专题3:中考23题应用题汇编
- 格式:doc
- 大小:325.50 KB
- 文档页数:14
一元二次方程的应用1、今年3月某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计4月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额-总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了38a%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等,求a 的值.2、我市准备举办大型全民运动会,运动会开幕前某体育用品商场预测某品牌运动服能够畅销,就用31000元购进了一批这种运动服,上市后很快脱销,商场又用70000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了20元.(1)该商场两次购进这种运动服共多少套?(2)若第一批购进的运动服商场以每套200元的标准售出,体育用品商场每天可售出该款运动服100套,若每套运动服降价m%,则每天可多售出8m%,当一天可获利4000元时,求m 的值。
3、某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)由于市场价格调整,在实际购买时发现直拍球拍单价上涨了a%,横拍球拍单价上涨了52a%,于是学校决定购买20副直拍球拍和15副横拍球拍且总费用不超过10000元,求a 的最大整数值。
4、每逢金秋送爽之时,正是大闸蟹上市的旺季,也是吃蟹的最好时机,可谓膏肥黄美.九月份,某经销商购进一批雌蟹、雄蟹共1000只,进价均为每只40元,然后以雌蟹每只75元、雄蟹每只60元的价格售完,共获利29000元.(1)求该经销商分别购进雌蟹、雄蟹各多少只?(2)民间有“九雌十雄”的说法,即九月吃雌蟹,十月吃雄蟹.十月份,在进价不变的情况下该经销商决定调整价格,将雌蟹的价格在九月份的基础上下调a%(降价后售价不低于进价),雄蟹的价格上涨35a%,同时雌蟹的销量较九月下降了65a%,雄蟹的销量上升了25%,结果十月份的销售额比九月份增加了1000元,求a 的值.5、某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销,购进价格为每件10元.若售价为12元/件,则可全部售出,若每涨价0.1元,销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少152m%.结果10月份利润达到3300元,求m 的值. 6、重庆市某商场通过互联网销售某品牌新型台灯,第一周的总销售额为3000元,第二周的总销售额为3520元,第二周比第一周多售出13盏台灯。
武汉市中考第23题二次函数应用题题目设置与应考策略一、分段函数(一)一涨再涨或一降再降1.(10四月)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?(二)涨、降结合型2.(10五月)某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件.设每件商品的售价为x元(x 为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当每件商品的售价高于60元时,定价为多少元使得每个月的利润恰为2250元?解:(1)当50≤x ≤60时,6400200)60100)(40(2-+-=-+-=x x x x y ;当60<x ≤80时,88003002)1202100)(40(2-+-=+--=x x x x y ;∴ 64002002-+-x x (50≤x ≤60且x 为整数) y =880030022-+-x x (60<x ≤80且x 为整数)(2)当50≤x ≤60时,3600)100(2+--=x y ;∵a =-1<0,且x 的取值在对称轴的左侧,∴y 随x 的增大而增大,∴当x =60时,y 有最大值2000;当60<x ≤80时,2450)75(22+--=x y ;∵a =-2<0,∴当x =75时,y 有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.(3)当60<x ≤80时,2450)75(22+--=x y .当y =2250元时,22502450)75(22=+--x ,解得:;85,6521==x x其中,x =85不符合题意,舍去.∴当每件商品的售价为65元时,每个月的利润恰为2250元.二、一次函数与二次函数结合型,(注意自变量的取值范围)3.(2010中考)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1)y=50-10x (0≤x <160);(2)w=(180+x-20)y=(180+x-20)(50-10x )=800034102++-x x ; (3)因为w=800034102++-x x ,所以当x=a b 2-,即x=170时,利润最大,此时订房数y=50-10x =33.此时的利润是5110元. 添“枝”加“叶”型5.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)当售价的范围是是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?(1)y =[100-2(x -60)](x ﹣40)=—2x 2+300x —8800;(60≤x ≤110且x 为正整数)………………………3分(2)y =—2(x —75)2+2450,当x =75时,y 有最大值为2450元………………6分(3)当y =2250时,—2(x —75)2+2450=2250,解得x 1=65,x 2=85∵a =—2<0,开口向下,当y ≥2250时,65≤x ≤85∵每件商品的利润率不超过80%,则x-4040≤80%,则x ≤72 则65≤x ≤72.……………………………………………………………………10分三、与二次等式有关类型(2009中考)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解:(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数);(2)210( 5.5)2402.5y x =--+.100a =-< ,∴当 5.5x =时,y 有最大值2402.5.015x < ≤,且x 为整数,当5x =时,5055x +=,2400y =(元),当6x =时,5056x +=,2400y =(元) ∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当2200y =时,21011021002200x x -++=,解得:12110x x ==,. ∴当1x =时,5051x +=,当10x =时,5060x +=.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元). (2009四月调考)某商场将进货价为30元的书包以40元售出,平均每月能售出600个。
