扩散与固相反应
- 格式:docx
- 大小:70.03 KB
- 文档页数:11
第七章 扩散与固相反应1、名词解释:非稳定扩散:扩散过程中任一点浓度随时间变化;稳定扩散:扩散质点浓度分布不随时间变化。
无序扩散:无化学位梯度、浓度梯度、无外场推动力,由热起伏引起的扩散。
质点的扩散是无序的、随机的。
本征扩散:主要出现了肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散为本征扩散(空位来源于晶体结构中本征热缺陷而引起的质点迁移);非本征扩散:空位来源于掺杂而引起的质点迁移。
正扩散和逆扩散:正扩散:当热力学因子时,物质由高浓度处流向低浓度处,扩散结果使溶质趋于均匀化,D i >0。
逆扩散:当热力学因子 时,物质由低浓度处流向高浓度处,扩散结果使溶质偏聚或分相,D i <0。
2、简述固体内粒子的迁移方式有几种?答 易位,环转位,空位扩散,间隙扩散,推填式。
3、说明影响扩散的因素?化学键:共价键方向性限制不利间隙扩散,空位扩散为主。
金属键离子键以空位扩散为主,间隙离子较小时以间隙扩散为主。
缺陷:缺陷部位会成为质点扩散的快速通道,有利扩散。
温度:D=D 0exp (-Q/RT )Q 不变,温度升高扩散系数增大有利扩散。
Q 越大温度变化对扩散系数越敏感。
杂质:杂质与介质形成化合物降低扩散速度;杂质与空位缔合有利扩散;杂质含量大本征扩散和非本征扩散的温度转折点升高。
扩散物质的性质:扩散质点和介质的性质差异大利于扩散;扩散介质的结构:结构紧密不利扩散。
4、在KCl 晶体中掺入10-5mo1%CaCl 2,低温时KCl 中的K +离子扩散以非本征扩散为主,试回答在多高温度以上,K +离子扩散以热缺陷控制的本征扩散为主?(KCl 的肖特基缺陷形成能ΔH s =251kJ/mol ,R=8.314J/mo1·K ) 解:在KCl 晶体中掺入10-5mo1%CaCl 2,缺陷方程为:2'22KCl K K cl CaCl Ca V Cl ∙⨯−−−→++则掺杂引起的空位浓度为'710K V -⎡⎤=⎣⎦欲使扩散以热缺陷为主,则''K K V V ⎡⎤⎡⎤>⎣⎦⎣⎦肖 即7exp()102s H RT-∆-> 即7251000exp()1028.314T -->⨯ 解得T>936.5K5、(1)试述晶体中质点的扩散机构及方式。
实验28 热重分析技术在固相反应研究中的应用一、实验目的固相反应是材料制备中一个重要的高温动力学过程,固体之间能否进行反应、反应完成的程度、反应过程的控制等直接影响材料的显微结构,并最终决定材料的性质,因此,研究固体之间反应的机理及动力学规律,对传统和新型无机非金属材料的生产有重要的意义。
本实验的目的:1.掌握TG法的原理,熟悉采用TG法研究固相反应的方法。
2.通过CaCO3-SiO2系统的反应验证固相反应的动力学规律─杨德方程。
3.通过作图计算出反应的速度常数和反应的表观活化能。
二、实验原理许多固体材料在在高温下加热时,因其中的某些组分分解逸出或固体与周围介质中的某些物质作用使固体物系的重量发生变化,如盐类的分解、含水矿物的脱水、有机质的燃烧等会使物系重量减轻,高温氧化、反应烧结等则会使物系重量增加。
热重分析法(Thermogravimetric Analysis.简称TG) 及微商热重法(derivative thermogravimetry,简称DTG 法)是在程序控制温度下,测量物质质量与温度关系的一种技术。
微商热重法所记录的是TG曲线对温度或时间的一阶导数,所得的曲线称为DTG曲线。
现在的热重分析仪常与微分装置联用,可同时得到TG- DTG曲线。
通过测量物系质量随温度或时间的变化可以间接地揭示固体物系反应的机理和/或反应动力学规律。
2.1 TG的基本原理与仪器进行热重分析的基本仪器为热天平。
热天平一般包括天平、炉子、程序控温系统、记录系统等部分。
此外还配有通入气氛或真空装置。
典型的热天平示意图如图1。
图1 热天平原理图热重分析法通常可分为两大类:静态法和动态法。
静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。
以失重为纵坐标,温度T为横坐标作等压质量变化曲线图。
等温质量变化的测定是指一物质在恒温下,物质质量变化与时间t的依赖关系,以质量变化为纵坐标,以时间为横坐标,获得等温质量变化曲线图。
扩散与固相反应7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况, 并以 D = γ2rΓ形式写出其扩散系数 (设点阵常数为 a )。
(式中 r 为跃迁自由程; γ为几何因子; Γ为跃迁频率。
)7-2 设有一种由等直径的 A 、B 原子组成的置换型固溶体。
该固溶体具有简单立方的晶 体结构,点阵常数 A = 0.3nm ,且 A 原子在固溶体中分布成直线变化,在 0.12mm 距离内原 子百分数由 0.15 增至 0.63。
