结构变形的影响

【最新编排】焊接变形的原因及控制方法

在焊接过程中由于急剧地非平衡加热及冷却,结构将不可避免地产生不可忽视地焊接残余变形。焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性地关键因素。针对钢结构工程焊接技术地重点和难点,根据多年地工程实践经验, 本文主要阐述实用焊接变形地影响因素及控制措施和方法。 钢材地焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加地焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开地钢材连接成整体。由于焊接加热,融合线以外地母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。这样,在焊接完成并冷却至常温后该塑性变形残留下来。 焊接变形地影响因素 焊接变形可以分为在焊接热过程中发生地瞬态热变形和在室温条件下地残余变形。 影响焊接变形地丙素很多,但归纳起来主要有材料、结构和工艺3个方而。 1 . 1材料因素地影响 材料对于焊接变形地影响不仅和焊接材料有关,而且和耳材也有关系,材料地热物理性能参数和力学性能参数都对焊接变形地产生过程有重要地影响。英中热物理性能参数地影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显箸。力学性能对焊接变形地影响比较复杂,热膨胀系数地影响最为明显,随着热膨胀系数地增加焊接变形相应增加。同时材料在高温区地屈服极限和弹性模量及其随温度地变化率也超着十分重要地作用,一般情况下,随着弹性模量地增大,焊接变形随Z减少而较高地屈服极限会引起较高地残余应力,焊接结构存储地变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范協不大, 因而焊接变形得以减少。 1 ? 2结构因素地影响 焊接结构地设讣对焊接变形地影响最关键,也是最复杂地因素-其总体原则是随拘束度地增加,焊接残余应力增加,而焊接变形则相应减少。结构在焊接变形过程中, 工件本身地拘束度是不断变化着地,因此自身为变拘束结构,同时还受到外加拘束地影响。一般情况下复杂结构自身地拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中地拘束度变化情况随结构复杂程度地增加而增加,在设il焊接结构时,常需要采用筋板或加强板来提高结构地稳左性和刚性,这样做不但增加了装配和焊接工作S,而且在某些区域,如筋板、加强板等,拘束度发生较大地变化,给焊接变形分析与控制带来了一泄地难度。因此,在结构设汁时针对结构板地厚度及筋板或加强筋地位置数量等进行优化.对减小焊接变形有着十分重要地作用。 1.3工艺因素地彩响

船体焊接技术要求

船体焊接工艺 1、手工单面焊双面成形 手工单面焊双面成形是借助开有坡口的接缝处留一定的间隙,并在反面垫衬开有成形槽的铜板,在进行单面手工焊的同时强制反面成形的一种工艺方法。手工单面焊双面成形一般用于焊缝背面难以进行刨铲焊根和封底焊的接缝,如球缘扁钢对接等,也可用于大接缝中局部甲板、平台及内底板的对接。 采用手工单面焊双面成形工艺时,应采取如下工艺措施: (1)板厚≥4mm时应沿接缝开出不留根的V形坡口,间隙约4~6mm; (2)接缝背面平整,焊接前用活络托架或铁楔等将铜垫固定于接缝背面并在焊接过程中保持铜垫与工件的紧贴; (3)第一层打底焊缝是焊缝反面成形的基础。焊接时宜采用直径较小的焊条(3~4mm)进行短弧焊接,电弧在间隙中逐渐前移,并使接缝两边边缘熔合良 好。当一根焊条焊完后,应迅速更换焊条,在弧坑前方约10mm处引弧,逐渐 过渡到弧坑处,以防止焊接接头产生未焊透及焊缝背面成形产生凹陷及焊瘤等 缺陷。 2、立焊向下焊(即“下行焊”) 立焊向下焊是采用专用的立焊向下焊焊条,对垂直位置的焊缝由上向下进行手工电弧焊的一种工艺方法,特加适宜于薄板的垂直焊缝焊接,也可用于船体结构中不重要部位的垂直焊缝和立对接焊缝的打底焊。采用立焊向下焊工艺时,工作效率高,焊缝美观,焊接变形小。 当进行立焊向下焊时,焊接电流应稍大些,焊条应向下倾斜,使焊条与下垂直面形成35°~85°的夹角。运条一般不作横向摆动,直拖而下或作微小摆动,以壁免淌渣现象。当装配间隙较大或需要较大的焊脚尺寸时,也可采用多层焊。 3、船台装焊中单面焊双面成形工艺方法的应用 船体大合拢时的内底板、甲板等对接缝,当采用单面焊双面成形工艺时,可省去仰焊封底焊缝的刨槽和施焊,显著提高生产效率和改善劳动条件。船体大合拢时甲板、内底板对接采用单面焊双面成形方法的工艺措施如下:

焊接变形控制技术要点

钢结构制造事业部焊接变形控制工艺 编制: 校对: 审核: 批准: 重庆建工工业有限公司 钢结构事业部 2015年6月11日

1 焊接应力 (2) 1.1焊接应力的种类 (2) 2 焊接变形 (2) 2.1焊接变形发生的原因 (2) 2.2焊接变形的主要形式 (2) 3 焊接变形的影响因素 (3) 3.1材料因素的影响 (3) 3.2结构设计因素的影响 (3) 3.3焊接工艺的影响 (3) 3.3.1焊接方法的影响 (3) 3.3.2焊接接头形式的影响 (3) 3.3.3焊接层数的影响 (4) 3.4焊接参数的影响 (4) 3.4.1电弧电压 (4) 3.4.2焊接电压过高 (4) 3.4.3焊接速度 (4) 3.4.4焊丝伸出长度 (4) 3.4.5焊枪倾斜角度 (4) 4 焊接变形的预防与控制措施 (5) 4.1设计措施 (5) 4.4.1尽量减少焊缝数量 (5) 4.4.2合理地选择焊接的尺寸和形式 (5) 4.4.3合理设计结构形式及合理安排焊缝位置 (5) 4.2工艺措施 (5) 4.2.1焊前预防措施 (5) 4.2.2焊接过程控制措施 (6) 4.3焊后矫正措施 (6) 4.3.1机械矫正 (6) 4.3.2加热矫正 (6)

