数据预处理之剔除异常值及平滑处理
- 格式:pdf
- 大小:699.24 KB
- 文档页数:15
测绘技术的数据处理流程测绘技术是一种以收集、测量地表及其周围环境的数据为基础,再通过一系列的数据处理流程,将这些数据转化为有用的信息。
数据处理流程对于测绘技术的应用起着至关重要的作用。
首先,在进行数据处理之前,需要确保测绘所采集的数据是准确可靠的。
这需要使用高精度的测量设备和仪器,如全站仪、GPS接收器等,对目标进行测量。
同时,还需要使用校正工具对仪器的误差进行修正,以获得更精确的数据。
接下来,将采集到的原始数据导入计算机中,进行数据处理。
数据处理的第一步是进行数据预处理。
这一步骤主要包括数据筛选、异常值的剔除以及数据的平滑处理。
数据筛选是为了去除不必要的数据,只保留符合要求的数据。
而异常值的剔除则是为了去除那些偏离正常范围的、可能会对后续处理造成干扰的值。
数据的平滑处理则是为了降低数据的噪声,使得数据更具可读性。
接下来是数据的特征提取和分析。
这一步骤对原始数据进行进一步的处理,以提取出其中的有用信息。
数据的特征提取包括对数据进行分类、归纳和整理,以发现数据的规律和特征。
分析数据的目的是通过对数据的统计、图表和模型分析,揭示数据背后的规律和趋势。
在数据特征提取和分析的基础上,可以进行数据的可视化处理。
通过使用各种图像处理和可视化工具,可以将数据以图表、图像或动画等形式展现出来。
这样有助于人们直观地理解数据,并从中获取更多的信息。
最后,还需要进行数据的解释和应用。
数据的解释是将数据转化为可读、可理解的信息。
这一步骤需要将数据与背景知识相结合,分析数据的意义和价值。
数据的应用则是将数据应用于实际的测绘工程中,为工程提供准确的数据支持。
综上所述,数据处理流程是测绘技术中不可或缺的一部分。
通过对采集到的原始数据进行预处理、特征提取、分析、可视化处理和数据解释,最终将其转化为有用的信息,并为测绘工程提供准确的数据支持。
测绘技术的不断发展和创新,使得数据处理流程变得更加高效和精确,为我们提供了更多的应用可能性。
数据预处理的方法有哪些数据预处理是数据分析过程中非常重要的一步,它对数据质量的提升起着至关重要的作用。
数据预处理的方法有很多种,下面我将介绍一些常用的数据预处理方法。
首先,数据清洗是数据预处理的第一步。
在数据采集和存储的过程中,数据往往会受到各种干扰和噪声的影响,比如缺失值、异常值、重复值等。
因此,数据清洗是必不可少的。
对于缺失值,可以选择删除缺失值、用均值或中位数填充、使用插值法填充等方法进行处理。
对于异常值,可以采用删除异常值、平滑处理、离散化处理等方法。
对于重复值,可以直接删除或者进行合并处理。
其次,数据集成也是数据预处理的重要环节。
在实际应用中,数据往往分布在不同的数据源中,需要进行数据集成。
数据集成的方法有多种,比如数据合并、数据连接、数据聚合等。
在进行数据集成的过程中,需要注意数据的一致性和完整性,避免数据冗余和不一致的情况。
另外,数据变换也是数据预处理的重要环节。
数据变换的目的是将数据转换成适合建模的形式,常见的数据变换方法有标准化、归一化、离散化、连续化等。
标准化和归一化可以将数据转换成符合正态分布的形式,有利于提高模型的准确性。
离散化和连续化可以将连续型数据转换成离散型数据或者将离散型数据转换成连续型数据,有利于不同类型数据的处理和分析。
最后,特征选择也是数据预处理的重要环节。
在实际应用中,数据往往包含大量的特征,而并非所有特征对建模都是有益的。
因此,需要进行特征选择,选择对建模有益的特征。
特征选择的方法有过滤式、包裹式、嵌入式等。
过滤式方法是根据特征的统计指标来进行选择,比如方差、相关系数等;包裹式方法是根据建模的性能来进行选择,比如递归特征消除、基于模型的特征选择等;嵌入式方法是将特征选择融入到模型训练的过程中,比如Lasso回归、决策树等。
综上所述,数据预处理是数据分析过程中不可或缺的一步,它涉及到数据清洗、数据集成、数据变换和特征选择等多个环节。
在实际应用中,需要根据具体的问题和数据情况来选择合适的数据预处理方法,以提高数据质量和模型的准确性。
M a a b笔记数据预处理剔除异常值及平滑处理集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]012. 数据预处理(1)——剔除异常值及平滑处理测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。