又设 A 原子跃迁频率 Γ=10-6s -1,试求每秒内通过单位截面的 A 原子数?7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。
假如硅片厚度是 0.1cm ,在其中每 107 个硅原子中含有一个磷原子,而在表面上是涂有每 107 个硅原子中有400个磷原子,计算浓度梯度( a )每cm 上原子百分数, (b )每 cm 上单位体积的原子百分 数。
硅晶格常数为 0.5431nm 。
7-4 已知 MgO 多晶材料中 Mg 2+离子本征扩散系数( D in )和非本征扩散系数( D ex )由 下式给出486000 2D in 0.249exp ( ) cm 2 sinRT5254500 2 D ex 1.2 10 5exp ( ) cm 2 sRT(a ) 分别求出 25℃和 1000℃时,Mg 2+的(D in )和( D ex )。
(b ) 试求在 Mg 2+的 lnD ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度?7-5 从 7-4 题所给出的 D in 和 D ex 式中求 MgO 晶体的肖特基缺陷形成焓。
若欲使Mg 2+在 MgO 中的扩散直至 MgO 熔点 2800℃时仍是非本征扩散,试求三价杂质离子应有什么样 的浓度?7-6 若认为晶界的扩散通道宽度一般为 0.5nm ,试证明原子通过晶界扩散和晶格扩散的扩散系数。
Q gb Q v7-7 设体积扩散与晶界扩散活化能间关系为 2 (Qg b 、Q v 分别为晶界扩散与体 积扩散激活能) ,试画出 lnD ~1/T 曲线,并分析在哪个温度范围内, 晶界扩散超过体积扩散 ?质量之比为 10 9 (10d ) (DD g v b )。
其中d 为晶粒平均直径; D gb、D v 分别为晶界扩散系数和晶格7-8 在一种柯肯达尔扩散中,假定( a)晶体为简单立方结构;( b)单位体积内原子数为一常数 1023;(c)A 原子的跃迁频率为 1010s-1,B 原子跃迁频率为109s-1;(d)点阵常数2a= 0.25nm;( e)浓度梯度为 10 个/cm ;( f)截面面积为 0.25cm 2。
试求 A、B 原子通过标志界面的扩散通量以及标志界面移动速度。
7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了?7-10 假定从氧化铝和二氧化硅粉料形成莫来石为扩散控制过程,如何证明这一点?又假如激活能为 210kJ/mol ,并在 1400℃下 1h(小时)内反应过程完成10%,问在 1500℃下387000 D Zr4+ 0.035exp( )RT D Cr2+ 0.444exp( 42R00T00)RT13100cm2s cm2s cm2s1h 内反应会进行到什么程度?在 1500℃下 4h 又会如何?7-11 在 SiC 上形成一层非晶态 SiO2 薄膜,限制了进一步氧化。
完成氧化的分数是用测定增重的方法确定的,并发现是遵守抛物线氧化规律。
对特定颗粒尺寸的 SiC 和纯氧 O2,得到如下表所示实验数据,试确定表现激活能并说明这是一个扩散控制的反应。
7-12 为观察尖晶石的形成,用过量的 MgO 粉包围 1μm的 Al 2O3 球形颗粒,在固定温度实验中的第 1h 内有 20%的 Al 2O3反应形成尖晶石。
试根据(a)无需球形几何修正时,(b)用 Jander 方程作球形几何修正,计算完全反应的时间?7-13 名词解释(a)自扩散和互扩散(b)本征扩散和非本征扩散(c)稳定扩散和非稳定扩散(d)几何因子(e)加成反应7-14 图 7-2 中圆圈代表铝原子,带星号的圆圈代表它的同位素原子。
(a)表示原子的原始分布状( b)表示经过第一轮跳动后原子的分布试画出第二轮跳动后原子的分布情况和示意画出三个阶段同位素原子的浓度分布曲线( c 浓度~ x 距离图)。
7-2 题 7-14 附图7-15 已知α -Cr 2O 3多晶材料中 Cr3+和 O2-的自扩散系数为256000 2D Cr3+ 0.137exp( ) cm2sCrRT423000 2D 2- 15.9exp( ) cm sO 2-RT试求 1000℃和 1500℃时, Cr3+和 O2+的自扩散系数为多少?( 1000℃ D Cr3+–12 2 2 ––17 3+ –9 2- –12 4.29×10–12cm2/s D O2– 6.98×10–17 1500℃D Cr3+ 3.0×10–9D O2- 5.48×10–12)7-16 在掺杂少量 CaO 的 ZrO 2多晶材料中,已知 Zr4+、Ca2+和 O2-自扩散系数为:试求 1200℃时三种离子的自扩散系数,计算结果说明什么 ?( D Zr 4+= 6.61×10–16cm 2/sDCA2+=5.66×10–16DO 2–=4.07×10–7)7-17 碳原子体心立方铁中的扩散系数为 D =2.0×10-6exp (- 84×105/RT ),求当振动频率为 1013s -1,迁移自由程 r 0.143nm 时的( △S/R )。