1 焊接应力 焊接时,由于焊缝局部加热到高温状态,焊件温度均匀不分布,造成钢结构不均匀冷却收缩而产生变形。其次,在焊接时,由于不同焊接热循环作用引起金相组织发生转变,随之而出现体积的变化,当体积变化受到周围金属阻碍时便产生了应力,从而出现整体变形。 焊接变形分为局部变形和整体变形。局部变形指焊接结构的某部分发生变形,在焊接中易于矫正;整体变形指整个结构的形状或尺寸发生变化,是由于焊接在各个方向上收缩不均所引起的,这在焊接中尤为重要,一般不允许发生整体变形。焊接变形产生的原因很多,不均匀的局部加热和冷却是最主要原因。焊接时,焊件局部加热到熔化状态,形成了温度不均匀分布区,使焊接出现不均匀的热膨胀,热膨胀受到周围金属的阻碍不能自由膨胀而受到压应力,周围的金属则受到拉应力。当被加热金属受到的压应力超过屈服点时,就会产生塑性变形;焊接冷却时,由于加热的金属在加热时已产生了压缩的塑性变形,所以,最后的长度要比未被加热金属的长度短些,从而产生变形。 1.1焊接应力的种类 1.1.1热应力:又称温度应力。它是在不均匀加热及冷却过程中所产生的应力,它与加热温度和加热不均匀程度、焊件的钢度以及焊件材料的热物理性能等因素有关。 1.1.2相变应力:金属发生相变时,由于体积发生变化而引起的应力。 1.1.3装配应力:在装配和安装过程中产生的应力。 1.1.4残余应力:当构件上承受局部荷载或经受不均匀加热时,都会在局部地区产生塑性应变。当局部外载撤去后或热源离去,构件温度恢复到原始的均匀状态时,由于构件内部发生了不能恢复的塑性变形,因而产生了内应力,即残余应力。残留下来的变形即残余变形。 焊接过程中焊件的热应力是随时间而变化的瞬时应力,焊后残余下来,即为残余应力。 2 焊接变形 2.1焊接变形发生的原因 钢材的焊接通常采用熔化焊方法,把焊接局部连接处加热至溶化状态形成熔池,待其冷却结晶后形成焊缝,使原来分开的钢材连接成整体。由于焊接加热时还焊接接头局部加热不均匀,金属冷却后沿焊缝纵向收缩时受到焊件低温部分的阻碍,使焊缝及其附近区域受拉应力,远离焊缝区域受压应力。因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形,焊接完成并冷却至常温后该塑性变形残留下来,焊接变形因此产生。 2.2焊接变形的主要形式 焊接变形主要有收缩变形、角变形、弯曲变形、扭曲变形和破浪变形五种基本形式。其成因如下: 收缩变形是由于焊缝的纵向(沿焊缝方向)和横向(垂直焊缝方向)收缩引起的 角变形由于V型坡口对接焊焊缝布置不对称,造成焊缝上下横向收缩量不均匀而引起的变形

船体结构焊接修理作业指导书

船体结构焊接修理作业指导书 4.1焊接前的准备 4.1.1构件的坡口、装配次序、定位精度及装配间隙应符合工艺要求,并应避免强制装配,以减少构件的内应力。若焊接坡口或装配间隙过大应按规定修正后再施焊。 4.1.2施焊前焊缝坡口区域的铁锈、氧化皮、油污和杂物等应予清除,并保持清洁和干燥。 4.1.3涂有底漆的钢材,如果底漆对焊缝的质量有不良的影响,则在焊前将底漆清除。 4.1.4当焊接必须在潮湿,多风或寒冷的露天场地进行时,应对焊接作业区域提供适当的遮敝和防护措施。4.2焊接工艺要点 4.2.1船体重要部位的焊接须由经船级社认可的焊工进行。 4.2.2普通结构钢在0C以下施焊时应使用低氢型焊条。当环境温度低于—5C时必须经过专门的工 艺要求采用预热或缓冷措施,以防焊件内产生冷裂缝和不良组织。 4.2.3 当母材的碳当量: C eq0.41>% 时(C eq=C +Mn/6+ (C叶Mo+V)/5+(Ni+Cu)/15 ), 应对焊件进行预热; C eq>0.45%时,焊后应对焊件进行热处理。 4.2.4所焊结构刚性过大、构件板厚较厚或焊段较短时,焊件应进行预热。 4.2.5船体结构的焊缝应按焊接程序进行,焊接时尽量地使焊接部分自由地收缩。对较长的焊缝应尽可能从焊缝中间向两端施焊,以减少结构的变形和内应力。 4.2.6必须使用经认可的适合于接头类型的焊接工艺程序和焊接材料。 4.2.7定位焊的数量应尽量减少,定位焊缝应具有足够的高度,其长度对普通结构钢应不小于3 0 mm 对高强度钢应不小于5 0 mm定位焊所用的焊接材料应与施焊所用的焊接材料相同。有缺陷的定位焊应在施焊前清除干净。 4.2.8焊缝末端收口处应填满弧坑,以防止产生弧坑裂纹。如采用自动焊,应使用引弧板和熄弧板。进行多道焊时,在下道焊接之前,应将前道焊渣清除。 4.2.9在去除临时焊缝、定位焊缝、焊缝缺陷、焊疤和清根时,均不得损伤母材。 4.3 背水焊接 4.3.1在板的另一侧有水的情况下焊接时,焊缝冷却速度会增加,对普通船用钢没有问题。但是板面上冷凝的结晶水必须清除。 4.3.2背水焊接时,必须有一辅助工烘干焊缝区域,并加热焊接缝区域。 4.3.3高强度钢不允许在背水情况下进行焊接。特殊情况时应做工艺认可试验。 4.4各类焊接形式 4.4.1板材对接接头 4.4.1.1 板材对接均应按规定要求开制坡口,确定装配间隙,见附表1。 4.4.1.2 板厚之差大于4 mm的两板对接时,厚板边缘应削斜,坡度长一般不大于4 A t。削斜后,对 接坡口按规定要求处理:

