公式正常信号与系统实验教程
- 格式:doc
- 大小:1.05 MB
- 文档页数:94
信 号 与 系 统实 验 教 程(只有答案)(实验报告)这么玩!目录 实验一 信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二 连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三 连续时间LTI 系统的频域分析 (35)三、实验内容及步骤 (35)实验四 通信系统仿真 (41)三、实验内容及步骤 (41)实验五 连续时间LTI 系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。
要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。
然后执行该程序,保存所的图形。
修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。
信号与系统实验教程信号与系统实验是电子信息类专业中一门重要的实验课程。
在这门实验中,学生将学习如何利用实验仪器和软件工具来分析和处理信号,并理解信号在系统中的作用和相互之间的关系。
以下是一些常见的信号与系统实验教程:1. 实验一:信号的采集与表示- 学习使用信号采集仪器(例如信号发生器、示波器等)。
- 了解采样原理和采样频率对信号的影响。
- 学习如何将模拟信号转换为数字信号。
- 使用编程语言或工具对信号进行采样和表示。
2. 实验二:信号的变换与处理- 学习傅里叶变换和信号频谱分析的原理。
- 使用傅里叶变换工具(例如FFT算法)对信号进行频谱分析。
- 学习信号的时域和频域表示之间的转换关系。
- 学习数字滤波器的原理和应用。
3. 实验三:线性时不变系统的特性分析- 学习线性时不变系统的定义和性质。
- 了解系统的单位冲激响应和冲激响应与输入信号的卷积关系。
- 利用实验仪器测量系统的冲激响应。
- 使用软件工具对系统进行时域和频域特性分析。
4. 实验四:信号采样与重构- 学习信号采样和重构的理论基础。
- 利用实验仪器对信号进行采样和重构。
- 学习采样定理的应用和限制。
- 学习插值和抽取技术对信号进行采样和重构。
5. 实验五:系统的频率响应与稳定性- 学习系统的频率响应和稳定性分析。
- 使用频率响应仪器(例如频谱分析仪)对系统进行测量和分析。
- 学习系统的振荡和稳定条件。
- 学习系统的幅频特性和相频特性之间的关系。
以上是信号与系统实验教程的一些基本内容,具体的实验内容和教程可以根据教学大纲和教材进行更详细的设计和安排。
实验一 常用信号的分类与观察一、实验目的1、观察常用信号的波形特点及其产生方法;2、学会使用示波器对常用波形参数测量;3、掌握JH5004信号产生模块的操作。
二、实验原理对于一个系统的特性进行研究,重要的一个方面是研究它的输入—输出关系,即在特定输入信号下,系统输出的响应信号。
因而对信号进行研究是研究系统的出发点,是对系统特性观察的基本方法和手段。
在本实验中,将对常用信号及其特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用的信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa (t )信号、钟形信号、脉冲信号等。
1、指数信号:指数信号可表示为at Ke t f =)(。
对于不同的a 取值,其波形表现为不同的形式,如下图所示:在JH5004“信号与系统”实验平台的信号产生模块可产生a <0,t>0的Sa(t)函数的波形。
通过示波器测量输出信号波形,测量Sa(t)函数的a 、K 参数。
2、正弦信号:其表达式为)sin()(θω+⋅=t K t f ,其信号的参数有:振幅K 、角频率 ω、与初始相位θ。
其波形如下图所示:通过示波器测量输出信号波形,测量正弦信号的振幅K 、角频率ω参数。
3、衰减正弦信号:其表达式为⎩⎨⎧>⋅<=-)0(sin )0(0)(t t Ke t t f at ω,其波形如下图:4、复指数信号:其表达式为)sin()cos()()(t e jK t e K e K e K t f t t t j st ωωσσωσ⋅⋅+⋅⋅=⋅=⋅=+一个复指数信号可分解为实、虚两部分。
其中实部包含余弦衰减信号,虚部则为正弦衰减信号。
指数因子实部表征了正弦与余弦函数振幅随时间变化的情况。
一般0<σ,正弦及余弦信号是衰减振荡。
指数因子的虚部则表示正弦与余弦信号的角频率。
对于一个复信号的表示一般通过两个信号联合表示:信号的实部通常称之为同相支路;信号的虚部通常称之为正交之路。
信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。
信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。
1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。
4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。
5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。
《信号与系统》重要公式信号与系统是电子信息类专业的一门重要课程,其中涉及到许多重要的公式。
下面是《信号与系统》中的一些重要公式。
