LINGO软件学习入门
- 格式:ppt
- 大小:689.00 KB
- 文档页数:59
233第九章 Lingo软件快速入门9.1 Lingo概述LINDO和LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件包。
LINGO用于求解线性规划和二次规划问题,LINGO除了具有LINDO的全部功能外,还可以用于求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解,等等。
LINDO 和LINGO软件的最大特色在于可以允许优化模型中的决策变量是整数(即整数规划),而且执行速度很快。
LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题.由于这些特点,LINDO和LINGO软件在教学、科研和工业、商业、服务等领域得到了广泛应用。
当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:9.2 LINGO 菜单说明9.2.1 文件菜单(File Menu)新建(New)从文件菜单中选用“新建”命令、单击“新建”按钮或直接按F2键可以创建一个新的“Model”窗口。
在这个新的“Model”窗口中能够输入所要求解的模型。
打开(Open)从文件菜单中选用“打开”命令、单击“打开”按钮或直接按F3键可以打开一个已234 经存在的文本文件。
这个文件可能是一个Model文件。
保存(Save)从文件菜单中选用“保存”命令、单击“保存”按钮或直接按F4键用来保存当前活动窗口(最前台的窗口)中的模型结果、命令序列等保存为文件。
另存为...(Save As...)从文件菜单中选用“另存为...”命令或按F5键可以将当前活动窗口中的内容保存为文本文件,其文件名为你在“另存为...”对话框中输入的文件名。
利用这种方法你可以将任何窗口的内容如模型、求解结果或命令保存为文件。
关闭(Close)在文件菜单中选用“关闭”(Close)命令或按F6键将关闭当前活动窗口。
第7章 LINGO 软件入门7.1 LINGO 软件基本用法7.1.1 LINGO 软件简介:LINGO 软件是一套专门用于求解最优化问题的软件包. LINGO 可用于求解线性规划(LP ),二次规划(QP ),非线性规划(NLP ),整数规划(IP ),动态规划,多目标规划等,特别是对于变量或约束条件较复杂的大规模模型,提供了较好的选择.LINGO 还是最优化问题的一种建模语言,包括许多常用的数学函数可以调用,并可以接受其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等),同时LINGO 提供了与电子表格软件(如Excel 等)的接口,能够直接集成到电子表格中使用.即使对优化方面知识了解不多的用户,也能够方便地建模和输入、有效地求解.7.1.2 LINGO 基本用法:启动LINGO 后,在主窗口上弹出标题为LINGO Model – LINGO1 的窗口,称为LINGO 的模型窗口,建立的模型都要在该窗口内编码实现.例1.求解下列二次规划.22121122121212982770.32;100;2;,;x x x x x x x x x x x x N +---+≤≤∈目标函数约束条件输入模型窗口LINGO1后的形式见下图.请注意以下几点:(1)LINGO总是根据“MAX=”或“MIN=”语句寻找目标函数,而其他语句都是约束条件(除注释语句和TITLE语句),所以语句顺序不重要.(2)LINGO中模型以“MODEL:”开始,以“END”结束.对简单的模型,这俩个语句也可以省略.(3)LINGO模型是由一系列语句组成,每个语句都以分号“;”结尾.(4)LINGO中不分大小写字母;其变量和行名由不超过32个字符(数字和字母)组成,且以字母开头;(5)乘号不能省略,即系数与变量之间要加运算符“*”.(6)“!”开头的是注释行(注释语句),可以省略.(7)“[]”为用户自定义的行号或行名,放在每行之前,可以省略.(8)LINGO中以“@”都是函数调用,@GIN表示变量取正整数.默认情况下,LINGO规定变量是非负的.(我们将在后面详细介绍函数)(9)“TITLE”后加名字,可对此模型命名,可以省略.现在我们用LINGO来解这个模型.点击工具条上的按钮,或从菜单中选择LINGO|Sovle 即可.