第八章典型船体结构的焊接工艺

第八章典型船体结构的焊 接工艺 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第八章典型船体结构的焊接工艺第一节船体钢材的焊接性 焊接性的试验目的:为了评定焊接结构的可靠性,是否存在气孔、夹渣、裂纹等;焊缝及焊接接头强度、塑性、冲击韧性等力学性能和抗腐蚀性、时效、耐磨、耐热及耐酸性等耐久性。 一、船用碳素钢的焊接性 船体外板用钢材一般使用优质低合金钢,内结构可用普通低合金碳素钢。内河船舶普遍采用优质碳素钢因含碳量较低,焊接性能较好。无需采取特殊措施。 二、船用低合金钢的焊接 船用低合金钢的焊接性能也较好,不需采取特殊措施。但选用高强度低合金钢,焊接时可能出现焊接缺陷,可用工艺措施控制焊接缺陷的产生。 第二节船体结构焊接工艺基本原则一、焊接程序的一般原则 选择并严格执行焊接程序可减小结构变形和内应力。一般原则:

1、外板、甲板对接缝: ○1错开板缝:先横向焊,后纵向焊; ○2平列板缝:先纵向焊,后横向焊。 2、同时存在对接缝和角焊缝:先焊对接缝,后焊角焊缝。 3、整体或分段建造时:从结构中央向左右、前后对称焊接。 4、有对称中心线的构件:双数焊工对称焊。 5、手工电弧焊长缝:分段退焊或分中分段退焊。 6、同时存在单层焊缝和多层焊缝:先焊多层,后焊单层。多层焊各层方向相反,接头错开。 7、分段或总段外板纵缝及纵向构件与外板的角焊缝两端200-300mm:先不焊,以利于船台装配时对接。 8、内结构靠近总段大接缝一边的角焊缝:在大接缝焊接后再焊。

9、应力较大的大接缝:焊接过程不能中断,应连续完成。 10、分段中的焊接缺陷应在上船台前修补,不应在船台上进行。 二、焊接材料使用范围的规定 重要船体构件和部件应采用碱性低氢焊条(使用直流焊机): ○1用低合金钢建造的所有船体焊缝; ○2用碳素钢建造的船体大合拢环形对接焊缝和桁材对接焊缝; ○3船壳冰带区的端接缝和边接缝; ○4船长大于90m的舷顶列板与强力甲板在船中0.5L区域内的角接焊缝; ○5桅杆、吊杆、吊艇架及其受力构件;○6拖钩架; ○7主机座及其相连接的构件; ○8艏柱、艉柱、艉轴架。 三、角接焊缝端部加强焊的规定 间断焊和单面连续焊的角焊缝:应在端部一定长度进行双面连续焊。 ○1组合桁材、强横梁、强肋骨的腹板与面板在肋板区域内应为双面连续焊。

造船焊接变形和反变形控制

造船中的焊接变形和反变形控制 1.研究背景 船舶工业是传统的劳动密集型装配制造业,焊接操作是其中主要的作业形式之一,焊接水平的高低在很大程度上决定了船体的质量和生产效率,而焊接变形又是焊接过程中最难控制的一环。焊接变形的存在不仅造成了焊接结构形状变异,尺寸精度下降和承载能力降低,而且在工作荷载作用下引起的附加弯矩和应力集中现象是船舶结构早期失效的主要原因,也是造成船舶结构疲劳强度降低的原因之一[1]。焊接变形对现代造船技术的应用产生了障碍。由于焊接变形对船舶建造质量、成本和周期都具有重要影响,工业界一直对其非常重视,对焊接变形从实验和理论上进行了大量研究,希望能够对焊接过程进行有效预测和控制。反变形可以控制焊接变形,降低残余应力,且方法简单易行,在船舶行业有广泛的应用。 2.背景内容 针对造船中的焊接变形,国内外专家进行大量的研究。焊接过程是一个非平衡的、时变的、带有随机因素影响的物理化学过程,它涉及电弧物理、传质传热和力学等方面。至今对焊接过程变形的实时检测与监控仍是困难的,不仅需要特殊的方法,而且对设备的要求也很高。随着计算机软、硬件技术的快速发展,使得焊接热加工过程的数值模拟应运而生,实践证明数值模拟对于研究焊接现象是一种非常有用的方法。 2.1国外专家的预测和研究 20世纪30年代以来,许多苏联学者就开始了焊接变形计算与控制研究。如C.A.库兹米诺夫[2]研究了典型船体结构总变形和局部变形的计算方法,提出了减少和补偿焊接变形以及矫正主船体结构的解决方案。Greene和Holzbaur[3]开展了降低焊接残余应力和变形的研究,目前降低残余应力和焊接变形技术大多数由他们制定的法则演变而来。法国的国际焊接研究所对“焊接结构中残余

