新一代绿色表面活性剂_烷基葡萄糖酰胺
- 格式:pdf
- 大小:162.99 KB
- 文档页数:3
绿色表面活性剂烷基糖苷(APG)的研究现状烷基多聚糖苷(简称APG)是90年代以来致力开发的一种性能较全面优良的新型非离子表面活性剂。
由于表面张力低,泡沫丰富细腻而稳定,去污优良,配伍性能极佳,而且在高浓度无机助剂存在下溶解仍然良好,无逆相浊点和胶凝现象,广泛应用于洗涤剂、化妆品以及工农业生产用功能性助剂等,其生物降解迅速彻底,无毒无刺激,被称为“绿色表面活性剂”。
一、烷基糖苷的合成研究现状烷基糖苷从研究到目前工业化,已有一百余年的历史。
早在1893年德国 E.Fisher首次报道了甲基糖苷的制备技术。
80年代后期由Rohur&Haas公司及Horizon化工公司首先实现了烷基糖苷工业化,Henkel公司也于1992年底投产一家2.5万t/a的烷基糖苷生产厂,并于1995年又建一座年产3万t的工厂。
近十年来,国内对烷基糖苷的研究日趋重视,许多高校和科研院都进行了研究并取得了进展。
APG是以再生资源淀粉的衍生物葡萄糖和天然脂肪醇为原料,由半缩醛羟基与醇羟基,在酸等催化下脱去一分子水生成的产物。
合成烷基糖苷的方法归纳起来主要有六种叫:(1)基团保护法;(2)直接苷化法;(3)交换法(转糖苷法);(4)酶催化法;(5)原脂法;(6)糖的缩酮物的醇解。
目前主要采用并且已工业化的合成方法为直接苷化法和交换法。
烷基糖苷的合成工艺包括缩醛化反应、脱醇及漂白脱色三部分,对于其合成的开发研究在于各项工艺条件的优化、改进及原料优选的研究。
1、脱醇工艺研究在合成过程中由于使用过量的醇,因此合成中的脱醇成为一项重要的研究任务。
少量残留醇的存在,对烷基糖苷乳化性能影响不大,起泡性能降低,但泡沫的稳定性增加,表面张力降低,增溶和分散性能均有提高;随着残留醇含量的过量增加,所有性能均有下降的趋势。
高碳醇含量较多的APG水溶液中表面张力随浓度增加而递减较快,含醇量较高的表面活性剂水溶液临界胶束浓度相对较大。
脱醇工艺一般为减压精馏脱醇,但以减压蒸馏方式分离高碳醇需要相当高的真空度。
绿色表面活性剂的种类、性能及应用介绍表面活性剂在生产和使用的过程中对人体及环境生态系统造成了严重的危害。
在洗涤剂中加入一定量的表面活性剂溶剂可以增强洗涤剂的溶解性和洗涤性,但由于这些溶剂具有一定的毒性,会对皮肤产生明显的刺激作用。
大量使用表面活性剂还会对生态系统产生潜在的危害。
如烷基苯磺酸钠(A BS)的生物降解性差,在洗涤剂中的大量使用所产生的大量泡沫造成了城市下水道及河流泡沫泛滥;含有磷酸盐的表面活性剂在使用时使河流湖泊水质产生“富营养化”;在生产直链烷基苯磺酸钠(LA S)的过程中所产生的二氧化硫、三氧化硫及脂肪醇聚氧乙烯醚硫酸盐(A E S)类产品中二恶烷类物质不易生物降解,对环境造成了巨大的危害。
为了满足人们日益增强的保健需求,确保人类生存环境的可持续发展,开发对人体尽可能无毒无害及对生态环境无污染的表面活性剂势在必行。
1、绿色表面活性剂的分类和性能绿色表面活性剂是指由天然或再生资源加工的,对人体刺激性小和易于生物降解的表面活性剂。
绿色表面活性剂按其在水中是否离解,可分为非离子型绿色表面活性剂和离子型绿色表面活性剂。
离子型绿色表面活性剂根据溶解后的活性成分又可分为阳离子型、阴离子型和两性离子型。
绿色表面活性剂是由天然的或可再生资源加工而成的,即具有天然性、温和性、刺激性小等优良特点。
同传统表面活性剂一样,绿色表面活性剂具有亲水基和憎水基。
与传统表面活性剂相比,绿色表面活性剂具有高效强力去污性、优良的配伍性及良好的环境相容性,并表现出良好的乳化性、洗涤性、增溶性、润湿性、溶解性和稳定性等。
