钴镍的萃取分离PPT课件
- 格式:ppt
- 大小:703.50 KB
- 文档页数:36
用溶剂萃取法分离镍、钴和铜钱东, 王开毅, 蔡春林, 潘春跃, 唐有根, 蒋金枝,化学工程学院、中南大学,长沙414083,中国)1 [分离] 镍,钴和铜的溶剂萃取分离法。
实验结果表明[Co(NH3)6 ] 3 +是在萃取动力学惰性复杂,因此可以从钴镍和铜拜农平衡溶剂萃取分离。
25℃温度条件下,两相的接触时间10分钟,相比1:1,水溶液的pH值10.10和20%浓度的P204,[Co(NH3)6 ] 3 +很难提取P204,而提取镍和铜的比例分别为93.9%和79.3%。
镍和铜的平衡溶剂萃取法分离。
25℃温条件下,两个阶段1分钟,相比1:1的接触时间,pH值和浓度平衡4.01中20%,铜和镍的分离因子为216。
【关键字】非平衡溶剂萃取平衡;溶剂萃取;镍;钴;铜;二(2-乙基己基)磷酸【中国分类号】TQ028.32;TF 804. 2引言溶剂萃取是一种溶剂萃取热力学平衡。
非平衡溶剂提取溶剂提取[ 1 ]的一种,它利用在动力学萃取速度差异性分离材料等稀有金属和稀土金属[ 2-4 ] [ 5,6 ]。
对钴、镍的提取与二(2-乙基己基)磷酸的分离因子(P204 }在硫酸溶液中一般在20以下,因此可被认为是不适合的钴镍分离[7,8]。
因此,P204也是对镍,钴,铜,人们已经注意到湿法冶金分离萃取剂自20世纪60年代一个不称职的。
然而,据报道,[Co(NH3)6 ] 3 +氨溶液和β-羟肟n510 [ 9 ]或n530 [ 10 ]的提取速度很慢动力学惰性复杂。
在本文中,发现[Co(NH3)6 ]3+提取速度P204也很慢。
所以我们可以氧化钴(Ⅱ)Co(Ⅲ)在氨性溶液中,用非平衡溶剂萃取分离钴的镍和铜,然后分离镍和铜的平衡溶剂萃取法。
2 实验氧化剂(NH4)2S2O8添加硫酸镍铵的混合溶液中,钴和铜(镍钴的摩尔比:铜= 12.2:2.4:1)溶液处理使有限(Ⅱ)可以被氧化为CO(Ⅲ)完全然后皂化P204萃取分离钴(Ⅲ)从Ni(Ⅱ)和Cu(II)。
钴的萃取实验和在硫酸介质中使用Cyanex272有机膦酸类萃取钴镍分离实验1.水溶液的配制先用24.0003g/L的钴母液和混合溶液(Na2SO4浓度0.1M,H2SO4浓度0.1M)配制两份相同溶液。
每份溶液取钴钴母液10mL,取混合溶液10mL,转移到100mL容量瓶中,然后用纯水定容至100mL,从而获得稀释钴溶液。
之后取12个烧瓶,每个烧瓶加入10mL稀释钴溶液与10mL萃取液,之后每份样品加入不同体积浓度为0.1M的NaOH溶液,样品的组成及实验数据如表-1所示:表- 1—各萃取体系溶液组成及pH2.钴的标准溶液取6各10mL容量瓶,以24.0003g/L的钴母液为原料,配制6份浓度不同的钴标准溶液,各溶液规格如表-2所示:表- 2—钴标准溶液规格钴的标准溶液拟合直线为:Abs=0.0322c+0.00596,从该直线获得12份样品中钴的浓度如表-3所示:表- 3—从拟合直线获得的样品钴浓度c因为萃余液中钴浓度不可能为负值,也不可能超过未萃取的值(≈2.4g/L),因此,我们需要对表-3数据进行处理,我们认为第4组浓度最低,记为0,其他组浓度则加上0.185g/L,但第10组数据为错误数据(偏差太大,在后面的处理不予考虑)。
