第1讲 Lingo软件入门(2014)
- 格式:doc
- 大小:430.50 KB
- 文档页数:16
第7章 LINGO 软件入门7.1 LINGO 软件基本用法7.1.1 LINGO 软件简介:LINGO 软件是一套专门用于求解最优化问题的软件包. LINGO 可用于求解线性规划(LP ),二次规划(QP ),非线性规划(NLP ),整数规划(IP ),动态规划,多目标规划等,特别是对于变量或约束条件较复杂的大规模模型,提供了较好的选择.LINGO 还是最优化问题的一种建模语言,包括许多常用的数学函数可以调用,并可以接受其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等),同时LINGO 提供了与电子表格软件(如Excel 等)的接口,能够直接集成到电子表格中使用.即使对优化方面知识了解不多的用户,也能够方便地建模和输入、有效地求解.7.1.2 LINGO 基本用法:启动LINGO 后,在主窗口上弹出标题为LINGO Model – LINGO1 的窗口,称为LINGO 的模型窗口,建立的模型都要在该窗口内编码实现.例1.求解下列二次规划.22121122121212982770.32;100;2;,;x x x x x x x x x x x x N +---+≤≤∈目标函数约束条件输入模型窗口LINGO1后的形式见下图.请注意以下几点:(1)LINGO总是根据“MAX=”或“MIN=”语句寻找目标函数,而其他语句都是约束条件(除注释语句和TITLE语句),所以语句顺序不重要.(2)LINGO中模型以“MODEL:”开始,以“END”结束.对简单的模型,这俩个语句也可以省略.(3)LINGO模型是由一系列语句组成,每个语句都以分号“;”结尾.(4)LINGO中不分大小写字母;其变量和行名由不超过32个字符(数字和字母)组成,且以字母开头;(5)乘号不能省略,即系数与变量之间要加运算符“*”.(6)“!”开头的是注释行(注释语句),可以省略.(7)“[]”为用户自定义的行号或行名,放在每行之前,可以省略.(8)LINGO中以“@”都是函数调用,@GIN表示变量取正整数.默认情况下,LINGO规定变量是非负的.(我们将在后面详细介绍函数)(9)“TITLE”后加名字,可对此模型命名,可以省略.现在我们用LINGO来解这个模型.点击工具条上的按钮,或从菜单中选择LINGO|Sovle 即可.(若模型编译有错,会有提示)求解时会显示下图:关闭窗口,得到运行结果:Local optimal solution found at iteration:找到最优解时迭代的次数. Objective value:表示所求的最优目标值(11077.50).Variable:变量名Value:最优解中各变量( Variable)的值.Row:约束条件行名.Reduced Cost:当该非基变量增加一个单位时(其他非基变量保持不变)目标函数减少的量(对max型问题)Slack or Surplus:约束对应得松弛变量的值.(第三行取0,对于最优解来讲,第三个约束取等号,为紧约束)Dual Price:对偶价格的值.表示当对应约束有微小变动时,目标函数的变化率,若其数值为X,表示对应约束中不等式右端项若增加一个单位,目标函数将增加X个单位(max 型问题).7.1.3 在LINGO中使用集合:1、LINGO模型的基本组成LINGO也是一种建模语言,称为矩阵生成器,通过集合的引入,它可使输入较大规模问题的过程得到简化.LINGO模型由5段组成:(1)、集合段:是用于定义变量.以“SETS:”开始,以“ENDSETS”结束.定义集合变量,元素,和属性.集合名/元素/:属性元素:类似于数组的下标.属性:定义集合的变量,类似于数组.属性之间必须用逗号或空格隔开.(2)、目标与约束段:定义目标函数,约束条件.(3)、数据段:用于给变量赋值.以“DATA:”开始,以“ENDDATA”结束.对集合的属性(数组)输入必要的常数数据.attribute list(属性)= value_list;(常数列表)(value_list)中数据用逗号或空格隔开.﹡在此段也可引入参数,“变量名=?”,在运行时才对参数赋值.但这仅用于单个变量赋值,而不能用于属性变量(数组).(4)、初始段:以“init:”开始,以“endinit”结束.对集合的属性(数组)定义初值. (5)、计算段:以“CALC:”开始,以“ENDCALA”结束.对一些原始数据进行“预处理”.﹡计算段中语句是顺序执行,不能交换位置.﹡计算段中只能直接使用赋值语句.2、集合的定义:变量使用之前需先定义,而LINGO中的变量是通过集合来定义的,变量皆为向量或由向量生成的二维数组.如:Demand/1..6/:a,b,d :集合名为Demand,共6个元素,a,b,d 为属于此集合的变量,其为含6个元素的向量.Supply/1,2/:x,y,e :集合名为Supply ,共2个元素,x,y,e 为属于此集合的变量,其为含2个元素的向量.