(若模型编译有错,会有提示)求解时会显示下图:关闭窗口,得到运行结果:Local optimal solution found at iteration:找到最优解时迭代的次数. Objective value:表示所求的最优目标值(11077.50).Variable:变量名Value:最优解中各变量( Variable)的值.Row:约束条件行名.Reduced Cost:当该非基变量增加一个单位时(其他非基变量保持不变)目标函数减少的量(对max型问题)Slack or Surplus:约束对应得松弛变量的值.(第三行取0,对于最优解来讲,第三个约束取等号,为紧约束)Dual Price:对偶价格的值.表示当对应约束有微小变动时,目标函数的变化率,若其数值为X,表示对应约束中不等式右端项若增加一个单位,目标函数将增加X个单位(max 型问题).7.1.3 在LINGO中使用集合:1、LINGO模型的基本组成LINGO也是一种建模语言,称为矩阵生成器,通过集合的引入,它可使输入较大规模问题的过程得到简化.LINGO模型由5段组成:(1)、集合段:是用于定义变量.以“SETS:”开始,以“ENDSETS”结束.定义集合变量,元素,和属性.集合名/元素/:属性元素:类似于数组的下标.属性:定义集合的变量,类似于数组.属性之间必须用逗号或空格隔开.(2)、目标与约束段:定义目标函数,约束条件.(3)、数据段:用于给变量赋值.以“DATA:”开始,以“ENDDATA”结束.对集合的属性(数组)输入必要的常数数据.attribute list(属性)= value_list;(常数列表)(value_list)中数据用逗号或空格隔开.﹡在此段也可引入参数,“变量名=?”,在运行时才对参数赋值.但这仅用于单个变量赋值,而不能用于属性变量(数组).(4)、初始段:以“init:”开始,以“endinit”结束.对集合的属性(数组)定义初值. (5)、计算段:以“CALC:”开始,以“ENDCALA”结束.对一些原始数据进行“预处理”.﹡计算段中语句是顺序执行,不能交换位置.﹡计算段中只能直接使用赋值语句.2、集合的定义:变量使用之前需先定义,而LINGO中的变量是通过集合来定义的,变量皆为向量或由向量生成的二维数组.如:Demand/1..6/:a,b,d :集合名为Demand,共6个元素,a,b,d 为属于此集合的变量,其为含6个元素的向量.Supply/1,2/:x,y,e :集合名为Supply ,共2个元素,x,y,e 为属于此集合的变量,其为含2个元素的向量.————基本集合Link(demand,supply):c :集合link 是由集合demand和 supply生成的新集合,为二维数组,其元素由demand和 supply的笛卡尔积构成,即共6*2=12个元素变量c 即为6*2的矩阵————派生集合现有2料场,位于A (5, 1), B (2, 7),记(xj,yj),j=1,2, 日储量ej 各有20吨.假设从料场到工地之间均有直线道路相连,试制定每天的供应计划,即从A, B 两料场分别向各工地运送多少吨水泥,使总的吨公里数最小.解:设决策变量:ij c (料场j 到工地i 的运量)则其为12维.则规划模型为26221/2112161min [()()].,16,1,2ijji j i j i iji j ijji c xa yb s tcd i ce j ====-+-==≤=∑∑∑∑其LINGO 模型为:(1)集合段:我们定义需求点demand 和供应点supply 两个集合,分别有6个和2个元素,Demand/1..6/:a,b,d ; 其中a 为该集合的属性(变量),表示6个工地位置的横坐标的集合,是一个有6个元素的向量. Supply/1,2/:x,y,e ; 其中x 该集合的属性(变量),表示2个料场位置的横坐标的集合,是一个有2个元素的向量.运送量ij c 的集合是一个6*2 的矩阵,它需要利用集合demand 和supply ,定义一个新集合,定义ij c 为这个新集合的属性:Link(demand,supply):c;(2)数据段:给已知变量赋值.如a,b=1.25,1.25,8.75,0.75,0.5,4.75,5.75,5,3,6.5,7.25,7.75;也可写成a=1.25,8.75,0.5,5.75,3,7.25; b=1.25,0.75,4.75,5,6.5,7.75;注 LINGO 对数据是按列赋值的,而不是按行.