处理后数据如表-4所示:表- 4—处理后萃余液钴浓度3. 计算分配系数每份样品中钴的质量为m=24.0003g/L*10mL*(10/100)=0.0240003g=24.0003mg每份样品中萃余液中钴的质量为m ’=c*V (c 的单位g/L,V 的单位mL ,m 的单位mg),c 的值见表-4,V=10+ V NaOH ,计算后的值如表-5所示:表- 5—萃余液中钴的质量萃取液中的钴的质量为m-m ’(单位mg ),浓度为c ’= m −m ’10(c ’的单位g/L),计算浓度结果如表-6所示:表- 6—萃取液中的钴浓度c ’分配系数 D =c ′c,计算结果如表-7所示:表- 7—各样品的分配系数4. 课件问题e)在制备水溶液中,用到了硫酸钠。
分类号:密级:公开学号:******* 单位代码:10407硕士学位论文论文题目: 氨性体系加压浸出氧化铜钴矿的工艺研究研究方向湿法冶金专业名称有色金属冶金研究生姓名黄涛导师姓名、职称刘建华副教授二零一二年五月二十八日江西·赣州摘要钴是重要的战略金属,被广泛应用于航空、电器、化学工业等方面,同时也是超级合金和合金钢的重要添加剂。
伴随着世界工业化、城镇化的步伐加快,能源日显紧缺,电池的用途愈来愈广,而钴是电池中的重要金属,预计钴资源的开发和利用在未来的一段时间内将出现新的高潮。
我国钴资源短缺,原料基本依靠进口。
本课题来源于国内某钴冶炼厂,其原料是刚果进口的氧化铜钴矿,原矿铜钴品位较低,运输成本高,如在原矿产地采用氨性加压浸出,氨浸液直接经蒸氨得到钴铜混合料,蒸氨冷凝液与残液返回浸矿,钴铜混合料运输回国,可大大降低运输成本。
钴铜混合料运回国内后,采用传统的酸溶、萃取分离钴铜与少量杂质金属离子,生产钴盐工艺,可节约大量的酸碱用量及劳动力,减少废渣和废水的排放,达到更清洁化生产的目的。
现有钴冶炼工艺主要是采用酸法浸出,本课题提出了氨法加压浸出氧化铜钴矿的新方法。
在氨性体系中,浸出具有选择性,钴、铜、镍、锌等有价金属以氨配离子形式进入浸出液,而钙、镁、铁等金属几乎不进入浸出液。
本课题在研究NH3-(NH4)2SO4-H2O体系的加压浸出实验过程中,考察了总氨浓度、氨铵比、还原剂用量、温度、液固比、时间及矿样粒度对Cu、Co浸出率的影响。
同时通过合理的设计实验工艺流程,达到了降低还原剂用量的目的,确定了浸出的最佳条件为:两段浸出、矿样粒度95%≤300目、高压浸出温度100℃、液固比为6、氨铵比为2:1、总氨浓度为7mol·L-1的条件下,一段浸出和二段浸出还原剂用量分别为所取矿中钴总量0.5倍和1倍(摩尔比)。
试验证明铜钴浸出率均可达到95%以上。
蒸氨过程中考察了蒸馏量与沉钴的关系。
实验证明,当蒸馏量达30%时,蒸馏残液中钴浓度仅为0.0071g·L-1,蒸馏沉渣中钴为34.49%、铜为18.39%,与原矿相比钴、铜含量提高了约5~10倍。
分离镍钴的方法
镍钴的分离主要有以下几种方法:
1. 沉淀法:这是一种利用沉淀物的特性来分离镍钴的方法。
通过添加化学沉淀剂,如氢氧化钠和碳酸钠,可以使镍和钴分别沉淀,达到分离的目的。
2. 萃取法:通过将混合物加入适当的有机溶剂中,再利用镍和钴在不同有机溶剂中的溶解度不同,用适当的方法将它们分离出来。
目前,溶剂萃取法具有高选择性、高直收率、流程简单、操作连续化和易于实现自动化等优点,被广泛应用于镍钴分离。