为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数据(1)剔除异常值;另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。
为了提高数据的质量,必须对数据进行(2)平滑处理(去噪声干扰);(一)剔除异常值。
注:若是有空缺值,或导入Matlab数据显示为“NaN”(非数),需要①忽略整条空缺值数据,或者②填上空缺值。
填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。
一、基本思想:规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,就认为它是异常值,从而予以剔除。
二、常用方法:拉依达方法、肖维勒方法、一阶差分法。
注意:这些方法都是假设数据依正态分布为前提的。
1. 拉依达方法(非等置信概率)如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。
3x i x x S ->其中,11n ii x x n ==∑为样本均值,12211()1nx i i S x x n =⎛⎫ ⎪⎝⎭=--∑为样本的标准偏差。
注:适合大样本数据,建议测量次数≥50次。
代码实例(略)。
2. 肖维勒方法(等置信概率)在 n 次测量结果中,如果某误差可能出现的次数小于半次时,就予以剔除。
这实质上是规定了置信概率为1-1/2n ,根据这一置信概率,可计算出肖维勒系数,也可从表中查出,当要求不很严格时,还可按下列近似公式计算:10.4ln()n n ω=+Tab1. 肖维勒系数表如果某测量值与平均值之差的绝对值大于标准偏差与肖维勒系数之积,则该测量值被剔除。
极值数据预处理极值数据预处理是数据分析中不可避免的步骤之一。
在进行数据分析时,使用的数据可能包含异常值、缺失值等问题,这些问题都可能影响分析的结果。
因此,需要采取一系列预处理技术来提高数据的质量和准确性。
极值数据是指在数据中出现的比其他数据值更极端的值,例如数据中的最大值、最小值、异常值等。
对于极值数据,一般采用剔除、填补或者平滑等方法进行预处理,下面将分别对这些预处理方法进行详细介绍。
1. 剔除法剔除法即是直接删除极值数据,可以分为单组数据剔除和多组数据剔除两种方式。
单组数据剔除是指直接将某个值的数据从数据集中移除,这种方式主要适用于数据量较大、特殊情况较少的情况下。
2. 填补法填补法是指通过一定的方法来填补数据中的缺失值或者异常值,使得完整的数据集更加符合分析需要。
填补法可以采用一些模型预测、估算、插值等方法来进行数据的填补,具体方法包括:均值代替法,即将数据中的缺失值用均值代替;回归预测法,即基于已有数据进行建模,把模型用于预测缺失数据;插值法,即根据数据的规律进行插值,填补数据中的缺失值。
3. 平滑法平滑法是指通过消除数据噪声来减少极值数据的影响。
平滑法可以采用移动平均、中位数平滑、指数平滑等方法来进行处理。
其中,移动平均是基于时间序列的平均值来平滑数据;中位数平滑是用数据中的中位数代替数据的极值来进行平滑;指数平滑是用预测值和观测值之间的差异,来预测未来的数据变化趋势。
总结极值数据预处理是数据分析中不可或缺的步骤。
在选择哪种预处理方法时,需要考虑数据集的规模和特点,以及数据分析的目的和要求。
对于不同类型的数据极值,采用不同的预处理方法能够更加有效地提高数据的质量和准确性。
测绘技术中常见数据处理方法测绘技术是现代社会中不可或缺的一项重要技术。
在测绘过程中,为了保证数据的准确性和可靠性,数据处理是必不可少的环节。
本文将从多个角度介绍测绘技术中常见的数据处理方法。
一、数据预处理在进行实地测量之前,往往需要进行数据预处理。
数据预处理的目的是通过对数据进行校正、筛选、平滑等操作,提高测量数据的可靠性和精确性。
常见的数据预处理方法有:数据校正、异常值处理、数据滤波等。
数据校正是指通过比较测量结果与已知数据或标准数据,对测量数据进行修正。
例如,在GPS测量中,可以通过参照基准站的已知坐标,对GPS接收器测定的坐标进行校正,提高测量精度。
异常值的存在会对数据处理和分析造成干扰,因此需要对异常值进行处理。
常见的异常值处理方法有:删除异常值、替换异常值、平滑异常值等。
通过适当地处理异常值,可以提高数据的可靠性。
数据滤波是指通过一系列的算法,对信号进行平滑处理,去除信号中的噪声和干扰。
常见的数据滤波方法有:平均滤波、中位值滤波、小波变换滤波等。
不同的滤波方法适用于不同类型的信号,可以根据实际情况选择合适的滤波方法。
二、数据配准数据配准是将不同数据源的测量结果进行统一,使其具有一致性和可比性。