河南近几年中考数学第23题23.(11分)(2016河南)如图1,直线y=-43x+n交x轴于点A,交y轴于点C(0,4)抛物线y=23x2+bx+c经过点A,交y轴于点B(0,-2).点P为抛物线上的一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB.(1)求抛物线的解析式.(2)当△BDP为等腰直角三角形时,求线段PD的长.(3)如图2,将△BDP绕点B逆时针旋转,得到△BD/P/,且∠PBP/=∠OAC,当点P的对应点P/落在坐标轴上时,请直接写出P点的坐标.解:(1)由y=-43x+n过点C(0,4),得n=4,则y=-43x+4当y=0时,得-43x+4=0,解得:x=3,∴点A坐标是(3,0)…………………………………………………1分∵y=23x2+bx+c经过点A(3,0), B(0,-2)图1备用图∴22033b+c32c⎧=⨯+⎪⎨⎪-=⎩,解得:4b3c2⎧=-⎪⎨⎪=-⎩∴抛物线的解析式是23x2-43x-2……………………………………………3分(2)∵点P的横坐标为m,∴P(m,23m2-43m-2),D(m,-2)…………4分若△BDP为等腰直角三角形时,则PD=BD;①当点P在直线BD上方时,PD=23m2-43m-2+2=23m2-43m,(ⅰ)若P在y轴左侧,则m<0,BD=-m;∴2 3m2-43m=-m,解得:m=12或m=0(舍去)…………………………………5分(ⅱ)若P在y轴右侧,则m>0,BD=m;∴2 3m2-43m=m,解得:m=72或m=0(舍去)…………………………………6分②当点P在直线BD下方时,PD=-2-(23m2-43m-2) =-23m2+43m,则m>0,BD=m;∴-23m2+43m=m,解得:m=12或m=0(舍去)……………………………7分综上:m=72或m=12。
即当△BDP为等腰直角三角形时,PD的长为72或12。
2021年重庆年中考23题一元二次方程实际应用综合专题(重庆育才试题集)1(育才2021级初三上定时训练二)十九大以来,为全面推进新农村建设,积极改革农村产业结构,增加农民收入,致富村村委会多方努力,共获得流转耕地1000亩,全部用于种植纽橙和蔬菜,其中种植蔬菜的面积不少于种植纽橙面积的4倍.(1)求该村种植蔬菜的面积至少为多少亩?(2)今年村里按(1)中蔬菜种植面积的最小值种植蔬菜,纽橙和蔬菜上市后,纽橙每亩获利800元,蔬菜每亩获利600元;明年在保持纽橙种植面积不变的情况下,纽橙亩产量将上涨,预计每亩利润将增加3a%;同时利用新增流转耕地,使蔬菜种植面积扩大α%,并改良蔬菜种植结构,蔬菜每亩利润将增加a%这样,明年纽橙和蔬菜的总利润将比今年的总利润增加a%.求a的值.2(育才2020级初三下中考模拟5月份)为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.(1)该同学最多可购买多少个甲型小元件?(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10<a<50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.3(育才2020级初三下中考模拟二)为满足社区居民健身的需要,区政府准备采购若干套健身器材免费提供给社区,经考察,康乐公司有甲,乙两种型号的健身器材可供选择.(1)康乐公司2017年每套甲型健身器材的售价为2万元,经过连续两年降价,2019年每套售价为1.28万元,求每套甲型健身器材售价的年平均下降率n;(2)2019年市政府经过招标,决定年内采购并安装康乐公司甲,乙两种型号的健身器材共80套,采购专项经费总计不超过95万元,采购合同规定:每套甲型健身器材售价为1.28万元,每套乙型健身器材售价为1.4(1﹣n)万元.①甲型健身器材最多可购买多少套?②按照甲型健身器材购买最多的情况下,安装完成后,若每套甲型和乙型健身器材一年的养护费分别是购买价的8%和10%,区政府计划支出9万元进行养护,问该计划支出能否满足一年的养护需要?4(育才2020级初三下中考模拟三)随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24元/千克,芒果的售价为20元/千克,总销售额为4320元.(1)求水果店第一次售出苹果和芒果各多少千克;(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1元,销量就增加20千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980元,求第二次芒果的售价.5(育才2019级初三下中考模拟一)某水果店以每千克6元的价格购进一批水果,由于销售状况良好,该店又购进一些同一种水果,第二次进货价格比第一次每千克便宜了1元,已知两次一共进货600千克.(1)若该水果店两次进货的总价格不超过3200元,求第一次至多购进水果多少千克?(2)在(1)的条件下,以第一次购进最大重量时的数量进货,在销售过程中,第一次购进的水果有3%的损耗,其售价比其进价多2a元,第二次购进的水果有5%的损耗,其售价比其进价多a元,该水果店希望售完两批水果后获利31.75%,求a的值.6(育才2020级初三下中考模拟二练习)每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动,甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为,乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%后,这样一天的利润达到了20000元,求m的值7(双福育才2020级初三下中考模拟一)2020年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国蔓延。