————基本集合Link(demand,supply):c :集合link 是由集合demand和 supply生成的新集合,为二维数组,其元素由demand和 supply的笛卡尔积构成,即共6*2=12个元素变量c 即为6*2的矩阵————派生集合现有2料场,位于A (5, 1), B (2, 7),记(xj,yj),j=1,2, 日储量ej 各有20吨.假设从料场到工地之间均有直线道路相连,试制定每天的供应计划,即从A, B 两料场分别向各工地运送多少吨水泥,使总的吨公里数最小.解:设决策变量:ij c (料场j 到工地i 的运量)则其为12维.则规划模型为26221/2112161min [()()].,16,1,2ijji j i j i iji j ijji c xa yb s tcd i ce j ====-+-==≤=∑∑∑∑其LINGO 模型为:(1)集合段:我们定义需求点demand 和供应点supply 两个集合,分别有6个和2个元素,Demand/1..6/:a,b,d ; 其中a 为该集合的属性(变量),表示6个工地位置的横坐标的集合,是一个有6个元素的向量. Supply/1,2/:x,y,e ; 其中x 该集合的属性(变量),表示2个料场位置的横坐标的集合,是一个有2个元素的向量.运送量ij c 的集合是一个6*2 的矩阵,它需要利用集合demand 和supply ,定义一个新集合,定义ij c 为这个新集合的属性:Link(demand,supply):c;(2)数据段:给已知变量赋值.如a,b=1.25,1.25,8.75,0.75,0.5,4.75,5.75,5,3,6.5,7.25,7.75;也可写成a=1.25,8.75,0.5,5.75,3,7.25; b=1.25,0.75,4.75,5,6.5,7.75;注 LINGO 对数据是按列赋值的,而不是按行.分割数据可用空格,逗号,回车. (3)目标与约束段: 目标函数26221/211min[()()]ijji j i j i c xa yb ==-+-∑∑用LINGO 语句表示为:min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));()11*11*222*12*233*13*21244*14*255*15*266*16*2⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪= ⎪⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭@sum :求和函数.这个函数的功能是对语句中冒号“:”后面的的表达式,按照“:”前面的集合指定的下标进行求和.“@sum ”相当于∑“”,“link(i,j)”相当于“i,j ∈link ”约束条件21.,16ijij s tcd i ===∑用LINGO 语句表示为:@for(demand(i): @sum(supply(j):c(i,j)) =d(i););@for:循环函数.意思是对冒号“:”前面的集合的每个元素(下标),对于“:”后面的约束关系式都要成立.注 @for 和@sum 可以嵌套使用.@free 函数取消了变量x,y 非负限制.(4)初始段:“X ,Y =5,1,2,7;”语句的实际赋值顺序是X=(5,2),Y=(1,7).作为寻找最优解的起始值. 模型如下: MODEL:Title Location Problem; sets:demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(demand,supply):c; endsets data:!locations for the demand(需求点的位置); a=1.25,8.75,0.5,5.75,3,7.25; b=1.25,0.75,4.75,5,6.5,7.75;!quantities of the demand and supply (供需量); d=3,5,4,7,6,11; e=20,20; enddata init:!initial locations for the supply (初始点); x,y=5,1,2,7; endinit!Objective function (目标);[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) ); !demand constraints (需求约束);@for(demand(i): @sum(supply(j):c(i,j)) =d(i);); !supply constraints (供应约束);@for(supply(i): @sum(demand(j):c(j,i)) <=e(i); ); @for(supply: @bnd(0.5,X,8.75); @bnd(0.75,Y,7.75); ); END 运行,得局部最优解X(1)=7.249997,X(2)=5.695940,Y(1)=7.749998,Y(2)=4.928524,,最小运量=89.8835(吨公里).NLP 中局部最优解不一定就是全局最优解,可通过“LINGO|Options|Global Solver|Use Global Solver ”菜单命令激活全局最优求解程序.7.1.4 LING O 的运算符和函数:在此我们主要介绍前六种函数1、算术运算符及其优先级:算术运算符:+(加法),—(减法或负号),*(乘法),/(除法)∧求幂)关系运算符:<(即<=,小于等于),=(等于),>(即>=,大于等于)逻辑运算符:#AND#(与),#OR#(或),#NOT#(非),#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于).结果只有“真”(1)和“假”(0)两个值。
LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销单位运价如A3 5 2 1 9 7 4 3 3 51A4 7 6 7 3 9 2 7 1 43A5 2 3 9 5 7 2 6 5 41A6 5 5 2 2 8 1 4 3 52销量 35 37 22 32 41 32 43 38使用LINGO软件,编制程序如下:model:!6发点8收点运输问题;sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsets!目标函数;min=@sum(links: cost*volume);!需求约束;@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));!产量约束;@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));!这里是数据;data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataend然后点击工具条上的按钮 即可。
LINGO教程LINGO是用来求解线性和非线性优化问题的简易工具。
LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。
§1 LINGO快速入门●安装:实验室的所有电脑都已经事先安装好了Lingo 8(或者9, 10, 11)。
如果要在自己的电脑上安装这个软件,建议从网上下载一个破解版的,按照提示一步一步地安装完毕。
●简单例子:当你在windows系统下开始运行LINGO时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都要在该窗口内编码实现。
下面举两个例子。
例 1 某工厂在计划期内要安排生产I、II两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表所示。
产品I 产品II设备 1 2 8台时原材料A 4 0 16kg原材料B 0 4 12kg该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元,问应该如何安排生产计划使该厂获利最多?我们用下面的数学模型来描述这个问题。
设x_1、x_2分别表示在计划期内产品I、II的产量。
因为设备的有效台时是8,这是一个限制产量的条件,所以在确定产品I、II的产量时,要考虑不超过设备的有效台时数,即可用不等式表示为x_1 + 2x_2 <=8同理,因原材料A、B的限量,可以得到以下不等式4x_1 <=164x_2 <=12该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x_1、x_2以得到最大的利润。
若用z表示利润,这时z=2x_1+3x_2.综合上述,该计划问题可用数学模型表示为:目标函数 max z=2x_1+3x_2约束条件 x_1 + 2x_2 <=84x_1 <=164x_2 <=12x_1、x_2 >=0一个优化模型一般有三部分组成:1.目标函数(Objective Function):要达到的目标。
第1讲Lingo软件入门司守奎烟台市,海军航空工程学院数学教研室Email:sishoukui@1 Lingo软件的基本语法1.1 集合集合部分的语法为sets:集合名称1/成员列表1/:属性1_1,属性1_2,…,属性1_n1;集合名称2/成员列表2/:属性2_1,属性2_2,…,属性2_n2;派生集合名称(集合名称1,集合名称2):属性3_1,…,属性3_n3;endsets例26sets:product/A B/;machine/M N/;week/1..2/;allowed(product,machine,week):x;endsets1.2 数据数据部分的语法为data:属性1=数据列表;属性2=数据列表;enddata1.3 计算计算段部分不能含有变量,必须是已知数据的运算。
calc:b=0;a=a+1;endcalc1.4 模型的目标函数和约束条件这里就不具体给出了,下面通过具体例子给出。
1.5 子模型在LINGO 9.0 及更早的版本中,在每个LINGO 模型窗口中只允许有一个优化模型,可以称为主模型(MAIN MODEL)。