焊接变形的控制方法之令狐采学创编

令狐采学创作 焊接变形的控制 方法 令狐采学 1 焊接应力与变形 焊接是一种局部加热的工艺过程。焊接过程中以及焊后,构件不可避免地会产生焊接应力和变形。焊接应力和变形在一定条件下还影响焊接结构的性能,如强度、刚度、尺寸精度和稳定性、受压时的稳定性和抗腐蚀性等。不仅如此,过大的焊接应力与变形, 还会大大增加制造工艺中的困难和经济消耗, 而且往往因焊接裂纹或变形过大无法矫正而导致产品的报废。 2 焊接应力与变形的形成过程 焊接应力与变形是由焊接产生的不均匀温度场而引起的。 假设有一块平板条( 如图所示) , 在他中心堆置一条焊缝。 图1 假定是焊接加热时的情况。 图 2 为焊接以后, 温度恢复到室温时的情况。与此同时, 由于不均匀加热还会产生垂直焊缝方向( 横向) 的盈利和 变形, 厚度则还产生板厚度方向的应力。 3 影响焊接应力与变形的主要因素

令狐采学创作 影响焊接应力与变形的因素主要有两个方面,第一个方面是焊缝及其附近不均匀加热的范围和程度, 也就是产生热变形的范围和程度; 第二个方面是焊件本身的刚度以及受到周围拘束的程度; 实际上也就是就是阻止焊缝及其附近加热所产生热变形的程度。两个方面作用的结果决定了焊缝附近压缩塑性变形区的大小和分布, 也决定了残余应力与残余变形的大小。 焊缝尺寸和焊缝数量及为止, 材料的热物理性能( 导热系数、比热、膨胀系数等) , 焊接工艺方法( 气焊、手工焊、埋弧焊、气体保护焊等) , 焊接参数( 焊接电流、电弧电压、焊接速度等) 以及施焊方法( 直通焊、跳焊、逆向分段汉等) 等因素影响到焊缝及其附近区不均加热的范围和程度, 影响到热变形的大小和分布; 焊接构件的尺寸和形状, 胎夹具的应用, 焊缝的布置以及装配焊接顺序等因素影响到焊接构件的刚度和周围的约束程度。一般来说, 焊接构件在约束小的条件下, 焊接变形达而应力小; 反之, 则焊接变形小而应力大。 4 焊接残余变形的预防和矫正 4.1 设计措施

(完整版)建造船舶船体焊接工艺

建造船舶船体焊接工艺 一、总则: 1、要求施工者严格按照《焊接规格表》进行施工; 2、船体艏艉外板的对接缝(非自动焊拼板部分)应先焊横向焊缝,后焊纵向焊缝; 3、在建造过程中,先焊对接焊缝,后焊角焊缝; 4、整体建造部分和箱体分段等应从结构的中央向左右和前后逐格对称的进行焊接,由双数 焊工对称施焊; 5、凡超过1m以上的收缩变形量大的长焊缝,应采用分段退焊法或分中分段退焊进行焊接 缝; 6、在焊接过程中,先焊收缩变形量大的焊缝,再焊变形量小的焊缝; 7、边箱分段、内底分段、甲板分段、艏艉分段分层建造,在合拢口两边应留出200~300mm 的外板缝暂不接焊,以利合拢时装配对接,且肋骨、舱壁及平台板等结构靠近合拢口一 边的角焊缝也暂不焊接,等合拢缝焊完后再焊; 8、靠舷侧的内底边板与纵骨、底外板与纵骨至少要留一条纵骨暂不焊接,避免自由边波浪 变形太大,不利于边箱合拢; 9、二层底分段艏艉分段大合拢,边箱分段合拢的对接缝要用低氢型(碱性)焊条或用相同 级别的711、712的CO2焊丝对称焊接,一次性连续焊完; 10、构件、分段、分片等部件各自完工后要自检、互检、报检,把缺陷修补完毕,把合格品 送下一道工序组装,没有拿到合格单的部件不能放到下一道工序组装。 二、焊接材料使用范围的规定 (一)焊接下列船体结构和部件应采用低氢型焊条(碱性焊条)或相同级别的711、712系列的CO2焊丝。 1、船体环型对接焊缝,中桁材对接缝,合拢口处骨材对接焊缝; 2、主机座及其相连接的构件; 3、艏柱、艉柱、艉轴管、美人架等; 4、桅杆座及腹板、带缆桩、导缆孔、锚机座、链闸及其座板等; 5、艉拖沙与外板结构等; 6、上下舵杆与法兰,舵杆套管与船体结构之间的连接。 (二)普通钢结构的焊接用酸性E4303焊条焊接或JM-56系列CO2焊丝焊接; (三)埋弧自动拼板,板厚≥8mm,用Ф4.0mm焊丝焊接,板厚5~8mm,用Ф3.2mm焊