二次函数的应用1、物价局规定A产品的市场销售单价在15元到40元之间,某商店在销售A产品的过程中发现:销售A产品的成本c(单位:元)与销售件数y(单位:件)成正比例,同时每天的销售件数y与销售价格x(单位:元/件)之间满足我们学习过的三种函数关系(一次函数、.(1)直接写出y(2)若一天的销售利润w=xy-c;①直接写出每一天的利润w与x之间的函数关系式;②当销售价格x为多少时,w最大?最大值是多少?2、端午节即将到来,武汉各大超市相关商品开始热销.某超市将成本为20元/盒的“江花牌”(1)上表中x、y的各组对应值满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种,试求y与x的函数关系式,不要求写出自变量的取值范围;(2)当销售单价定为多少时,超市试销该皮咸蛋每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)市物价部门规定,此种规格的皮咸蛋销售单价最高不能..超过45元/盒,那么销售单价定为多少时,超市试销该皮咸蛋每天获得的利润最大?3、我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工.已知生产这种产品每件还需成本费40元.经过市场调查发现:该产品的销售单价,需定在200元到300元之间较为合理,销售单价x 元与年销售量y 万件之间的变化可近似的看作是如下表所反应的一次函数:(1)请求出y 与x 间的函数关系式;并直接写出自变量x 的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若赢利,最大利润是多少?若亏损,最少亏损多少?(3) 在(2)的前提下,即在第一年盈利最大或亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达800万元,若能,求出第二年的产品售价;若不能,请说明理由。
4、我市某工艺厂设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)该工艺品的销量y (件)与销售单价x (元)之间满足我们所学过的一次函数、反比例函数、二次函数中的一种,请你判断y 与x 之间满足的函数关系,并简单说明不满足其它函数的理由;(2)设工艺厂试销该工艺品每天获得的利润为w ,当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?。
进货量(千克) 2040 2426 批发单价(元)荆州市十年中考---第23题(应用题)(2012年荆州)荆州素有“中国淡水鱼都”之美誉.某水产经销商在荆州鱼博会上批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示. (1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?(2011年荆州)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备 型号金额 Ⅰ型设备 Ⅱ型设备投资金额x (万元)x5 x 2 4补贴金额y (万元) )0(1≠=k kx y 2 )0(22≠+=a bx ax y 2.4 3.2 12(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.36 20 40 Oxp (台)12月(2010年荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.若这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系. (1)直接写出....2y 与x 之间的函数关系式; (2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?(2009年荆州)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖.某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金。
1、受房贷收紧,对政策预期不确定等因素影响,今年前两个月,全国商品住宅市场销售出现销售量和销售价齐跌态势。
数据显示,2014年前两个月,某房地产开发公司的销售面积一共8300平方米。
其中2月份比1月份少销售300平方米。
(1)求2014年1、2月份各销售了多少平方米?(2)该公司2月份每平方米的售价为8000元,3月份开始,决定以降价促销的方式应对当前的形势,据调查,与2月份相比较,每平方米销售单价下调a%,则销售面积将增加a ,结果3月份总销售额为3456万元,求a的值。
(10)%2、某商场购进一批商品,在进价基础上加价120元后再打九折销售,每件商品售价为360元,每月可售出60件。
(1)求该商品的进价;(2)为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价a%,那么商场每月可以多售出30a%。
要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,求a的值。
3、“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设。
渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?4、今年3月某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额-总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%38a ,售价下降了a %;“红富士”的销售量下降了a %,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a 的值.5、“端午节”是我国的传统佳节,历来有吃“粽子”的习俗。
中考数学应用题专题训练1.方程应用题的解题步骤可用六个字概括,即审(审题),设(设未知数),列(列方程),解(解方程),检(检验),答。
2.不等式应用题是近年来中考命题的热点。
这个问题中通常带有“不少于”,“不多于”,“不超过”,“最多”,“至少”等关键词,还常常用到求不等式整数解问题。