3. 电渗析法:这是一种利用离子在电场作用下运动方向的不同来分离镍钴的方法。
在直流电场作用下,镍离子和钴离子分别向阳极和阴极迁移,从而达到分离的目的。
4. 离子交换法:这是一种利用离子交换树脂的特性来分离镍钴的方法。
离子交换树脂具有选择性吸附镍离子和钴离子的能力,从而达到分离的目的。
5. 吸附法:利用吸附剂的表面活性来分离镍钴。
吸附剂具有吸附镍离子和钴离子的能力,将混合物通过吸附剂时,镍离子和钴离子分别被吸附在不同的表面上,从而达到分离的目的。
6. 其它方法:例如催化沉淀法、电渗析-离子交换法、电化学分离法等,也可以用来分离镍钴。
以上这些方法中,沉淀法和萃取法在工业生产和新能源领域具有重要的应用价值。
但是每种方法都有其优缺点,需要根据具体情况选择合适的方法。
钴镍萃取一、萃取的基本介绍萃取法分离金属离子作为现代冶金的主要手段,已经得到广泛应用,自上世纪50年代在铜湿法冶金中得到应用,并且取得巨大成功以后,相继在很多领域,比如钴镍冶金、稀土冶金、钨钼冶金、钽铌冶金、核工业冶金中得到大量应用,并且得到了巨大的经济效益。
萃取法的工业应用:1、使得制备纯度高的化工产品的步骤大大简化了,以前的方法,比如重结晶、化学除杂法等方法,不仅步骤繁琐,而且会降低主要金属的回收率。
2、使得综合回收利用矿物成了可能,很多矿物都有大量的伴生矿,一些稀散金属由于没有单独的矿床或者品味很低,在以前得不到利用,但萃取法能够有效富集金属。
使得以前不能利用的金属得到利用。
3、使得一些化工产品的制备更加简便,比如电解铜,在没有萃取法之前,由于用氯化铜电解液电解出的铜不够质密,而只能用硫酸铜,那么就要求浸出时必须使用硫酸做浸出剂。
而氯化浸出不仅节约成本、而且浸出率高。
应用萃取法,就可以使用氯化浸出法,铜铜萃取剂捞铜后,再用硫酸反萃后就是硫酸铜电解液。
二、钴镍萃取钴镍作为工业味精,在硬质合金、石油催化、人造金刚石、功能陶瓷、军工行业、高能电池等方面得到广泛应用,但是由于钴镍性质非常相似,而现代工业要求钴镍的纯度比较高,所以在钴镍冶金中,萃取法得到广泛高效的应用。
钴镍冶金中主要有以下三种萃取体系:1、铵盐中的萃取体系。
在钴镍冶金中,由于原矿的品味一般很低,所以会先选矿富集,在选矿富集过程中,通过还原熔炼,得到高锍镍,通过加压氨浸出,得到钴氨络离子、镍氨络离子。
然后用萃取剂比如叔碳羧酸Versatic911、二(2-羟基-5-辛基)苯甲胺等萃取分离。
2、络阴离子萃取体系。
主要是胺萃取剂如2-乙基己基污、N235。
由于钴镍金属离子与氯离子都能结合成阴离子,胺萃取剂能够从溶液中萃取阴离子。
3、阳离子萃取体系。
主要是酸性萃取剂,在钴镍中主要从硝酸盐体系、硫酸盐体系萃取分离钴镍离子。
在工业上也应用的最为广泛的萃取剂是P204、P507。
钴镍的萃取分离工艺研究钴镍是一种常见的金属元素,广泛应用于电池、合金、化学催化剂等领域。
由于钴镍通常以混合形式存在于矿石中,因此需要通过萃取分离工艺将其分离出来。
下面将介绍钴镍的萃取分离工艺研究。
1. 钴镍矿石的预处理:首先需要对钴镍矿石进行破碎、磨矿等预处理操作,以便提高后续的分离效果。
2. 酸浸:将经过预处理的钴镍矿石进行酸浸,通常采用硫酸浸取。
在浸取过程中,钴镍会与硫酸反应生成硫酸钴和硫酸镍的溶液。