在LINGO 10.0 中,每个LINGO 模型窗口中除了主模型外,用户还可以定义子模型(SUBMODEL)。
子模型可以在主模型的计算段中被调用,这就进一步增强了LINGO 的编程能力。
子模型必须包含在主模型之内,即必须位于以“MODEL:”开头、以“END”结束的模块内。
同一个主模型中,允许定义多个子模型,所以每个子模型本身必须命名,其基本语法是:SUBMODEL mymodel:可执行语句(约束+目标函数);ENDSUBMODEL其中mymodel 是该子模型的名字,可执行语句一般是一些约束语句,也可能包含目标函数,但不可以有自身单独的集合段、数据段、初始段和计算段。
也就是说,同一个主模型内的变量都是全局变量,这些变量对主模型和所有子模型同样有效。
如果已经定义了子模型mymodel,则在计算段中可以用语句“@SOLVE( mymodel);”求解这个子模型。
第一章Lingo的基本用法我们遇到的许多优化问题都可以归结为规划问题,如线性规划,非线性规划,二次规划,整数规划,动态规划,多目标规划等;当遇到变量比较多或者约束条件表达式比较复杂的情况时,想用手工求解是不可能的;编程计算虽然可行,但工作量大,程序长而繁琐,需要花费大量的时间和精力,还容易出错。
可行的办法是用现成的软件求解,Lingo是专门求解各种规划问题的软件包,其功能非常强大。
§1Lingo入门Lingo是美国的lindo系统公司开发的求解数学规划系列软件中的一个,它的主要功能是求解大型线性,非线性和整数规划问题。
Lingo的主要功能特色为:(1)既能求解线性规划问题,也有较强的求解非线性规划问题的能力;(2)输入模型简练直观;(3)运行速度快,计算能力强;(4)内置建模语言,提供几十个内部函数,从而能以较少语句,以较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转化为Lingo 模型;(6)能方便地与Excel,数据库等其他软件交换数据。
通常,一个优化模型由以下三部分组成:(1)目标函数:一般表示成求某个数学表达式的最大值或最小值。
(2) 决策变量:目标函数值取决于哪些变量。
(3) 约束条件:对变量附加一些条件限制(通常用等式或不等式表示)。
例1:0,6002100350..32min212112121≥≤+≥≥++x x x x x x x t s x x 对于上述的优化模型,在Lingo 的窗口中输入以下的代码:min =2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;注1:Lingo 默认决策变量都非负,因而变量非负条件可以不必输入。
注2:Lingo 默认的文件格式的扩展名为.lg4,这是一种特殊的二进制文件,保存了模型窗口中所有的文本和其他对象以及格式信息,其它几种扩展名分别代表不同类型的文件。
lingo入门lingo入门教程之一--- 初识lingoingo对于一些线性或者非线性的规划,优化问题非常有效首先介绍一下,在lingo中运行程序时出现的页面(在工具栏点击类似靶子一样的图标便可运行)Solver status:求解器(求解程序)状态框Model Class:当前模型的类型:LP,QP,ILP,IQP,PILP,PIQP,NLP,INLP,PINLP(以I开头表示IP,以PI 开头表示PIP)State:当前解的状态:"Global Optimum", "LocalOptimum", "Feasible", "Infeasible“(不可行), "Unbounded “(无界), "Interrupted“(中断), "Undetermined“(未确定)Object:解的目标函数值Infeasibility:当前约束不满足的总量(不是不满足的约束的个数):实数(即使该值=0,当前解也可能不可行,因为这个量中没有考虑用上下界命令形式给出的约束)Iteration:目前为止的迭代次数Extend solverstatus:扩展的求解器(求解程序)状态框Solver type:使用的特殊求解程序:Bestobj :目前为止找到的可行解的最佳目标函数值Objbound:目标函数值的界Steps:特殊求解程序当前运行步数:Active:有效步数Variables(变量数量):变量总数(T otal)、非线性变量数(Nonlinear)、整数变量数(Integer)。
Constraints(约束数量):约束总数(T otal)、非线性约束个数(Nonlinear)。
Nonzeros(非零系数数量):总数(Total)、非线性项系数个数(Nonlinear)。