1.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个.(1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?2.学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?3.2011年4月28日,以“天人长安,创意自然一一城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:票得种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60 100 150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票的张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张数为y(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w(元)与x(张)之间的函数关系式;(3)若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数.4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲座仓库调运1辆农用车到A县和B县运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县费用为30元和50元.设从乙仓库调往A县农用车x辆,(1)求总运费y关于x的函数关系.(2)要求总运费不超过900元,共有几种调运方案?选出总运费最低的调运方案,最低运费是多少元?5.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?6.为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部3倍,求彩电、冰箱、手机三大类产800元,已知销售的冰箱(含冰柜)数量是彩电数量的2品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?7.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?8.我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.售价x(元) …70 90 …销售量y(件) …3000 1000 …(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?9.某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y=198-6x (6≤x<8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y(元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.10.“保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:单价(万元/台) 每台处理污水量(吨/月)A型12 240B型10 200(1)设购买A型设备x台,所需资金共为W万元,每月处理污水总量为y吨,试写出W与x,y与x的函数关系式.(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?1.解:(1)设境外投资合作项目个数为x个,根据题意得出:2x﹣(348﹣x)=51,解得:x=133,故省外境内投资合作项目为:348﹣133=215个.(2)∵境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,∴湖南省共引进资金:133×6+215×7.5=2410.5亿元.2.解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120-0.5(x-60)]=8800,解得:x1=220,x2=80.当x2=220时,120-0.5×(220-60)=40<100,∴x1=220(不合题意,舍去);当x2=80时,120-0.5×(80-60)=110>100,∴x=80,答:该校共购买了80棵树苗.3.w=-240x+146004.解:(1)从乙仓库调运A县农用车x辆,则调往B县的农用车有(6-x)辆,从而得出从甲仓库分别调往A县、B县的为(10-x)辆和(x+2)辆。
2023中考数学23题题目描述:某班级有60名学生,其中男生占全班的3/5,女生占全班的2/5。
男生中1/4会打篮球,女生中1/3会打篮球。
已知班级中既会打篮球又会踢足球的学生有10名,既不会打篮球又不会踢足球的学生有5名。
求该班级中会踢足球的学生有多少名?解析:设男生有3x名,女生有2x名,男生会打篮球的人数为3x/4,女生会打篮球的人数为2x/3。
班级中会打篮球的学生总数为3x/4 + 2x/3,由于已知班级中既会打篮球又会踢足球的学生有10名,因此有等式:3x/4 + 2x/3 = 10化简等式得:9x/12 + 8x/12 = 1017x/12 = 10解得x ≈ 7.059班级中男生的人数为3x ≈ 3 * 7.059 ≈ 21.177,取整为21人。
班级中女生的人数为2x ≈ 2 * 7.059 ≈ 14.118,取整为14人。
班级中会踢足球的学生总数为10 + 5 = 15人。
班级中既会打篮球又会踢足球的学生人数为15 - 5 = 10人。
根据题意,班级中会踢足球的学生总数为男生会踢足球的人数加上女生会踢足球的人数。
设男生会踢足球的人数为y,女生会踢足球的人数为z,由于男生会打篮球的人数为3x/4,女生会打篮球的人数为2x/3,因此有等式:3x/4 - 10 = y2x/3 - 10 = z化简等式得:3x - 40 = 4y2x - 30 = 3z代入x ≈ 7.059得:3 * 7.059 - 40 = 4y2 * 7.059 - 30 = 3z化简等式得:21.177 - 40 = 4y14.118 - 30 = 3z-18.823 = 4y-15.882 = 3z解得y ≈ -4.706,z ≈ -5.294由于学生人数不能为负数,所以班级中会踢足球的学生人数为0。
因此,该班级中会踢足球的学生有0名。
中考数学23题专题训练中考数学是每个初中生都要面对的一项重要考试。
其中,第23题是一道常见的题型,需要学生掌握一定的解题技巧和方法。
本文将针对中考数学23题进行专题训练,帮助学生更好地应对这一考题。
首先,我们来看一道典型的中考数学23题:已知函数f(x) = 2x + 3,g(x) = x^2 - 1,求f(g(x))。
解题思路如下:1. 首先,我们需要明确f(g(x))的含义。
f(g(x))表示先对x进行g(x)的运算,再对结果进行f(x)的运算。
2. 根据题目中给出的函数f(x) = 2x + 3和g(x) = x^2 - 1,我们可以将f(g(x))表示为f(x^2 - 1)。