1.线性系统的叠加性质:对于系统的输入信号x(t)和输出信号y(t),以及系统的响应函数h(t),有如下关系:h(a*x(t)+b*y(t))=a*h(x(t))+b*h(y(t))2.线性时不变系统的冲击响应函数:线性时不变系统的输出可以由输入和系统的冲击响应函数进行卷积运算得到:y(t)=x(t)*h(t)3.冲击函数的性质:冲击函数的面积等于单位冲击高度,即:∫h(t)dt = 14.线性卷积的性质:对于两个信号x(t)和y(t)进行卷积运算,然后再对结果进行线性组合,等于先对每个信号进行线性组合,再进行卷积运算:a*(x(t)*y(t))+b*(z(t)*y(t))=(a*x(t)+b*z(t))*y(t)5.单位冲击响应函数的性质:线性时不变系统的冲击响应函数和移位后的冲击函数进行卷积运算等于移位后的输出:h(t)*δ(t-t0)=h(t-t0)6.单位冲击响应函数和冲击响应函数的性质:系统的输出信号可以由冲击响应函数与输入信号通过卷积运算得到:y(t)=x(t)*h(t)7.卷积和频率域的乘积:信号的卷积运算可以转化为信号的频率域乘积运算,即傅里叶变换的频率域乘积等于两个信号的傅里叶变换之间的乘积:F{x(t)*y(t)}=F{x(t)}*F{y(t)}8.线性相位系统的频率响应函数:对于一个线性相位系统,其频率响应函数H(f)满足以下公式:H(f) = ,H(f), * exp(j*ϕ(f))9.系统的频率响应函数与冲击响应函数的关系:系统的频率响应函数是冲击响应函数的傅里叶变换,即:H(f)=F{h(t)}10.系统的幅频特性:系统的幅频特性是指系统对不同频率的输入信号的幅度变化情况。
幅频特性可以通过频率响应函数的模进行描述,即:H(f)以上是《信号与系统》中的一些重要公式,它们是理解和分析信号与系统的重要工具。
信号与系统实验教程(2010 年修订版)《信号与系统》课程组编武汉大学电子信息学院2010 年4 月2目录实验一信号的表示与实现 (1)实验二信号的时域基本运算 (7)实验三信号的卷积运算 (15)实验四周期信号的合成与分解 (21)实验五二阶状态轨迹的显示 (28)实验六信号的抽样与内插 (33)实验七滤波器的设计 (38)实验八 Wav 信号的波形分析与合成 (49)实验九电话拨号音的合成与识别 (58)实验十 CDMA 前向数据链路仿真 (66)附录一 MA TLAB 基础 (68)附录二学生实验报告模板 (87)(t?[〒〒〒V?PZ1k!?[〒〒〒NlPZ2k!?[〒〒〒QmPZ2k!0[〒〒〒Qk[〒〒〒N][〒〒〒SA?N'N?PZ3k!0Qq8k!0)21实验四周期信号的合成与分解一、实验目的1.在理论学习的基础上,通过实验深刻领会周期信号傅里叶级数分解的物理意义。
2.理解实际应用中通常采用有限项级数来逼近无限项级数,此时方均误差随项数的增加而减小。
3.观察并初步了解Gibbs 现象。
4.深入理解周期信号的频谱特点,比较不同周期信号频谱的差异。
二、实验原理满足Dirichlet 条件的周期信号f(t)可以分解成三角函数形式的傅里叶级数,表达式为:∑∞=++=++++++=11101111110)]sin()cos([)sin()cos()sin()cos()(nnnnntnbtnaatnbtnatbtaatfωωωωωω LL式中n 为正整数;角频率1ω由周期T1决定:11T2πω = 。
该式表明:任何满足Dirichlet 条件的周期信号都可以分解成直流分量及许多正弦、余弦分量。
这些正弦、余弦分量的频率必定是基频11T1=f 的整数倍。
通常把频率为 1f 的分量称为基波,频率为 1nf 的分量成为 n 次谐波。
周期信号的频谱只会出现在LL ,,,2,,0 111 ωωω n 等离散的频率点上,这种频谱称为离散谱,是周期信号频谱的主要特点。
《信号与系统》实验讲义《信号与系统》实验讲义龙岩学院物理与机电工程学院电子教研室编2008年1月实验一阶跃响应与冲激响应一、实验目的1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响。
2、掌握有关信号时域的测量方法。
二、实验内容1、用示波器观察欠阻尼、临界阻尼和过阻尼状态的阶跃响应波形。
2、用示波器观察欠阻尼、临界阻尼和过阻尼状态的冲激响应波形。
三、实验仪器1、信号与系统实验箱一台2、信号与系统实验平台3、阶跃响应与冲激响应模块(D Y T3000-64)一块4、20M H z双踪示波器一台5、连接线若干四、实验原理RLC串联电路的阶跃响应与冲激响应电路原理图如下所示,其响应有以下三种状态:阶跃响应与冲激响应原理图1、当电阻R>2L时,称过阻尼状态;C2、当电阻R=2L时,称临界阻尼状态;C3、当电阻R<2L时,称欠阻尼状态。
C冲激信号是阶跃信号的导数,所以对线性时不变系统冲激响应也是阶跃响应的导数。
为了便于用示波器观察响应波形,实验中用周期方波代替阶跃信号,而用周期方波通过微分电路后得到的尖脉冲代替冲激信号,冲激脉冲的占空比可通过电位计W102调节。
五、实验步骤本实验使用信号源单元和阶跃响应与冲激响应单元。
1、熟悉阶跃响应与冲激响应的工作原理。
接好电源线,将阶跃响应与冲激响应模块插入信号系统实验平台插槽中,打开实验箱电源开关,通电检查模块灯亮,实验箱开始正常工作。
2、阶跃响应的波形观察:①将信号源单元产生的VPP =3V、f=1KHz方波信号送入激励信号输入点STEP_IN。
②调节电位计W101,使电路分别工作在欠阻尼、临界阻尼和过阻尼状态,用示波器观察三种状态的阶跃响应输出波形并分析对应的电路参数。
3、冲激响应的波形观察:①连接跳线J101,将信号源单元产生的VPP =3V、f=1KHz方波信号送入激励信号输入点IMPULSE_IN。