分割数据可用空格,逗号,回车. (3)目标与约束段: 目标函数26221/211min[()()]ijji j i j i c xa yb ==-+-∑∑用LINGO 语句表示为:min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));()11*11*222*12*233*13*21244*14*255*15*266*16*2⎛⎫⎛⎫⎪⎪⎪ ⎪ ⎪ ⎪= ⎪⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭@sum :求和函数.这个函数的功能是对语句中冒号“:”后面的的表达式,按照“:”前面的集合指定的下标进行求和.“@sum ”相当于∑“”,“link(i,j)”相当于“i,j ∈link ”约束条件21.,16ijij s tcd i ===∑用LINGO 语句表示为:@for(demand(i): @sum(supply(j):c(i,j)) =d(i););@for:循环函数.意思是对冒号“:”前面的集合的每个元素(下标),对于“:”后面的约束关系式都要成立.注 @for 和@sum 可以嵌套使用.@free 函数取消了变量x,y 非负限制.(4)初始段:“X ,Y =5,1,2,7;”语句的实际赋值顺序是X=(5,2),Y=(1,7).作为寻找最优解的起始值. 模型如下: MODEL:Title Location Problem; sets:demand/1..6/:a,b,d; supply/1..2/:x,y,e; link(demand,supply):c; endsets data:!locations for the demand(需求点的位置); a=1.25,8.75,0.5,5.75,3,7.25; b=1.25,0.75,4.75,5,6.5,7.75;!quantities of the demand and supply (供需量); d=3,5,4,7,6,11; e=20,20; enddata init:!initial locations for the supply (初始点); x,y=5,1,2,7; endinit!Objective function (目标);[OBJ] min=@sum(link(i,j): c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2) ); !demand constraints (需求约束);@for(demand(i): @sum(supply(j):c(i,j)) =d(i);); !supply constraints (供应约束);@for(supply(i): @sum(demand(j):c(j,i)) <=e(i); ); @for(supply: @bnd(0.5,X,8.75); @bnd(0.75,Y,7.75); ); END 运行,得局部最优解X(1)=7.249997,X(2)=5.695940,Y(1)=7.749998,Y(2)=4.928524,,最小运量=89.8835(吨公里).NLP 中局部最优解不一定就是全局最优解,可通过“LINGO|Options|Global Solver|Use Global Solver ”菜单命令激活全局最优求解程序.7.1.4 LING O 的运算符和函数:在此我们主要介绍前六种函数1、算术运算符及其优先级:算术运算符:+(加法),—(减法或负号),*(乘法),/(除法)∧求幂)关系运算符:<(即<=,小于等于),=(等于),>(即>=,大于等于)逻辑运算符:#AND#(与),#OR#(或),#NOT#(非),#EQ#(等于),#NE#(不等于),#GT#(大于),#GE#(大于等于),#LT#(小于),#LE#(小于等于).结果只有“真”(1)和“假”(0)两个值。
第4讲 Lingo 软件入门司守奎烟台市,海军航空工程学院数学教研室Email :sishoukui@4.1 初识Lingo 程序Lingo 程序书写实际上特别简捷,数学模型怎样描述,Lingo 语言就对应地怎样表达。
首先介绍两个简单的Lingo 程序。
例4.1 求解如下的线性规划问题:121212112max726450,128480,s.t.3100,,0z x x x x x x x x x =++≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩ Lingo 求解程序如下max =72*x1+64*x2; x1+x2<=50;12*x1+8*x2<=480; 3*x1<=100;说明:Lingo 中默认所有的变量都是非负的,在Lingo 中就不需写出对应的约束。