3. 将f(x^2 - 1)代入f(x)的表达式中,得到f(x^2 - 1) = 2(x^2 - 1) + 3。
4. 将2(x^2 - 1) + 3进行化简,得到f(g(x)) = 2x^2 - 2 + 3 = 2x^2 + 1。
通过以上步骤,我们成功地求得了f(g(x))的表达式为2x^2 + 1。
接下来,我们将通过几道类似的题目进行专题训练,帮助学生更好地掌握解题方法。
题目一:已知函数f(x) = 3x - 2,g(x) = x^2 + 1,求f(g(x))。
解题思路:1. 根据题目中给出的函数f(x) = 3x - 2和g(x) = x^2 + 1,我们可以将f(g(x))表示为f(x^2 + 1)。
2. 将f(x^2 + 1)代入f(x)的表达式中,得到f(x^2 + 1) = 3(x^2 + 1) - 2。
3. 将3(x^2 + 1) - 2进行化简,得到f(g(x)) = 3x^2 + 1。
题目二:已知函数f(x) = x + 2,g(x) = 2x - 1,求f(g(x))。
解题思路:1. 根据题目中给出的函数f(x) = x + 2和g(x) = 2x - 1,我们可以将f(g(x))表示为f(2x - 1)。
2021-2021年XX 省中考数学第23题汇总〔2021年〕23.〔12分〕如图,直线y=434+-x 和x 轴、y 轴的交点分别为B ,C 。
点A 的坐标是〔-2,0〕(1) 试说明△ABC 是等腰三角形;(2) 动点M 从点A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C运动,运动的速度均为每秒1个单位长度,当其中一个动点到达终点时,它们都停顿运动,设点运动t 秒时,△MON 的面积为s 。
① 求s 与t 的函数关系式;② 当点M 在线段OB 上运动时,是否存在s=4的情形?假设存在,求出对应的t 值;假设不存在,说明理由;③ 在运动过程中,当△MON 为直角三角形时,求t 的值。
(2021年)23.〔11分〕如图,在平面直角坐标系中,矩形ABCD的三个顶点B 〔4,0〕、C 〔8,0〕、D 〔8,8〕.抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值.〔2021年〕23.〔11分〕在平面直角坐标系中,抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.〔1〕求抛物线的解析式;〔2〕假设点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.〔3〕假设点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.〔2021年〕23. 〔11分〕如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8. 〔1〕求该抛物线的解析式;〔2〕点P 是直线AB 上方..的抛物线上一动点〔不与点A 、B 重合〕,过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值;②连接PA ,以PA 为边作图示一侧的正方形APFG .随着点P 的运动,正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 轴上时,直接写出对应的点P 的坐标.2021〔2021年〕23.〔11分〕如图,抛物线2y x bx c =-++与直线122y x =+交于C 、D 两点,其中点C 在y 轴上,点D 的坐标为〔3,72〕,点P 是y 轴右侧的抛物线上的一动点,过点P 作PE⊥x 轴于点E ,交CD 于点F 。
(完整版)重庆中考数学23题专练。
一元二次方程应用题9。
20增长型问题提高练习1、某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)求销售单价(元)为多少时,该文具每天的销售利润(元)最大;(2)经过试营销后,商场就按(1)中单价销售.为了回馈广大顾客,同时提高该文具知名度,商场营销部决定在11月11日(双十一)当天开展降价促销活动,若每件文具降价m%,则可多售出2m%件文具,结果当天销售额为5250元,求的值.2、一重点中学后勤部门每年都要更新一定数量的书桌和椅子。
已知2012年采购的书桌价格为120元/张,椅子价格为40元/张,总支出费用34000元;2013年采购的书桌价格上涨为130元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2012年分别相同,总支出费用比2012年多2000元。
(1)求2012年采购的书桌和椅子分别是多少张?(2)与2012年相比,2014年书桌的价格上涨了%a,椅子的价格上涨了10%(其中050<<a),但采购的书桌的数量减少了1%2a,椅子的数量减少了50张,且2014年学校桌子和椅子的总支出费用为34720元,求a的值.3、铁路建设助推经济发展,近年来重庆市政府十分重视铁路建设。
渝利铁路通车后,从重庆到上海比原铁路全程缩短了320km,列车设计运行时速比原铁路设计运行时速提高了120km/h,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时。
(1)渝利铁路通车后,重庆到上海的列车设计运行时速是多少?(2)专家建议:从安全角度考虑,时机运行时速要比设计时速减少m%,以便有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加101m小时,求m的值.4、在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.(完整版)重庆中考数学23题专练。
微积分综合应用题(有答案)中考23题必
练经典
以下是一道中考微积分综合应用题的经典题目,并且提供了答案。
这道题目可以帮助学生巩固微积分的应用技巧和解题能力。
题目描述
一辆汽车以40千米/小时的速度行驶了3小时后,为了规避前方的障碍物,司机紧急刹车。
刹车后汽车以a千米/小时²的减速度减速,直至停下。
已知刹车过程的位移满足公式:S = 40t - (a/2)t²。
求刹车前汽车行驶的距离。
解题思路
根据题目所给的公式,我们可以得到刹车过程的位移S与时间t的关系。
要求刹车前汽车行驶的距离,即我们需要找到刹车过程的开始时间t。
由题意可知,刹车时汽车已经行驶了3小时,因此我们将刹车过程的时间设定为t-3。
根据题目所给公式,我们可以得到刹车开始前的位移S1与刹车过程的位移S的关系:S1 = 40(t-3)。