除此以外,每一种绿色表面活性剂都具有其特有的性能,如α-磺基脂肪酸酯盐(M EC)在低浓度下就具有表面活性、耐硬水,单烷基磷酸酯具有优良的起泡乳化性、抗静电性能以及特有的皮肤亲合性。
常见的绿色表面活性剂有α-磺基脂肪酸甲酯(M E C)、烷基糖多苷(A P G)、葡萄糖酰胺(A P A)、醇醚羧酸盐(AE C)、单烷基磷酸酯(M AP)、烷基葡萄糖酰胺(M EC A)。
婴童洗护王成运黄立朱晨江(科莱恩化工(中国)有限公司,上海,200335)摘要:婴童洗护产品是日化市场中新的增长点,安全、绿色环保、温和、高效是目前国内消费者的重要诉求。
烷基葡糖酰胺是一类来源绿色,对环境友好安全的新一代表面活性剂。
这类表面活性剂具有温和、低刺激的特性,并且在不同应用中能表现出泡沫细腻持久、改善配方稳定性、高渗透力、不留痕迹等特点,在婴童洗护配方中具有广阔的应用前景。
关键词:婴童洗护;绿色表面活性剂;烷基葡糖酰胺;中图分类号:TQ658.8文献标识码:A文章编号:1672-2701(2021)04-107-06婴童洗护产品是指适用于0〜12岁的婴幼儿及儿童使用的日化产品[1],一般包括与婴童皮肤直接接触的清洁产品,包括洗手液、洗发香波、沐浴露、湿巾等;以及用于婴童周边洗护如衣物、用具清洁的产品,包括洗衣液/皂、奶瓶清洁剂等。
随着国内二胎政策的实施,新一代宝爸宝妈育儿理念的进步以及生活条件的不断提高,对于婴童洗护产品的要求不仅局限于能达到基本的去渍除污的效果,洗护产品的成分是否安全、温和、绿色环保以及实现多样化的功能性成为婴童洗护产品能够脱颖而出的重要因素。
市场环境给婴童洗护产品配方师带来了更多的挑战,使用新原料能很大程度帮个人与家居清洁护理107助配方师突破瓶颈,实现创新产品[2]。
用于皮肤清洁的洗护产品受限于法规原料清单的限制,对创新原 材料的使用具有局限性。
对于婴童周边洗护产品,符合需求,安全温和的新型原材料具有广阔前景。
本文介绍一种已经由科莱恩公司产业化的新型糖基表面活性剂-烷基葡糖酰胺产品系列,着重针对婴童产品对于安全、温和、绿色环保以及高效的需求, 充分阐述了该产品在婴童洗护配方中应用的特点。
1烷基葡糖酰胺产品概况近年来,作为可再生来源的表面活性剂的典型 代表[3],糖基表面活性剂在日化产品中的应用越来越广阔,这主要以烷基糖苷APG 为代表产品。
烷基 葡糖酰胺也是糖基表面活性剂的一种,目前国内外文献中有一些对于该产品的研究报道[4-5],但该产品 尚未全面产业化。
表面活性剂生物降解性研究表面活性剂的大量使用导致污染水域逐年扩大,致使生态环境恶化、沿海生物资源衰竭、生物多样性锐减,并引发了多种环境灾害,甚至对人体健康带来危害。
因此加强表面活性剂降解的研究,有效地控制生态环境的进一步恶化,已成为科技工作者的一项重要课题。
表面活性剂降解的技术近几年也有了较大发展,其中生物降解是目前使用最普遍的一种降解方法。
生物降解是利用微生物分解有机碳化物,有机碳化物在微生物作用下转化为细胞物质,作为能源而被利用,进一步分解成为CO2和HO的一种现象。
表面活性剂的降解是指表面活性剂在环境因素(微生2物)作用下结构发生变化而被破坏,从对环境有害的表面活性剂分子逐步转化成对环境无害的小分子如(CO2、H2O、NH3等)的过程。
完整的生物降解需要经历以下过程:(1)初级生物降解:包括吸附和裂解两个过程,在这一阶段表面活性剂母体结构消失,特性发生变化;(2)环境允许的生物降解:达到环境可以接受程度的生物降解,降解得到的产物不再导致环境污染;(3)最终生物降解:表面活性剂完全转化为CO2、H2O和NH3等无机物和其它代谢物。