焊接变形的控制及预防措施探究

焊接变形的控制及预防措施探究 焊接过程中,由于焊缝金属和基础材料的冷热循环问题所引发的收缩、膨胀,被称之为是焊 接变形问题。在进行焊接工作的时候,沿着同一边进行焊接,可能会引发变形超过两边交叉 焊接,并且由于焊接所引发的冷热循环中,会对金属的收缩性造成影响,并导致变形问题的 出现,像金属在受热过程中,其机械、物理性能都会有所变化,当热膨胀增大、热量增大的 时候,焊接区域的温度会升高,进而导致焊接区域钢板的弹性、强度和热导性能出现降低的 情况。 1 焊接应力和焊接变形的定义 在钢结构焊接过程中,由于焊接时产生的热源以及焊接热循环的影响,使焊件不均匀受热, 在焊件上形成了不均匀的温度区域,致使焊件根据钢结构的特性不均匀的收缩及膨胀,使焊 件内部形成焊接应力引起形变。焊接应力根据焊件材质、焊接时施工方法、焊接工艺及固定 时的拘束程度等,造成不同的焊接应力大小及分布,按照焊接应力作用方向可将其分为三大类,分别为单向力、双向应力及三向应力。薄板的对接焊划归为双向应力;大厚度焊件、丁 字焊缝划归为三向应力,其具有纵向应力、横向应力及厚度方向产生的应力。三向应力会使 钢结构的脆性断裂更易发生,降低材料的塑性,是一种存在安全隐患的应力状态。焊接残余 应力和变形,对钢结构的承载能力以及构件的加工精度有着很大的影响,施工中应该从源头 抓起,强化设计方案,增强焊接工艺、焊接方法的精确度,降低焊接应力和残余变形对钢结 构造成的影响。 2 导致焊接变形的原因 1)焊接应力的产生是导致焊接变形最主要的原因。焊接工件的大小程度,复杂情况会产生大 小数量不等的复杂焊缝。在处理焊缝的过程中,就有难以预测的复杂应力产生,从而导致焊 接变形。变形度越大那么工件的外观和质量就会受影响。甚至可能会报废,或发生安全事故,造成经济损失。2)受焊接材料的影响。焊接材料的质量好坏对焊接变形会产生影响。材料基 本都是金属,金属本身有特殊的热物理性。焊接材料的热传导系数越大,温度梯度较小,这 样焊接变形的几率也就越小。焊接是向母材料焊口加热,让其产生高温,使焊材与母材料完 全融合。如果在加热过程中,受热不均匀,都会导致焊接变形。3)焊接结构的设计。焊接结 构因素是焊接变形的最大原因。焊接结构设计非常复杂。工件自身是拘束体,它随焊接而慢 慢变化。所以工作的难度比较大。焊接会出现数量、结构不一样的焊缝。如果焊缝的结构复杂,焊接就更难掌握。因为一部分结构件设计繁琐。技术含量要求比较高,所以对焊接的各 环节的要求都很严格。假设焊接结构设计不合理,其中随便哪一个地方出现问题,都会出现 焊接变形的情况。4)没有制定合理的焊接工艺。不合理的焊接工艺会影响产品的质量和生产 效率。焊接工艺也考验师傅的手艺。当然,对技师的要求也必须要高。焊接时所需要的电压、工件的固定、焊接的前后顺序,怎么选择合理的焊接设备,等各方面用到的工具都是焊接工 艺对焊接变不变形的重要影响部分。这就需要丰富的理论知识和实践经验的技师来制定合理 的焊接工艺。 3 钢结构焊接变形与焊接应力的分类 3.1 钢结构焊接变形的种类 钢结构焊接变形可以分为两大类,即为面内变形和面外变形。而面内变形可分为纵向收缩变形、焊缝回转变形及横向收缩变形三小类,面外变形多为弯曲形变、扭曲形变、角形变及失 稳波浪形变等。其中,钢结构多表现为纵向收缩变形和横向收缩变形,而在不同焊件中,这 两种变形往往会因焊缝的数量及位置分布不同,表现出其他形式的变形。 3.2 残余应力的分类

船体结构修理工艺

船体结构修理工艺 一,常见的几种施工工艺 1.结构更换:更换损坏了或蚀耗了的部件,使之恢复成原有的形式; 2.结构部分更换:考虑到整个结构更换比换困难,涉及面广,其中有的部件的蚀耗还未到非换不可的程度,征得验船师的同意,可以进行结构部分更换; 3.结构矫正:在更换外板、甲板时采用,主要包括冷加工矫正和就地热矫正; 4.结构拆下、矫正、装复:有时外板变形严重,无法就地矫正修复,则将外板拆下送到车间,利用机械设备进行矫正,待在外板原来的部位的内部骨架就地矫正结束后,再将外板原位装复,必要时亦可将骨架一起拆下送车间矫正; 5.结构拆除:有时船体经过改装后,有一些结构已无存在的必要,须予以拆除; 6.焊接工艺:(1)焊接前,接缝处应批出斜坡口,以消除夹缝空档。常见的坡口按焊接的要求有V形、丫形、X形和K形;(2)焊接表面冷却后有一层灰色的焊渣,必须铲除干净,防止夹渣。焊缝要求均匀平整,如焊坑、咬边或者烧穿钢板,均为不合格,应当刨除重焊;(3)对于旧焊缝的修理,不可直接在原有的焊缝上面加焊,应将待修的旧焊缝及其两端各延长5-8mm 长度全部刨掉,批出整齐的斜坡口,然后焊接,要特别注意新、旧焊缝接合处的质量;(4)对于构 件本体裂缝的焊接,必须先在裂缝的两端各钻一个止裂孔,以便使其内应力在此处向各个方向分散,然后批槽堆焊。如果焊接大尺寸的铜制构件的裂缝,除必须钻止裂孔及批槽外,还应当预先用慢火将构件烘热,保持在一定温度上焊补;(5 )对于地环、羊角等的焊接,如带底座者,应按复板焊接的工艺要求进行焊接;如天底座者,其脚部应批成锥形然后堆焊,不可采用仅在圆钢角部堆焊一圈的方法。 二,船体渗漏及其修理工艺 1. 产生原因:由于金属遭受腐蚀,其完整性就逐渐遭到破坏,在焊缝处局部强度逐渐下降,加上船舶在海面上经常收到水的压力和波浪冲击,以及船舶主机、辅机工作时引起的船舶振动,还有不正确的货物装载与移动,船舶在波浪上时而中拱,时而中垂等,在这些外力的作用下,船舶产生纵向和横向的弯曲,使船体发生变形,在腐蚀严重处就造成焊缝纹路增大,从而产生渗漏现象,这在船体外板、甲板和水密舱壁的接缝处常可见到。 2. 修理工艺: 船体出现渗漏的地方,多在焊缝处,这是因为焊接过程中有夹渣、气孔、裂纹、未焊透等缺陷,以及不合理的施焊程序造成了应力集中;在使用过程中,又受到各种外力的作用而产生了裂缝,从而产生了渗漏。这时,一