同时,根据题目所给的公式,当汽车停下时刹车过程的位移为零。
因此我们可以将刹车过程的位移S设为零,代入公式得到关系式:40t - (a/2)t² = 0。
将刹车过程的时间设定为t-3,我们可以将关系式转化为:
40(t-3) - (a/2)(t-3)² = 0。
现在我们可以通过解二次方程求解出关系式的解,即刹车过程的时间t。
计算出t后,我们可以将t值代入刹车开始前的位移公式:S1 = 40(t-3),计算得到刹车前汽车行驶的距离。
答案
刹车前汽车行驶的距离为:S1 = 40t - 120。
希望这道题目能够帮助到您,巩固微积分应用题的解题能力。
如果您还有其他问题,欢迎随时提问。
中考数学第23题的分类试题一、动点问题 〔一〕、因动点产生的面积关系例1、在平面直角坐标系中,△BCD 的边长为3cm 的等边三角形, 动点P 、Q 同时从点A 、O 两点出发,分别沿AO 、OB 方向匀速移动,它们的速度都是1cm/s, 当点P 到达点O 时,P 、Q 两点停止运动. 设点P 的运动时间为t(s), 解答以下问题:(1) 求OA 所在直线的解析式;(2) 当t 为何值时, △POQ 是直角三角形;(3) 是否存在某一时刻t ,使四边形APQB 的面积是△AOB 面积的三分之二? 假设存在, 求出相应的t 值; 假设不存在,请说明理由.例2、 如图,边长为1的正方形OABC 的顶点O 为坐标原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上.动点D 在线段BC 上移动(不与B ,C 重合),连接OD ,过点D 作DE ⊥OD ,交边AB 于点E ,连接OE .记CD 的长为t .(1) 当t =31时,求直线DE 的函数表达式;(2) 如果记梯形COEB 的面积为S ,那么是否存在S 的最大值?假设存在,请求出这个最大值及此时t 的值;假设不存在,请说明理由;〔二〕因动直线产生的面积关系例3.如下列图,抛物线y=x 2+bx+c 经过点〔1,-5〕和〔-•2,4〕. 〔1〕求这条抛物线的解析式.〔2〕设此抛物线与直线y=x 相交于点A ,B 〔点B 在点A 的右侧〕,平行于x•轴的直线x=m 〔0<m<5+1〕与抛物线交于点M ,与直线y=x 交于点N ,交x 轴于点P ,求线段MN 的长〔•用含m 的代数式表示〕.〔3〕在条件〔2〕的情况下,连接OM ,BM ,是否存在m 的值,使△BOM 的面积S 最大?假设存在,请求出m 的值,假设不存在,请说明理由.Q PPA x yB O y=x N P x = m M A xyB O同步练习1、如图,在平面直角坐标系中,四边形OABC 为菱形,•点C 的坐标为〔4,0〕,∠AOC=60°,垂直于x 轴的直线L 从y 轴出发,沿x 轴正方向以每秒1•个单位长度的速度移动,设直线L 与菱形OABC 的两边分别交于点M ,N 〔点M 在点N 的上方〕.〔1〕求A ,B 两点的坐标;〔2〕设△OMN 的面积为S ,直线L 的运动时间为ts 〔0≤t≤6〕,试求S 与t•的函数表达式;〔3〕在〔2〕的条件下,t 为何值时,S 的面积最大?最大面积是多少?2.正方形ABCD 的边长为4,BE ∥AC 交DC 的延长线于E 。
中考23题训练1.(2013•重庆)“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每1辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多2 m次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.2.(2009•西藏)有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.(1)设x天后每千克鲜葡萄的市场价为P元,写出P关于x的函数关系式;(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;(3)问个体户将这批葡萄存放多少天后出售,可获得最大利润,最大利润q是多少?3.(2010•潼南县)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a天后,再由甲、乙两工程队合作()天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工完成剩下的工程,才能使施工费不超过64万元?4.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)5.(2013•南京)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元)300-400 400-500 500-600 600-700 700-900…返还金额(元)30 60 100 130 150 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若够买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标价至少为多少元?6.(2013•长沙)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线,2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?7.(2013•哈尔滨)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?8.(2013•汕头)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?9.(2013•安徽)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.10(2013•河南)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.11.(2013•青岛)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.12.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.12.(2013•西宁)青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数量如下表所示:甲种花卉(盆)乙种花卉(盆)A种园艺造型(个)80盆40盆B种园艺造型(个)50盆90盆(1)已知搭配一个A种园艺造型和一个B种园艺造型共需500元.