GeneratorMemory Used (K) (内存使用量)ElapsedRuntime (hh:mm:ss)(求解花费的时间)运行之后页面介绍(这里的运行界面并不是与上面的运行过程中出现界面一致,即并非来自于同一个程序运行出现)第一行表示在经过457次迭代后得到局部最优解第二行给出该局部最优解的具体值下面给出取局部最优值时,x1 x2的具体取值这里求解的是局部最优解,如果想求出全局最优解,可以进行页面设置:lingo --> option --> global solver --> 勾选use globalsolver对于运行结果也可以另存为,格式一般为ldt,因为有时候对于求解一个问题,或许需要运行很久才可以得出结果,所以没必要每次为了看结果都运行,而是运行成功一次后便把结果保存下来注意事项LINGO总是根据“MAX=”或“MIN=”寻找目标函数;程序语句的顺序一般不重要,既可以随意调换;程序运用函数时都是以@开头;程序中的变量默认为非负数,想要改变变量类型必须有相应函数调整程序中变量不区分大小写;语句必须以分号结尾;注释以!开始,且注释语句后面必须也有分号,注释默认注释到第一个分号处,意思是分号前面会全部被注释掉。
LINGO 入门目录目录 (2)1 LINGO基础 (1)1.1 LINGO软件的安装过程 (1)1.2 在LINGO中使用LINDO模型 (1)1.3 编写一个简单的LINGO程序 (2)1.4 敏感性分析 (5)2 在LINGO中使用集合 (8)2.1 集合的基本用法和LINGO模型的基本要素 (8)2.2 基本集合与派生集合 (11)2.3 稠密集合与稀疏集合 (13)2.4 集合的使用小结 (14)3 运算符和函数 (15)4 LINGO软件与外部文件的接口 (16)4.1 通过Windows剪贴板传递数据 (16)4.2 通过文本文件传递数据 (16)4.3 通过Excel电子表格文件传递数据 (17)附录 (19)1 LINGO基础1.1 LINGO软件的安装过程LINGO软件非常容易安装,只需要在Windows操作系统下将安装光盘(或USB盘)插入光驱(或USB接口),运行其中的安装程序(通常是setup.exe)就可以了。
目前从LINDO 系统公司或其他渠道得到的安装程序,多数情况下是一个自解压的可执行性文件(如lingo8.exe,大致是20M左右),可以直接运行这个程序进行安装。
LINGO 9.0 for Windows软件安装完成前,会出现一个对话框,询问你希望采纳的默认的建模(即编程)语言,系统推荐的是采用LINGO语法,即选项“LINGO(recommended)”;你也可以选择“LINDO”将LINDO语法作为默认的设置。
安装后你也可以随时通过“LINGO|Options|Interface|File Format”命令来修改默认的建模语言。
第一次运行刚安装的LINGO软件时,系统会弹出一个对话框,要求你输入许可证(licence)。
如果你买的是正版软件,请在密码框中输入LINGO公司提供给你的许可证(如果密码已经被复制(Ctrl+C)到Windows剪贴板中,则可以使用粘贴(Ctrl+V)命令从Windows 剪贴板中将密码拷贝到密码框中),然后按“OK”按钮即可。
LINGO 是用来求解线性和非线性优化问题的简易工具。
LINGO 内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO 高效的求解器可快速求解并分析结果。
§1 LINGO 快速入门当你在windows 下开始运行LINGO 系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。
在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO 的默认模型窗口,建立的模型都都要在该窗口内编码实现。
下面举两个例子。
例1.1 如何在LINGO 中求解如下的LP 问题:0,6002100350..32min 212112121≥≤+≥≥++x x x x x x x t s x x在模型窗口中输入如下代码: min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后点击工具条上的按钮 即可。
例1.2 使用LINGO 软件计算6个发点8个收点的最小费用运输问题。
产销model :!6发点8收点运输问题; sets :warehouses/wh1..wh6/: capacity; vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume; endsets !目标函数;min =@sum (links: cost*volume); !需求约束;@for (vendors(J):@sum (warehouses(I): volume(I,J))=demand(J)); !产量约束;@for (warehouses(I):@sum (vendors(J): volume(I,J))<=capacity(I));!这里是数据; data :capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38; cost=6 2 6 7 4 2 9 5 4 9 5 3 8 5 8 2 5 2 1 9 7 4 3 3 7 6 7 3 9 2 7 1 2 3 9 5 7 2 6 5 5 5 2 2 8 1 4 3; enddata end然后点击工具条上的按钮 即可。