船舶焊接工艺

1.编制说明 1.1 目的 本工艺规定了船舶在建造过程中对有关焊工、焊接材料、焊接工艺和焊接程序以及焊接质量的要求。保证该船按期完工。 1.2 船舶的主尺度 总长:Loa=63.98m 垂线间长:Lbp=60.80m 型宽:B=14.20m 型深:D=4.80m 设计吃水:d=3.60m 1.3 船体的基本结构及建造方法 1.3.1 船体结构 本船为钢质全电焊焊接结构。结构形式为混合骨架式,泥舱区域的斜边舱为纵骨架式,机舱、艉舱、艏尖舱以及上层建筑均为横骨架式。全船在FR3、FR19、FR23、FR39、FR56、FR73、FR90、FR94、FR103处设有船底至上甲板,贯通两舷的水密横舱壁。甲板室共二层,依次是驾驶甲板和罗经甲板。 1.3.2 建造方法 根据生产施工场地和起重能力,对该船拟采用内场加工,分段场地装配焊接,形成平面分段,在船台(船坞)上组装成立体分段。上层建筑根据主船体的进度,制造成各层甲板室的立体分段,逐层进行船上安装。 2. 编制依据 2.1 中国船级社CCS颁发的2009版《钢质海船入级规范》; 2.2 中国船级社CCS 颁发的2009版《材料与焊接规范》;

2.3《中国造船质量标准》(CB/T4000—2005); 2.4《船舶钢焊缝射线照相和超声波检查规则》(CB/T3177-94); 2.5《船舶钢焊缝射线照相工艺和质量分级》(CB/T3558—94); 2.6《船体建造原则工艺》; 2.7 本船设计有关要求。 3.所有焊接人员资格 在建造的船舶上进行电焊的焊工应持有由CCS船级社或其他等效船级社签发的焊工资格证书,所持证书应在有效期限内。焊工在船上的允许施工范围应在焊工合格证合格项目的覆盖范围内,不允许超范围焊接。适用的工作范围规定如下:3.1 持有Ⅲ类焊工资格证书,合格项目为SⅢV10、SⅢH10和SⅢO10的焊工,可从事厚度>8mm的重要板结构的全位置焊接。 3.2 持有Ⅱ类焊工证书,合格项目为SⅡV10和SⅡH10的焊工,可从事厚度8~20mm的主要板结构的平、立焊和横焊。 3.3 持有Ⅰ类焊工证书,合格项目为SIF10的焊工,可从事厚度8~20mm的一般板结构的平焊。 3.4 持有高强度钢焊工证书者,可以从事相应类别的普通强度钢材的焊接。4.焊接材料的选用 4.1 凡用于船上焊接的所有焊接材料均应由CCS船级社认可的工厂制造证书,船厂应出示焊接材料合格证书及其它相关的技术文件。 4.2 本船船体结构所采用的焊接材料均应满足CCS船社级《材料与焊接规范》(2009)II级焊接材料要求。

如何防止焊接变形

焊接变形的种类。 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2 焊件在什么情况下会产生纵向收缩变形? 焊件焊后沿平行于焊缝长度方向上产生的收缩变形称为纵向收缩变形。当焊缝位于焊件的中性轴上或数条焊缝分布在相对中性轴的对称位置上,焊后焊件将产生纵向收缩变形,其焊缝位置见表1。

焊缝的纵向收缩变形量随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减少,其近似值见表2。 表2 焊缝纵向收缩变形量的近似值(mm/m) 对接焊缝连续角焊缝间断角焊缝 0.15~0.3 0.2~0.4 0~0.1 注:表中所表示的数据是在宽度大约为15倍板厚的焊缝区域中的纵向收缩变形量,适用于中等厚度的低碳钢板。 3 试述焊缝的横向收缩变形量及其计算。 焊件焊后在垂直于焊缝方向上发生的收缩变形称为横向收缩变形,横向收缩变形量随板厚的增加而增加。低碳钢对接接头、T形接头和搭接接头的横向收缩变形量,见表3、表4。

对接接头横向收缩变形量的近似计算公式,见表5。 表5 对接接头横向收缩变形量的近似计算公式坡口形式横向缩短量计算公式 Y形双Y形△L横=0.1δ①+0.6 △L横=0.1δ+0.4 ①δ——板厚(mm)。 当两板自由对接、焊缝不长、横向没有约束时,横向收缩变形量要比纵向的大得多。 4 焊件在什么情况下会产生弯曲变形? 如果焊件上的焊缝不位于焊件的中性轴上,并且相对于中性轴不对称(上下、左右),则焊后焊件将会产生弯曲变形。如果焊缝集中在中性轴下方(或下方焊缝较多)则焊件焊后将产生上拱弯曲变形;相反如果焊缝集中在中性轴上方(或上方焊缝较多),则焊件焊后将产生下凹弯曲变形。又如果焊件相对焊件中性轴左、右不对称,则焊后将产生旁弯,焊件产生弯曲变形的焊缝位置,见表6。