若园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元.则A、B两种园艺造型的单价分别是多少元?(2)如果搭配A、B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你帮忙设计出来.13.(2013•昆明)某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?14.(2013•新疆)佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?15.(2013•潍坊)为增强市民的节能意识,我市试行阶段电价,从2013年开始,按照每户的每年的用电量分三个档次计费,具体规定如图,小明统计了自家2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题:(1)若小明家计划2013年全年的用电量不超过2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?16.(2013•嘉兴)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?17.(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?11.解:(1)由题意得,销售量=250-10(x-25)=-10x+500,则w=(x-20)(-10x+500)=-10x2+700x-10000;(2)w=-10x2+700x-10000=-10(x-35)2+2250.∵-10<0,∴函数图象开口向下,w有最大值,当x=35时,wmax=2250,故当单价为35元时,该文具每天的利润最大(3)A方案利润高.理由如下:(4)A方案中:20<x≤30,故当x=30时,w有最大值,此时wA=2000;B方案中:,故x的取值范围为:45≤x≤49,∵函数w=-10(x-35)2+2250,对称轴为x=35,∴当x=45时,w有最大值,此时wB=1250,wA>wB,∴A方案利润更高.。
重庆市重点中学2018届各校中考23题应用题汇编1.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具.且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具.(1)若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围;(2)在实际销售中,玩具城以(1)中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案.将每个玩具的售价提高了a%,从而每天的销售量降低了2a%,当每天的销售利润为147元时,求a的值.2.宜兴科技公司生产销售一种电子产品,该产品总成本包括技术成本、制造成本、销售成本三部分,经核算,2015年该产品各部分成本所占比例约为2:a:1.2015年该产品的总成本为2000万元且制造成本比技术成本多1000万元。
(1)确定a的值,(2)为降低总成本,该公司2016年及2017年增加了技术成本投入,确保这两年技术成本都比前一年增加一个相同的百分数m%(m<50),制造成本在这两年里都比前一年减少一个相同的百分数2m%;同时为了扩大销售量,2017年的销售成本将在2015年的基础上提高10%,经过以上变革,预计2017年该产品总成本达到2015年该产品总成本的,求m的值.3、某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买。
已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元。
(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季,为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在a,预计这种青椒在市区、园区的销量将在今年5月份的基础上分别增长30%、今年5月份的基础上降低%20%,要使得6月份该青椒的总销售额不低于18360元,则a的最大值是多少?4. 俗话说“一铺养三代”。
曾经,在市区繁华地段租一间门面,做点小生意,是不少人的生存之道。
如今,这样的传统致富门道正在不断受到挑战。
某服装店主,顺应时代潮流,在实体店销售的同时,开始网上销售。
(1)该店主某月线上线下共销售某款童装200件,其中网上销售量不低于实体销售量的4倍,求该店主该月实体销售量最多为多少?(2)已知该店主5月实体销售该童装100件,每件获利18元;网上销售200件,每件获利12元。
6月店主加大网上销售力度,网上销售每件获利较5月减少m%,但销售量比5月增加了2m%,实体店每件获利不变,销售量比5月减少了m%。
结果该店主5月、6月线上线下获利总金额相同,求m的值。
5. 沙坪坝区政府决定从2014年11月起到2016年底,两年时间创建成为国家卫生城区,辖区内企业的污水处理通常有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理,某企业每月的污水量均为2500吨,数量巨大需要两种处理方式同时进行.由于企业自身设备老化等问题,2015年每月自身处理污水量y(吨)与月份x(x取整数)之间满足的函数关系式为y=2500﹣100x,该企业自身处理每吨污水的成本为4元,其余部分由污水厂统一处理,污水厂收取企业每吨污水处理费10元(1)该企业2015年哪几个月用于污水处理的费用不超过12000元?(2)2016年以来,由于该企业自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后2016年每月的污水量都将在2015年每月的基础上增加a%,同时每吨污水处理的费用将在每吨4元的基础上增加5(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助,若该企业每月的污水处理费用为8437.5元,请计算出a的值.6. 某商场经营一种新型台灯,进价为每盏300元.市场调研表明:当销售单价定为400元时,平均每月能销售300盏;而当销售单价每上涨10元时,平均每月的销售量就减少10盏.(1)当销售单价为多少时,该型台灯的销售利润平均每月能达到40000元?(2)临近春节,为了回馈广大顾客,商场部门经理决定在一月份开展降价促销后动,估计分析:若每盏台灯的销售单价在(1)的销售单价基础上降价m%,则可多售出2m%.要想使一月份的销售额达到112000元,并且销售量尽可能大,求m的值.7. 