1、表面活性剂生物降解性的指标表面活性剂的降解性主要是通过考察以下两种指标。
(1)生物降解度表面活性剂的生物降解度通常是指在给定的曝露条件和定量分析方法下表面活性剂降解的百分数。
(2)降解时间和半衰期在衰减实验中,经过一定的曝露时间后,表面活性剂的生物降解度接近一个常数。
通过以表面活性剂降解度达到水平状态的值和达到水平状态的时间这两个数据表示表面活性剂的生物降解性能。
生物降解达到水平状态值时所需时间愈短,则生物降解性愈好。
此外,可以用半衰期来表示生物降解速率。
半衰期为表面活性剂浓度下降到初始浓度的一半时所需的生物降解时间。
半衰期愈短,生物降解速率愈高。
2、影响表面活性剂生物降解的因素影响表面活性剂降解的因素很多,主要分为如下几方面:(1)微生物种源影响生物降解试验很重要的一个因素是所采用的微生物的情况,微生物是否经过污染物驯化在很大程度上影响微生物对有机化合物的生物降解,如对于酚而言,以驯化的污泥降解苯酚的能力是未经驯化污泥的50倍。
烷基聚葡糖苷APG是绿色、温和、无毒新型非离子表面活性剂,止痒去污安全烷基聚葡糖苷APG是的Alkyl Polyglycoside的缩写,即烷基糖苷是一种性能较全面的新型非离子表面活性剂,兼具普通非离子和阴离子表面活性剂的特性,通常工业品多制成为50%和70%的水溶液,形状通常为无色至淡黄色粘稠液体或乳白色膏体(冬天)。
纯APG为褐色或琥珀色片状固体,易吸潮。
APG一般溶于水,较易溶于常用有机溶剂,在酸、碱性溶液中呈现出优良的相容性、稳定性和表面活性,尤其在无机成分较高的活性溶剂中。
APG在自然界中能够完全被生物降解,不会形成难于生物降解的代谢物,从而避免了对环境造成新的污染。
APG无毒,对皮肤刺激小、安全,增稠、增粘、去污力显著。
用APG替代部分AES、LAS、6501、AEO、平平加、K12、AOS配制餐洗剂、浴液、洗发制品、硬表面清洗剂、洗面奶、洗衣粉等,效果显著。
由APG制成的洗涤剂具有良好的溶解性、温和性和脱脂能力,对皮肤刺激小,无毒、而且易漂洗。
在洗衣粉中加入APG ,代替AEO、LAS,能在保持原有的洗涤性能外,其温和性、抗硬水性和对皮质污垢的洗涤性明显改善,并兼有柔软性、抗静电性和防缩性,还可以提高配料时的固形物含量,流动性能好,不仅可以有效节省能源,同时也可以提高单位时间的产量,降低成本。
此外,还具有杀菌消毒、降低刺激、泡沫洁白细腻等特点。
APG 在强碱、强酸和高浓度电解质中性能稳定,腐蚀性小,且易于生物降解不会造成对环境的污染,因此可用于配制工业清洗剂,如;金属清洗、工业洗瓶和运输工具清洗等领域。
在传统餐具洗涤中是以LAS/AEO 或AES 为主成分,还需加入较多有一定毒性的助溶剂以改善溶解性及温和性,造成脱脂力不强,LAS/APG混合物则表现优异的协同效应,泡沫优于单一组分,抗硬水性好,对皮肤温和,用后手感舒适,易漂洗不留痕迹。
APG 不仅能作为一种辅助表面活性剂,而且更适合用于餐具洗涤剂中作主要表面活性。