例4.2 抛物面22y x z +=被平面1=++z y x 截成一椭圆,求原点到这椭圆的最短距离。
该问题可以用拉格朗日乘子法求解。
下面我们把问题归结为数学规划模型,用Lingo 软件求解。
设原点到椭圆上点),,(z y x 的距离最短,建立如下的数学规划模型:⎩⎨⎧+==++++.,1s.t.min 22222y x z z y x z y xLingo 求解程序如下: min =(x^2+y^2+z^2)^(1/2); x+y+z=1; z=x^2+y^2;@free (x); @free (y);说明:Lingo 中默认所有变量都是非负的,这里y x ,的取值是可正可负的,所以使用Lingo 函数free 。
例4.3 求解如下的数学规划模型:⎪⎪⎩⎪⎪⎨⎧==∑∑∑===.,1s.t.min9912100100110012i ii i i ix x x x用Lingo 求解上述数学规划问题,使用集合和函数比较方便,使用集合的目的是为了定义向量,集合使用前,必须先定义;Lingo 程序中的标量不需要定义,直接使用即可。
sets :var/1..100/:x; endsetsmin =@sqrt (@sum (var(i):x(i)^2)); @sum (var(i):x(i))=1;x(100)=@sum (var(i)|i#le#99:x(i)^2); @for (var(i)|i#le#99:@free (x(i)));说明:如果不使用集合和函数,全部使用标量x1,x2,…,x100,最后一个约束就要写99遍,@free(x1); …; @free (x99)。
培训教案——LINGO(一)LINGO是一款常用的线性规划软件,它能够方便地解决复杂问题。
培训LINGO,需要深入了解软件的使用方法和解决实际问题的能力。
下面就LINGO培训的内容进行分点介绍。
一、LINGO的基础知识LINGO的基础知识包括软件的基本功能和操作。
需要讲解LINGO的界面、工具栏、菜单栏等。
初次接触LINGO的学员需要掌握LINGO的一些基本用法,比如如何输入数据、如何设定优化目标,如何设置约束等,这些都是LINGO的基本操作。
二、LINGO求解模型了解LINGO的基本操作之后,需要讲解LINGO的求解模型。
LINGO的数学模型是LINGO软件解决问题必需的部分。
对于LINGO求解模型的学习,需要学员掌握数学模型的建立方法和标准的数学模型。
培训学员掌握LINGO的求解模型知识是LINGO培训的核心。
三、LINGO的高级应用LINGO的高级应用需要讲授如何利用LINGO解决实际问题,需要讲解如何构建多约束模型来描述现实中的问题,如何设置变量、常数和目标函数等。
高级应用的讲授需要结合实例,让学员深入了解LINGO的实际应用场景,提高解决实际问题的能力。
四、LINGO的调试LINGO的调试是LINGO培训的重要组成部分。
在LINGO求解过程中,有时会出现错误,导致模型不能正常求解。
因此,需要讲解LINGO调试的方法和技巧,使得学员具备调试LINGO模型的能力。
五、LINGO应用举例为了让学员进一步巩固LINGO的知识,需要讲解一些LINGO的应用举例。
举例的内容包括:产品组合问题、生产调度问题、财务规划问题、运输规划问题等。
通过这些示例,让学员对LINGO的应用有更加深刻的理解。
六、LINGO的作业练习培训LINGO需要进行实际操作,软件操作的熟练程度可以通过作业考核来体现。
作业练习的难度需要逐渐增加,从简单到复杂地设置模型,巩固培训成果。
LINGO培训需要根据学员的水平进行分类管理,加强培训的个性化和针对性。
第1讲Lingo软件入门司守奎烟台市,海军航空工程学院数学教研室Email:sishoukui@1 Lingo软件的基本语法1.1 集合集合部分的语法为sets:集合名称1/成员列表1/:属性1_1,属性1_2,…,属性1_n1;集合名称2/成员列表2/:属性2_1,属性2_2,…,属性2_n2;派生集合名称(集合名称1,集合名称2):属性3_1,…,属性3_n3;endsets例26sets:product/A B/;machine/M N/;week/1..2/;allowed(product,machine,week):x;endsets1.2 数据数据部分的语法为data:属性1=数据列表;属性2=数据列表;enddata1.3 计算计算段部分不能含有变量,必须是已知数据的运算。
calc:b=0;a=a+1;endcalc1.4 模型的目标函数和约束条件这里就不具体给出了,下面通过具体例子给出。