焊接变形的影响因素与控制(一)

焊接变形的影响因素与控制(一) 摘要:在焊接过程中由于急剧的非平衡加热及冷却,结构将不可避免地产生不可忽视的焊接残余变形。焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。针对钢结构工程焊接技术的重点和难点,根据多年的工程实践经验,本文主要阐述实用焊接变形的影响因素及控制措施和方法。 关键词:焊接变形;影响因素;控制措施 Abstact:Obviousresidualweldingdeformationisproducedinstructureinevitablyunbalancedheatinga ndcoolingduringwelding.whicharekeyinfluencingfactorsofstructuraldesignintegrity,manufacturingt echnologyrationalityandstructuralreiability.Basedonemphasisanddifficultiesofstructuralwelding,in fluencingfactorsandcontrolmeasuresforweldingdeformationareintroducedaccordingtoconstructio nexperience. Keywords:weldingdeformation;influencingfactor;controlmeasure 钢材的焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加的焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的钢材连接成整体。由于焊接加热,融合线以外的母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。这样,在焊接完成并冷却至常温后该塑性变形残留下来。 1焊接变形的影响因素 焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。 影响焊接变形的因素很多,但归纳起来主要有材料、结构和工艺3个方面。 1.1材料因素的影响 材料对于焊接变形的影响不仅和焊接材料有关,而且和母材也有关系,材料的热物理性能参数和力学性能参数都对焊接变形的产生过程有重要的影响。其中热物理性能参数的影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显著。力学性能对焊接变形的影响比较复杂,热膨胀系数的影响最为明显,随着热膨胀系数的增加焊接变形相应增加。同时材料在高温区的屈服极限和弹性模量及其随温度的变化率也起着十分重要的作用,一般情况下,随着弹性模量的增大,焊接变形随之减少而较高的屈服极限会引起较高的残余应力,焊接结构存储的变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范围不大,因而焊接变形得以减少。 1.2结构因素的影响 焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。其总体原则是随拘束度的增加,焊接残余应力增加,而焊接变形则相应减少。结构在焊接变形过程中,工件本身的拘束度是不断变化着的,因此自身为变拘束结构,同时还受到外加拘束的影响。一般情况下复杂结构自身的拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中的拘束度变化情况随结构复杂程度的增加而增加,在设计焊接结构时,常需要采用筋板或加强板来提高结构的稳定性和刚性,这样做不但增加了装配和焊接工作量,而且在某些区域,如筋板、加强板等,拘束度发生较大的变化,给焊接变形分析与控制带来了一定的难度。因此,在结构设计时针对结构板的厚度及筋板或加强筋的位置数量等进行优化,对减小焊接变形有着十分重要的作用。 1.3工艺因素的影响 焊接工艺对焊接变形的影响方面很多,例如焊接方法、焊接输入电流电压量、构件的定位或固定方法、焊接顺序、焊接胎架及夹具的应用等。在各种工艺因素中,焊接顺序对焊接变形的影响较为显著,一般情况下,改变焊接顺序可以改变残余应力的分布及应力状态,减少焊接变形。多层焊以及焊接工艺参数也对焊接变形有十分重要的影响。焊接工作者在长期研究中,总结出一些经验,利用特殊的工艺规范和措施,达到减少焊接残余应力和变形,改善残余应力

关于加强船体结构焊接检验的指导意

格式号:QR-5.5-02-01 信息联络处理单 编号:10-5300-CJ-0013

关于加强船体结构焊接检验的指导意见 (内部文件请勿外传) 加强船舶焊缝检测是提高船体焊接质量的重要手段之一,为贯彻落实《关于加强船舶焊缝检测质量的通知》(船检〔2010〕9号)文,加强我区船体结构焊接检验工作,提高我区建造船舶船体结构焊接质量,并确保全区焊接检验做法统一、平稳过渡,特编制本指导意见,请各局遵照执行。 一、采取有效措施加强船厂船体焊接质量 (一)按照已经认可的焊接工艺规程施焊 经了解,目前各船厂编制的焊接工艺规程基本上采用的是正面碳弧气刨V型或U型坡口→正面焊接→反面刨缝清根→反面焊接的方案。 但各船厂在实船外板对接缝的焊接时,由于没有专业刨边机等开坡口设备,通常的作法是采用正面(内缝)无坡口(甚至板缝间隙为0)施焊、反面碳弧气刨刨缝后焊接外缝,由于正面施焊熔深较浅,反面刨缝时难以刨到足够深度,并未彻底清根,导致了大量未焊透缺陷的存在。 为此,要求各船厂严格按照已经认可的焊接工艺规程施焊,各船厂在施焊中如无法达到目前本厂已经认可的焊接工艺规程,各船检局应要求船厂重新制订与其实际情况相符或有能力实施的正确的焊接工艺规程,并报船检机构认可。签于目前船厂的《焊接工艺规程》存在着叙述模糊或不到位的情况,请各船检局按照《材料与焊接规范》(2009)等相关规范重新审核各辖区船厂《焊接工艺规程》,以便切