( 2.686)7-18 氢在金属中容易扩散, 当温度较高和压强较大时, 用金属容器储存氢气极易渗漏。
试讨论稳定扩散状态下金属容器中氢通过器壁扩散渗漏的情况并提出减少氢扩散逸失的措 施?7-19 (a )已知银的自扩散系数 D V =7.2×10-5m 2/s ,Q v =190×103J/mol ;晶界扩散系数 D gb =1.4×10-5m 2/s ,Q gb =90×103J/mol 。
试求银在 927℃及 727℃时 D gb 和 D V 的比值。
(b )若实验误差为 5%,试用例题 7–6 的结果,说明当晶体平均直径 d =10-4m 时,在927℃和 727℃下能否察觉到纯银的晶界扩散效应?34( (a )(D gb /D V )927=4.25×10 ( D gb /D V ) 727= 3.10×10 (b )(M gb /M V )927=0.0425( M gb /M V ) 727= 0.310 )7-20 试从 D -T 图中查出(a )CaO 在 1145℃和 1393℃时的扩散系数。
(b )Al 2O 3在1396℃ 和1716℃时的扩散系数。
并计算 CaO 和 Al 2O 3中Ca 2+和Al 3+的扩散激活能 Q 和系数 D 0?(( a ) –13 –12 –4 2 –11–122.03 ×10–131.92 ×10–12252kJ/mol 4.06 ×10–4cm 2/s ( b ) 2.42 ×10–117.02×10–1252597kJ/mol 1.12×105cm 2/s )7-21 Fe 2+离子在氧化铁( FeO )中的扩散系数,在 600℃时为 5× 1010cm 2/s ,在900℃时 2+ 是 1.5×10-8cm 2/s ,求活化能 Q 和 Fe 2+在 FeO 中的扩散常数 D 0。
(Q =96.54 kJ/molD 0= 3.0×10 4cm/s )7-22 一个 0.05cm 厚的硅晶体,在一个表面上每 107个 Si 原子中含有 2 个镓( Ga )原子,而在其它表面上处理成镓的高浓度面, 如果要产生一个 -2×1018Ga 原子/cm 4的浓度梯度, 在这个表面上必须在 107个 Si 原子中有多少个镓原子?(硅的晶格常数是 0.5407nm )。
18 3( 0.11×1018Ga 原子数 /cm 3·cm )7-23 硅表面沉积了一层硼薄膜持,经短时间扩散后硼的浓度分布情况如图 7-3 所示。
试考虑若硅表面硼浓度达到饱和并恒定不变时即C s = 3×1026cm -3,试求于 1200℃下扩散深度 8μm 处硼浓度为 1024m -3时所需扩散时间为多少?已知 1200℃时 B (硼)的扩散系数为 4 ×10-13m 2/s 。
(分别用计算法和图解法求之) ( 25.68h )图 7-3 题 7-23 附图7-24 在两根金晶体圆棒的端点涂上示踪原子Au#,并把两棒端部如图 7-4(a)所示方式连接。
在 920℃加热 100h , Au #示踪原子扩散分布如图( B )所示,并满足下列关系:图 7-4 在 920℃加热 100h 后 Au* 的扩散分布曲线7-25 在一定温度下,若扩散退火时间增加一倍,那么扩散物质的平均渗透深度将增加几倍? ( 2 )7-26 试讨论从室温于熔融温度范围内,氧化锌添加剂 10-4%(摩尔)对 NaCl 单晶中所有离子( Zn 、 Na 、 Cl )的扩散能力的影响?7-27 利用电导与温度依赖关系求得扩散系数和用示踪原子等方法直接测得的值常常不 一致,试分析原因?7-28 根据 ZnS 烧结的数据测定了扩散系数。
在 563℃时,测得扩散系数为 3×10-4cm 2/s ; 在 450℃时则为 1.0×10-4cm 2/s ,(1)试确定活化能 Q 和系数 D 0;( 2)根据 ZnS 结构,请从 缺陷产生和运动的观点来推断活化能的含义; ( 3)根据六方 ZnS 和 ZnO 相互类似,预测 D1 6 随硫分压改变而改变的关系? ( 0.339cm 2/s 48.86kJ/mol D PS )7-29 钠钙硅酸盐玻璃中阳离子的扩散系数如图 7-5 所示,试问: ( 1)为什么 Na +比 Ca 2+和 Si 4+扩散得快?式中 C 是浓度; 2( Dt) 22exp( 4xDtM 为实验中示踪原子总量。
求此时金的自扩散系数?2.33×10–7mm 2/s )(2)Na+扩散曲线的非线性部分产生的原因是什么?(3)将玻璃淬火,其曲线将如何变化?(4)Na+熔体中扩散活化能约为多少?图 7-5 题 7-29 附图7-30 ( a )试推测在贫铁的 Fe 3O 4 中铁离子扩散系数与氧分压的关系?( b )推测在铁过剩的 Fe 3O 4 中氧分压与氧扩散的关系?7-31 碳、氮和氢在体心立方铁中的活化能分别为 84、75 和 13kJ/mol ,试对此差异进行分析。