1.5 子模型在LINGO 9.0 及更早的版本中,在每个LINGO 模型窗口中只允许有一个优化模型,可以称为主模型(MAIN MODEL)。
在LINGO 10.0 中,每个LINGO 模型窗口中除了主模型外,用户还可以定义子模型(SUBMODEL)。
子模型可以在主模型的计算段中被调用,这就进一步增强了LINGO 的编程能力。
子模型必须包含在主模型之内,即必须位于以“MODEL:”开头、以“END”结束的模块内。
同一个主模型中,允许定义多个子模型,所以每个子模型本身必须命名,其基本语法是:SUBMODEL mymodel:可执行语句(约束+目标函数);ENDSUBMODEL其中mymodel 是该子模型的名字,可执行语句一般是一些约束语句,也可能包含目标函数,但不可以有自身单独的集合段、数据段、初始段和计算段。
也就是说,同一个主模型内的变量都是全局变量,这些变量对主模型和所有子模型同样有效。
如果已经定义了子模型mymodel,则在计算段中可以用语句“@SOLVE( mymodel);”求解这个子模型。
LINGO基本教程(完整版)pdf一、教学内容本节课我们使用的教材是《LINGO基本教程》,我们将学习第14章的内容。
第1章介绍LINGO软件的基本操作,包括界面的熟悉、模型的建立等;第2章学习线性规划模型的建立与求解;第3章讲解非线性规划模型的建立与求解;第4章介绍整数规划模型的建立与求解。
二、教学目标1. 学生能够熟练操作LINGO软件,建立和求解线性、非线性以及整数规划模型。
2. 学生能够理解线性、非线性以及整数规划的基本概念,并能够运用到实际问题中。
3. 学生通过学习LINGO基本教程,提高自己的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:熟练操作LINGO软件,建立和求解线性、非线性以及整数规划模型。
难点:理解线性、非线性以及整数规划的基本概念,以及如何将这些概念运用到实际问题中。
四、教具与学具准备教具:多媒体教学设备、投影仪、计算机。
学具:学生计算机、LINGO软件、教材《LINGO基本教程》。
五、教学过程1. 实践情景引入:以一个简单的线性规划问题为切入点,引导学生思考如何利用LINGO软件求解。
2. 讲解教材内容:分别讲解第14章的内容,包括LINGO软件的基本操作、线性规划模型的建立与求解、非线性规划模型的建立与求解以及整数规划模型的建立与求解。
3. 例题讲解:针对每个章节的内容,选择合适的例题进行讲解,让学生通过例题理解并掌握相关知识点。
4. 随堂练习:在每个章节讲解结束后,安排随堂练习,让学生通过练习巩固所学知识。
5. 课堂互动:鼓励学生提问,解答学生在学习过程中遇到的问题。
6. 板书设计:每个章节的重要知识点和操作步骤进行板书设计,方便学生复习。
7. 作业布置:布置与本节课内容相关的作业,巩固所学知识。
六、作业设计1. 作业题目:最大化问题:目标函数:Z = 2x1 + 3x2约束条件:x1 + x2 ≤ 62x1 + x2 ≤ 8x1, x2 ≥ 0最大化问题:目标函数:Z = x1^2 + x2^2约束条件:x1 + x2 ≤ 5x1^2 + x2^2 ≤ 10x1, x2 ≥ 0最大化问题:目标函数:Z = 3x1 + 2x2约束条件:x1 + x2 ≤ 42x1 + x2 ≤ 6x1, x2 均为整数2. 答案:(1)线性规划问题的解为:x1 = 2, x2 = 4(2)非线性规划问题的解为:x1 = 3, x2 = 2(3)整数规划问题的解为:x1 = 2, x2 = 2七、板书设计1. 第1章:LINGO软件的基本操作(1)界面的熟悉(2)模型的建立2. 第2章:线性规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解线性规划问题3. 第3章:非线性规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解非线性规划问题4. 第4章:整数规划模型的建立与求解(1)目标函数的定义(2)约束条件的设置(3)求解整数规划问题八、课后反思及拓展延伸本节课通过实践情景引入,使学生能够快速融入学习状态。