3. 萃取:将得到的钴镍溶液进行萃取分离。
常用的萃取剂有酸性萃取剂、有机螯合剂等。
酸性萃取剂主要用于钴的萃取,有机螯合剂主要用于镍的萃取。
通过调节萃取剂的浓度、pH值等参数,可以实现钴镍的有效分离。
4. 聚合物分离:在萃取分离过程中,聚合物分离也被广泛应用。
聚合物分离通过对含有钴镍的溶液进行过滤、离心等操作,使得钴镍与聚合物发生吸附,从而实现钴镍的分离。
5. 溶剂萃取:溶剂萃取技术是一种常用的分离技术,也可以用于钴镍的分离。
该方法通过选择合适的溶剂,使得钴、镍等金属离子在不同的溶剂相中的分配系数不同,从而实现钴镍的分离。
6. 晶体萃取:晶体萃取是一种高效的分离技术,其原理是利用晶体的晶格结构和吸附性能对钴镍进行选择性吸附。
晶体萃取的优点是选择性强、操作简便,但其成本较高。
7. 电解分离:电解分离是一种通过电解溶液使钴、镍离子还原析出的方法。
通常采用铁阳极和不锈钢阴极进行电解,通过电解反应,将钴和镍分离出来。
综上所述,钴镍的萃取分离工艺研究涉及到多种方法,包括酸浸、萃取、聚合物分离、溶剂萃取、晶体萃取和电解分离等。
根据实际需求和矿石性质的不同,可以选择合适的分离方法进行实施。
随着科技的进步和研究的不断深入,相信钴镍的萃取分离工艺也将不断完善和改进。
钴、镍萃取分离原理与方法钴、镍萃取分离原理与方法目前,钴镍冶金原料已由以前的硫化钴镍矿逐渐转为钴镍杂料、钴镍氧化矿(含钴、镍红土矿)等,处理工艺由传统的火法造锍、湿法分离相结合转为浸出、净化全湿法流程。
钴镍原料来源不一,浸出液成分复杂,沉淀、离子交换工艺难以实现钻、镍及钴镍与钙、镁等其他杂质离子的分离。
溶剂萃取法有选择性好、金属回收率高、传质速度快等优点,尤其根据离子性质差异及萃取理论研发的新萃取剂及萃取体系,更优化了萃取效果。
所以,从根本上找出钴、镍性质的差异,分析现有钴、镍分离工艺原理,对新萃取剂和萃取工艺的开发有指导意义。
一、钴、镍性质区别钴镍原子序数相邻,同为第四周期第Ⅷ族元素,仅外层d电子数不同,这种性质上的差异可用于萃取法分离。
(一)晶体场配位理论分析钴镍性质差异1、钴镍轨道简并钴、镍比较常见的配位数为4和6。
配位数为6时,配体呈八面体型。
由于配体之间的位置不同,5个轨道简并为2组,电子与配体顶头接近的d z2、d x2-y2作用强烈,能量较高,为6Dq;而另外的d xy、d yz、d zx轨道作用力弱得多,能量较低,为-4Dq。
配位数为4时,配体可以形成平面四方形或正四面体构型。
萃取剂的分子量较大,分子间存在较大的空间位阻,所以一般为正四面体构型。
同样,四面体场亦发生简并,但是与八面体场完全相反,d xy、d yz、d zx轨道能量较高,为1.78Dq,而d z2、d x2-y2的轨道能量较低,为-2. 67Dq。
2、钴镍轨道电子排布电子在轨道的排布遵循能量(CFSE)最低原则,其中成对的电子还需要克服能量为P或P’的成对能。
按这个规则,电子排布与对应能量大小如表1。
表1 钴镍离子不同配位数时对应的能量可以看出:6配位正八面体的稳定性大于4配位正四面体的稳定性。
Ni(Ⅱ)的6配位八面体的稳定性远大于四配位四面体的稳定性,而Co(Ⅱ)的6配位八面体的稳定性仅略强于四配位四面体的稳定性,所以,溶液中Ni(Ⅱ)仅有6配位存在,而Co(Ⅱ)的6配位或4配位都可以存在。