实指导船厂焊接工作。在审核船厂报送的焊接工艺规程符合性、适宜性时还应注意其焊条直径与焊件厚度之间、焊条直径与焊接电流之间的匹配关系。 (二)重视定位焊的焊接质量 定位焊是为装配和固定焊件接头的位臵而进行的焊接。目前大部分船厂的定位焊位为点焊,容易在施工过程中产生裂纹,或使原点焊处脱焊造成板材错位,而随后的焊接也未消除定位焊存在的缺陷,从而影响了整个焊缝质量。 定位焊应按批准的焊接工艺规程要求施焊,且满足下列要求。 1、定位焊的质量应与该部位正式焊缝的质量要求相同,有缺陷的定位焊应在施焊前清除干净; 2、定位焊用的焊条牌号应与正式焊缝用的焊条牌号相同; 3、定位焊的起头和结尾处应圆滑,否则,易造成未焊透现象; 4、若焊接件要求预热,则定位焊时也应进行预热,其温度应与正式焊接温度相同; 5、在焊缝交叉处和焊缝方向急剧变化处,定位焊离交叉点距离不小于10倍板厚; 6、定位焊的数量应尽量减少。对一般强度钢,其长度应不小于30mm。定位焊应具有足够的高度,但其高度不得超过正式焊缝高度,且焊后熔渣应立即去除; 7、构件开坡口时,定位焊应施于坡口的反面(即无坡口的一面);角钢的定位焊应施于角钢的内缘;T型材采用单面焊时其定位焊应施

《船舶建造工艺》课程教学心得

摘要:《船舶建造工艺》课程的教学应采用工学结合的现场教学模式,配合多媒体课件等立体化教材,再充分利用学院周边船厂资源让学生进行生产实践活动,以取得最好的教学效果,培养出适合船舶建造产业的高技能复合型人才。 关键词:船舶建造工艺工学结合现场教学多媒体立体化教材生产实践 《船舶建造工艺》是船舶工程专业学生必修的一门主干专业课,本课程主要研究船舶建造相关的专业知识。课程内涵十分丰富,包括船舶结构、船舶制图、船舶原理、工程数学、造船材料和加工工艺以及相关设备与设施。在课程讲授过程中,须使学生了解和掌握船体建造技术、船舶舾装技术、船舶涂装技术、船舶焊接技术、控制变形及精度控制技术、cad/cam、船舶修理等诸多应用技术。总体说来,本课程涉及面广、与船厂实际生产联系多,但对于课堂教学来说课程内容不够丰满,易使学生感觉枯燥乏味。 作为一名教龄仅五年的年轻教师,对《船舶建造工艺》课程的教学过程有以下几点建议和心得。 1 利用本专业现有实训资源进行工学结合的现场教学 就本课程的性质来说,船舶建造工艺讲述的是船体建造的工艺过程,是与船厂实际生产息息相通的一门课程。将这类课程放到课堂教学中讲述,难免会给人一种“纸上谈兵”的感觉,使学生无法深刻体会到教材中描述的船厂的实际生产过程。针对这种情况,本课程的教学应尽量利用本专业现有的实训资源,如船体放样间,船体生产实训车间内的设备资源等进行工学结合的现场教学。即将教学过程与学生动手实践相结合,在一个模拟船厂实际生产的环境中进行教学。例如,教材中环形总段的装配过程,仅在课堂教学中无法精确表达甲板、舷侧及底部各分段对齐的情况。若利用实训车间内已有的各分段模型配合教学,即将课堂教学转移到实训车间内,使学生分组进行实训,教师在旁指导。这样,学生可亲自动手完成环形总段的装配过程,自然而然地掌握了教材上的专业知识;并且学生会在装配过程中发现许多原本在教材上无法看到的问题,提出后,教师随时予以解决。使整个教学过程寓教学于实践,使教材内容与船厂实际生产零距离接触,圆满完成了教学要求。 古诗有云:“纸上得来终觉浅,绝知此事要躬行。”我们高职类院校培养的是有丰富专业知识并具有较高动手能力的复合型人才,需要学生具备相当高水平的实际操作能力,这正是单纯的课堂教学无法实现的。例如,船体建造过程中存在大量的焊接工作,众所周知,焊接与变形可以说是同时存在的。焊接变形对船体建造的影响是相当巨大并且不可避免的,但若仅凭教师口头讲述以及板书讲解是无法让学生对焊接变形有极深刻的了解的。我们可以利用专业实训车间内的焊接设备,安排学生进行焊接实习,并有意安排学生进行薄板或精确度要求高的小构件焊接。在学生自己动手焊接的过程中,无需教师再加以强调,学生自然能体会到焊接变形对构件精确度的破坏;这样还有利于使学生进行更深一层次的思考,比如如何减小焊接变形,教师可在旁进行适当的指导,启发学生。例如在指导学生进行组合t型梁焊接过程中,t型梁面板在焊接后会出现两端上翘的变形情况。学生对此变形没有好的解决方法,只是简单的准备在出现焊接变形后再利用火工矫正。虽然这是一种矫正变形的方法,但火工矫正会影响焊接质量,也会破坏材料本身强度。在教师的启发下,学生领悟到事先将t型梁面板加工成反方向的一个变形,焊接后,利用焊接收缩使先前加工的变形回复到正常位置,这正是对焊接变形的一个很好的利用。同时,由于这项工艺措施是学生自己动脑开发并动手实现的,必然使学生的印象十分深刻。这种教学方法在较短的时间内使学生对知识的掌握更加牢固。 《船舶建造工艺》课程的教学过程应尽量采用工学结合的现场教学方式,由上述内容可知, 利用本专业现有的实习实训资源使学生走出枯燥的课堂教学,尽早地接触到船厂实际生产模式,从而为今后的就业打下坚实的基础。

相关主题
文本预览
相关文档 最新文档