第二章信号与系统实验“信号与系统”课程系统性、理论性很强,数学应用较多,为此非常有必要开设信号与系统实验课程。
通过开设信号与系统实验课程,加深学生对信号与系统特性的直观了解,理解信号通过系统传输后的变化过程,对课堂教学所介绍的信号的频谱、信号的谐波、信号的合成与分解、信号的采样与恢复、阶跃响应和冲激响应等内容进一步理解,为从事本专业和相关专业的工作打好入门基础,让学生在“信号与系统”课程学习到扎实的基础理论知识。
信号与系统实验课程可面向的专业有电子信息科学与技术、应用电子技术教育、电子信息工程技术、应用电子技术、应用物理学以及机电与计算机相关专业。
信号与系统实验课程要求学生在掌握了基本的实验测试手段、各种实验方法及必要的实验操作技能的基础上,通过对一系列电路的输入、输出信号及电路状态的观察、测试、分析,以及对特定性能要求的电路或实验方案的设计、研究后,将理论上比较抽象的概念、原理具体化,进一步加深对理论知识的理解,培养和提高学生的实验研究能力、分析计算能力、总结归纳能力和综合设计能力。
实验一函数信号发生器“信号与系统”虽然是两个不同的概念,但却联系紧密,系统的存在就是为了传输、处理或者控制信号,如果没有了信号,系统的存在也就变的毫无意义。
反之,如果只有信号而没有系统,则信号的传输与处理、控制与利用、存储与再现等等都不可能得以实现。
函数信号发生器实验让我们了解常见函数信号的产生原理与信号特点,为后续理论知识与实验内容打下基础。
一、实验目的1、了解单片多功能集成电路函数信号发生器的功能及特点。
2、熟悉信号与系统实验中信号产生的方法与常见函数信号的特征。
3、学会利用计算机仿真软件LabVIEW设计虚拟函数信号发生器。
4、了解函数信号发生器的使用方法。
二、实验原理1、基于ICL8038单片集成函数信号发生器基本原理基于ICL8038的单片集成函数信号发生器是一个用最少的外部元件就能生产高精度正弦,方形,三角, 锯齿波和脉冲波形的彻底单片集成电路。
信号与系统实验教程目录实验一:连续时间信号与系统的时域分析-------------------------------------------------6一、实验目的及要求---------------------------------------------------------------------------6二、实验原理-----------------------------------------------------------------------------------61、信号的时域表示方法------------------------------------------------------------------62、用MATLAB仿真连续时间信号和离散时间信号----------------------------------73、LTI系统的时域描述-----------------------------------------------------------------11三、实验步骤及内容--------------------------------------------------------------------------15四、实验报告要求-----------------------------------------------------------------------------26 实验二:连续时间信号的频域分析---------------------------------------------------------27一、实验目的及要求--------------------------------------------------------------------------27二、实验原理----------------------------------------------------------------------------------271、连续时间周期信号的傅里叶级数CTFS---------------------------------------------272、连续时间信号的傅里叶变换CTFT--------------------------------------------------283、离散时间信号的傅里叶变换DTFT -------------------------------------------------284、连续时间周期信号的傅里叶级数CTFS的MATLAB实现------------------------295、用MATLAB实现CTFT及其逆变换的计算---------------------------------------33三、实验步骤及内容----------------------------------------------------------------------34四、实验报告要求-------------------------------------------------------------------------48 