泡沫整理发泡原液用发泡剂和稳定剂筛选方案(暂定)一、发泡剂种类1、阴离子型:①磺酸盐型:十六烷基磺酸钠(AS);仲烷基磺酸钠(SAS);十二烷基苯磺酸钠(ABS或LAS);α-烯烃磺酸盐(AOS);脂肪酸甲酯α-磺酸盐(MES);烷基酚聚氧乙烯醚磺酸钠盐(Na-APESO);烷基醇聚氧乙烯醚磺酸钠盐(Na-AESO);渗透剂T;净洗剂209(胰加漂T)(N-油酰基-N-甲基牛磺酸钠);②硫酸盐型:十二烷基硫酸钠(NaLS);十二烷基醇聚氧乙烯醚硫酸酯钠盐(AES);烷基酚聚氧乙烯醚硫酸酯钠盐(Na-APES);③其他类型:N-十八烷基磺化琥珀酰胺;脂肪醇聚氧乙烯醚羧酸盐(AEC);磺基琥珀酸酯403(月桂醇聚氧乙烯醚磺基琥珀酸单酯二钠盐);磺基琥珀酸酯4910(壬基酚聚氧乙烯醚磺基琥珀酸单酯二钠盐);邻苯二甲酸单月桂醇酯钠盐(PAS-12);2、非离子型:①醚型:烷基醇聚氧乙烯醚AEO(如平平加O,精练剂O,净洗剂JU,渗透剂JFC,AEO-9);烷基酚聚氧乙烯醚APEO(如辛基酚聚氧乙烯醚OP-10和壬基酚聚氧乙烯醚NP系列);②酰胺型:月桂酰二乙醇胺(稳泡净洗剂CD-110);聚氧乙烯月桂酰胺;椰油酰二乙醇胺(洗涤剂6501);净洗剂105;③新型绿色表面活性剂:烷基多糖苷(APG);茶皂素(天然产品);烷基葡萄糖酰胺(APA);松香聚氧乙烯酯(RPGC);Gemini型表面活性剂等。
④其他:吐温-60(乳化剂-60);渗透剂MP(脂肪酸硫酸酯);乳化剂TX-10;渗透剂KW-2380;3、两性表面活性剂:①氨基酸型:十二烷基铵基丙酸内盐;②甜菜碱型:十二烷基二甲基甜菜碱;十二烷基二甲基磺基甜菜碱;月桂酰胺丙基甜菜碱(LMB);③咪唑啉型:ZCGLS-1(2-烷基-N-羟乙基-(N)-羟丙基磺基咪唑啉);4、阳离子型:抗静电剂SN(十八烷基二甲基羟乙基季铵硝酸盐);十六烷基溴化吡啶(CPDB);十四烷基二甲基苄基氯化铵;3-十二烷氧基-2-羟丙基三甲基氯化铵(C12TAC);咪唑啉型表面活性剂(SEM),如AGES-100,AGES-80;其他季铵盐类;甜菜碱类。
绿色表面活性剂概述日用化学洗涤剂正逐步地成为当今社会人们离不开的生活必需品,不管在任何地方都可以看到化学洗涤剂的踪影。
洗涤剂的洗污能力主要来源于表面活性剂。
因为表面活性剂有可以降低表面张力的作用,把藏在纤维空隙中的污垢挤出来。
表面活性剂又分为非离子表面活性剂、阴离子表面活性剂、阳离子表面活性剂和两性离子表面活性剂四种。
大多的阳表面活性剂和两性离子表面活性剂可以渗透人的皮肤,它可以使血液中的钙离子浓度下降,血液酸化。
这些活性剂还可以使肝脏的排毒功能下降,容易发生癌变。
因而科学家们正在大力开发非离子表面活性剂和阴离子表面活性剂的生产和使用,并将之命名为绿色表面洗涤剂,下面为大家介绍几种绿色表面洗涤剂。
一、烷基多苷(APG)APG从结构上属于非离子表面活性剂,但却具有非离子和阴离子两种表面活性剂的性能。
它不仅降低表面张力能力大、泡沫丰富、去污和配伍性好,而且还具有无毒、无刺激、生物降解迅速且完全,以及具有杀菌和提高酶活力等独特性能。
二、醇醚羧酸盐(AEC)醇醚羧酸盐AEC是一类新型的多功能阴离子表面活性剂,它的一般结构式为:R-(OCH2CH2)nOCH2COONa(H),与肥皂十分相似,但嵌入的EO链使其兼备阴离子和非离子表面活性剂的特点,可以在广泛的pH条件下使用,主要表现为:1、卓越的增溶能力,适于配制功能性透明产品。
2、良好的去污性、润湿性、乳化性、分散性和钙皂分散力。
3、良好的发泡性和泡沫稳定性,发泡力不受水的硬度和介质pH的影响。
4、对眼睛和皮肤非常温和,并能显著改善配方的温和性。
5、耐硬水、耐酸碱、耐电解质、耐高温、对次氯酸盐和过氧化物稳定。
6、具有良好的配伍性能,能与任何离子型或表面活性剂配伍,尤其对阳离子的调理性能没有干扰。
7、易生物降解,OECD验证试验的降解率为98%。
在自然环境中可完全降解为CO2和水。
8、无毒,使用安全,LD50值为3000~4000mg/kg三、脂肪酸甲酯磺酸钠(MES)MES具有良好的去污性,钙皂分散性,乳化性,增溶性和生物降解性。