lingo入门lingo入门教程之一--- 初识lingoingo对于一些线性或者非线性的规划,优化问题非常有效首先介绍一下,在lingo中运行程序时出现的页面(在工具栏点击类似靶子一样的图标便可运行)Solver status:求解器(求解程序)状态框Model Class:当前模型的类型:LP,QP,ILP,IQP,PILP,PIQP,NLP,INLP,PINLP(以I开头表示IP,以PI 开头表示PIP)State:当前解的状态:"Global Optimum", "LocalOptimum", "Feasible", "Infeasible“(不可行), "Unbounded “(无界), "Interrupted“(中断), "Undetermined“(未确定)Object:解的目标函数值Infeasibility:当前约束不满足的总量(不是不满足的约束的个数):实数(即使该值=0,当前解也可能不可行,因为这个量中没有考虑用上下界命令形式给出的约束)Iteration:目前为止的迭代次数Extend solverstatus:扩展的求解器(求解程序)状态框Solver type:使用的特殊求解程序:Bestobj :目前为止找到的可行解的最佳目标函数值Objbound:目标函数值的界Steps:特殊求解程序当前运行步数:Active:有效步数Variables(变量数量):变量总数(T otal)、非线性变量数(Nonlinear)、整数变量数(Integer)。
Constraints(约束数量):约束总数(T otal)、非线性约束个数(Nonlinear)。
Nonzeros(非零系数数量):总数(Total)、非线性项系数个数(Nonlinear)。
GeneratorMemory Used (K) (内存使用量)ElapsedRuntime (hh:mm:ss)(求解花费的时间)运行之后页面介绍(这里的运行界面并不是与上面的运行过程中出现界面一致,即并非来自于同一个程序运行出现)第一行表示在经过457次迭代后得到局部最优解第二行给出该局部最优解的具体值下面给出取局部最优值时,x1 x2的具体取值这里求解的是局部最优解,如果想求出全局最优解,可以进行页面设置:lingo --> option --> global solver --> 勾选use globalsolver对于运行结果也可以另存为,格式一般为ldt,因为有时候对于求解一个问题,或许需要运行很久才可以得出结果,所以没必要每次为了看结果都运行,而是运行成功一次后便把结果保存下来注意事项LINGO总是根据“MAX=”或“MIN=”寻找目标函数;程序语句的顺序一般不重要,既可以随意调换;程序运用函数时都是以@开头;程序中的变量默认为非负数,想要改变变量类型必须有相应函数调整程序中变量不区分大小写;语句必须以分号结尾;注释以!开始,且注释语句后面必须也有分号,注释默认注释到第一个分号处,意思是分号前面会全部被注释掉。
LINGO 入门目录目录 (2)1 LINGO基础 (1)1.1 LINGO软件的安装过程 (1)1.2 在LINGO中使用LINDO模型 (1)1.3 编写一个简单的LINGO程序 (2)1.4 敏感性分析 (5)2 在LINGO中使用集合 (8)2.1 集合的基本用法和LINGO模型的基本要素 (8)2.2 基本集合与派生集合 (11)2.3 稠密集合与稀疏集合 (13)2.4 集合的使用小结 (14)3 运算符和函数 (15)4 LINGO软件与外部文件的接口 (16)4.1 通过Windows剪贴板传递数据 (16)4.2 通过文本文件传递数据 (16)4.3 通过Excel电子表格文件传递数据 (17)附录 (19)1 LINGO基础1.1 LINGO软件的安装过程LINGO软件非常容易安装,只需要在Windows操作系统下将安装光盘(或USB盘)插入光驱(或USB接口),运行其中的安装程序(通常是setup.exe)就可以了。
目前从LINDO 系统公司或其他渠道得到的安装程序,多数情况下是一个自解压的可执行性文件(如lingo8.exe,大致是20M左右),可以直接运行这个程序进行安装。
LINGO 9.0 for Windows软件安装完成前,会出现一个对话框,询问你希望采纳的默认的建模(即编程)语言,系统推荐的是采用LINGO语法,即选项“LINGO(recommended)”;你也可以选择“LINDO”将LINDO语法作为默认的设置。
安装后你也可以随时通过“LINGO|Options|Interface|File Format”命令来修改默认的建模语言。
第一次运行刚安装的LINGO软件时,系统会弹出一个对话框,要求你输入许可证(licence)。
如果你买的是正版软件,请在密码框中输入LINGO公司提供给你的许可证(如果密码已经被复制(Ctrl+C)到Windows剪贴板中,则可以使用粘贴(Ctrl+V)命令从Windows 剪贴板中将密码拷贝到密码框中),然后按“OK”按钮即可。