冬至过后,昼夜温差逐渐加大,山城的市民们已然感受到了深冬的寒意.在还未普遍使用地暖供暖设备的山城,小型电取暖器仍然深受市民的青睐.某格力专卖店销售壁挂式电暖器和卤素/石英式取暖器(俗称“小太阳”),其中壁挂式电暖器的售价是“小太阳”售价的5倍还多100元,2016年12月份壁挂式电暖器和“小太阳”共销售500台,壁挂式电暖器与“小太阳”销量之比是4:1,销售总收入为58.6万元.(1)分别求出每台壁挂式电暖器和“小太阳”的售价;(2)随着“元旦、春节”双节的来临和气温的回升,销售进入淡季,2017年1月份,壁挂式电暖器的售价比2016年12月下调了4m%,根据经验销售量将比2016年12月下滑6m%,而“小太阳”的销售量和售价都维持不变,预计销售总收入将下降到16.04万元,求m的值.8.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为m,销售均价与去年相同,该100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了%果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了m,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他m,但销售均价比去年减少了%2%去年樱桃和枇杷的市场销售总金额相同,求m的值.9.重庆实验外国语学校初2017级学生会进行了爱心义卖活动,准备将义卖获得的利润全部用于易书吧购买图书,免费借阅给全校学生,首次购进的义卖商品单价为25元,共卖出120件,第二次购进的义卖商品的单价是20元,共卖出150件.已知首次义卖的每件售价比第二次多20元,但第二次比第一次少获得600元.(1)求第二次义卖的商品每件售价是多少元?(2)为了让全校更多同学借阅到图书,初2017级学生会决定再进行一次义卖活动,此次义卖购进的商品单价为15元,每件售价比第二次上调了a%,则卖出的件数比第二次减少2a%,若第三次获利4500元,求a的值.10.在“红五月”读书活动中,社区计划筹资15000元购买科普书籍和文艺刊物.(1) 计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2) 经初步了解,有150户居民自愿参与集资,那么平均每户需集资100元.经筹委会进一步宣传,自愿参加的户数在150户的基础上增加了%a (其中a >50),如果每户平均集资在100元的基础上减少52%a ,那么实际筹资将比计划筹资多3000元,求a 的值.11、丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.重庆市重点中学2018届各校中考23题应用题汇编·答案1.解:(1)设每个玩具售价x 元,则有:⎩⎨⎧x ≤6049(50-3×x -500.5)≤686 ,解得56≤x ≤60, 答:预计每个玩具售价的取值范围是56≤x ≤60.(2)由(1)可知最低销售价为56元/个,对应销售量为50-3×56-500.5=14个,由题意得: [56(1+ a%)-49]×14(1-2a%)=147,令t= a%整理得:32t 2-12t+1=0,解得:t 1=14,t 2=18,∵14(1-2t )为整数 ∴t=18应舍去 ∴a=25.2.解:(1)由题意得(a-2)÷(a+3)×2000=1000 --------------2分解得a=7. ----------------------------------------------------------------3分 经检验:a=7是原方程的解 -------------------------------------------------------------4分(2)由题意可得400(1+m%)2+1400(1﹣2m%)2+200(1+10%)=2000×,-----------------7分 令m%=t 整理得300t 2﹣240t+21=0,解得t 1=0.1,t 2=0.7(m <50,不合题意舍去).∴m%=0.1 ∴m=10答:m 的值是10. ---------------------------------------------------------10分3.4.解:(1)根据题意得:4+10[2500﹣]≤12000,整理得:600x+10000≤12000,解得:x≤,∵x为正整数,∴x=1、2、3.∴该企业2015年一、二、三月用于污水处理的费用不超过12000元.(2)根据题意得:2500(1+a%)×4[1+5(a﹣30)%]=8437.5×2,整理得:a2+90a﹣4375=0,解得:a=35或a=﹣125(舍去).答:若该企业每月的污水处理费用为8437.5元,a的值为35.5.解:(1)当销售单价为x元时,该型台灯的销售利润平均每月能达到40000元,根据题意得(x﹣300)[300﹣(x﹣400)]=40000,解得x1=x2=500,答:当销售单价为500元时,该型台灯的销售利润平均每月能达到40000元;(2)当x=500时,300﹣(x﹣400)=200(盏),根据题意得500(1﹣m%)×200(1+2m%)=112000,整理得50(m%)2﹣25•m%+3=0,解得m%=0.6(舍去)或m%=0.3,所以m=30.6.解:(1)设每台小太阳为x元,则每台壁挂式电暖器的售价为(5x+100)元,∵2014年1月份(春节前期)共销售500件,每台壁挂式电暖器与小太阳销量之比是4:1,∴每台壁挂式电暖器与小太阳销量分别为:400件和100件,根据题意得出:400(5x+100)+100x=586000,解得:x=260,∴5x+100=1400(元),答:每台壁挂式电暖器和小太阳的售价为:1400元,260元;(2)∵2014年2月份每台壁挂式电暖器销量下滑了6m%,售价下滑了4m%,小太阳销量和售价都维持不变,结果销售总收入下降为16.04万元,∴400(1﹣6m%)×1400×(1﹣4m%)+100×260=160400解得:m1=10,m2=(不合题意舍去),答:m的值为10.7.8.解:(1)设第二次义卖的商品每件售价为x 元,则第一次义卖的商品每件售价为(x+20)元, 根据题意得:120(x+20﹣25)=150(x ﹣20)+600,解得:x=60.答:第二次义卖的商品每件售价是60元.(2)第三次义卖的商品每件售价为60(1+a%)元,售出的件数为150(1+2a%),根据题意得:150(1﹣2a%)[60(1+a%)﹣15]=4500,解得:a=25或a=﹣50(舍去).答:a 的值为25.9.(1)设购买科普书籍资金为x 元。