实验三:连续时间LTI系统的频域分析---------------------------------------------------49一、实验目的及要求--------------------------------------------------------------------------49二、实验原理----------------------------------------------------------------------------------491、连续时间LTI系统的频率响应-------------------------------------------------------492、LTI系统的群延时---------------------------------------------------------------------503、用MATLAB计算系统的频率响应--------------------------------------------------50三、实验步骤及内容----------------------------------------------------------------------51四、实验报告要求-------------------------------------------------------------------------58 实验四:调制与解调以及抽样与重建------------------------------------------------------59一、实验目的及要求--------------------------------------------------------------------------59二、实验原理----------------------------------------------------------------------------------591、信号的抽样及抽样定理---------------------------------------------------------------592、信号抽样过程中的频谱混叠----------------------------------------------------------623、信号重建--------------------- ----------------------------------------------------------624、调制与解调----------------------------------------------------------------------------------645、通信系统中的调制与解调仿真---------------------------------------------------------66三、实验步骤及内容------------------------------------------------------------------------66四、实验报告要求---------------------------------------------------------------------------75 实验五:连续时间LTI系统的复频域分析----------------------------------------------76一、实验目的及要求------------------------------------------------------------------------76二、实验原理--------------------------------------------------------------------------------761、连续时间LTI系统的复频域描述--------------------------------------------------762、系统函数的零极点分布图-----------------------------------------------------------------773、拉普拉斯变换与傅里叶变换之间的关系-----------------------------------------------784、系统函数的零极点分布与系统稳定性和因果性之间的关系------------------------795、系统函数的零极点分布与系统的滤波特性-------------------------------------------806、拉普拉斯逆变换的计算-------------------------------------------------------------81三、实验步骤及内容------------------------------------------------------------------------82四、实验报告要求---------------------------------------------------------------------------87 附录:授课方式和考核办法-----------------------------------------------------------------88实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间和离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。
基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写MA TLAB 程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MATLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。