数据配准的目的是将各个测量结果的坐标系、时间轴等参数进行统一,从而实现数据的整合和比较。
常见的数据配准方法有:地面控制点配准、相对定向配准、绝对定向配准等。
地面控制点配准是通过使用已知坐标的地面控制点,对测量数据进行校正和纠正,使其与现实世界的坐标系一致。
相对定向配准是通过使用已知摄影测量数据,对影像进行几何纠正和配准。
绝对定向配准是通过使用已知摄影测量数据和全球定位系统(GPS)数据,对影像进行几何纠正和配准。
三、数据处理与分析数据处理与分析是测绘技术中非常重要的一环,通过对测量数据进行加工和分析,得到最终的结果。
常见的数据处理与分析方法有:数据插值、数据模型拟合、数据挖掘等。
数据插值是指根据已知数据点的值,通过一定的算法,预测未知位置的数据值。
实验数据处理与拟合技巧在科研和实验工作中,数据的处理和拟合是非常重要的环节。
仅靠实验数据本身并不足以揭示事物之间的关系和规律,因此我们需要借助统计学和数学方法对数据进行处理和分析,从而找出其中的规律和趋势。
以下将介绍一些实验数据处理与拟合的技巧。
一、数据预处理数据预处理是指在进行数据拟合前对原始数据进行处理,以减少误差和噪声的影响,使数据更加准确和可靠。
常见的数据预处理方法包括数据平滑、异常值处理和数据缺失处理。
1. 数据平滑数据平滑是指通过去除噪声和异常值,使数据呈现出平滑的趋势。
常用的方法有移动平均、低通滤波和加权平均等。
移动平均是一种简单有效的平滑方法,通过计算一段时间内数据的平均值来消除噪声。
低通滤波则是通过滤波器对数据进行处理,去除高频噪声。
加权平均可以根据数据点的重要性进行加权处理,使得重要数据点对拟合结果的影响更大。
2. 异常值处理异常值是指与其他数据点明显不符的数据,可能是由于测量误差或其他因素引起的。
处理异常值可以有效避免其对数据拟合结果的干扰。
常用的方法有删除、替换和修正。
删除即将异常值从数据集中剔除,但需谨慎,以免丢失有价值的信息。
替换则是用邻近值或统计方法替代异常值,修正则是根据异常值的特点进行修正处理。
3. 数据缺失处理数据缺失是指实验数据中存在一些缺失的数据点,可能是由于设备故障或其他原因导致的。
数据缺失会对数据拟合和分析产生不利影响,因此需要进行处理。
常用的方法有删除、插值和模型估计。
删除是将缺失点从数据集中删除,但同样需要注意避免信息的丢失。
插值是利用数据点的邻近值进行插值计算,填补缺失点。
模型估计则是利用其他变量和模型对缺失数据进行估计,补充缺失值。
二、数据拟合数据拟合是指将实验数据与数学模型进行对比和拟合,以求解模型参数和预测未知数据。
常见的数据拟合方法有线性回归、非线性拟合和最小二乘法。
1. 线性回归线性回归是一种常用的拟合方法,用于分析自变量和因变量之间的线性关系。
数据处理中的数据平滑技术引言:数据在当今社会中变得越来越重要,随着大数据时代的到来,数据的收集和处理已经成为了一项重要的任务。
而数据平滑技术作为数据处理的重要环节之一,扮演着关键的角色。
本文将介绍数据平滑技术的概念和方法,并探讨其在不同领域的应用。
一、什么是数据平滑技术数据平滑技术是指对数据进行清洗和预处理,去除其中的噪声和异常值,使得数据能够更好地被分析和利用。
传统的数据处理方法往往会受到数据的不完整性和不确定性的限制,而数据平滑技术的出现则可以有效解决这些问题,提高数据处理的可信度和准确性。
二、数据平滑技术的几种方法1. 移动平均法移动平均法是一种简单而常用的数据平滑方法。
它通过计算一系列连续子序列的平均值来降低数据的波动性,从而达到平滑数据的效果。
移动平均法适用于时间序列数据的处理,可以有效地消除噪声和异常值的影响。
2. 加权移动平均法加权移动平均法在移动平均法的基础上进行了改进,不同的数据点可以赋予不同的权重。
这样可以更好地反映数据的变化趋势,提高数据处理的灵活性和准确性。
加权移动平均法适用于较为复杂的数据分析场景,可以帮助分析师更好地理解数据背后的规律。
3. Savitzky-Golay滤波器Savitzky-Golay滤波器是一种信号处理中常用的平滑方法,它通过对连续序列进行多项式拟合来实现数据平滑的效果。
这种方法不仅可以消除噪声,还可以恢复数据的原始趋势,对于信号分析和图像处理等领域具有广泛的应用。
三、数据平滑技术的应用1. 金融领域在金融领域,数据平滑技术被广泛应用于股票价格分析和预测中。
通过对股票价格序列进行平滑处理,可以更好地识别出股票价格的趋势和周期性变化,为投资者提供决策依据。
2. 物联网领域在物联网领域,由于传感器数据的存在,数据往往会受到噪声和异常值的影响。
通过采用数据平滑技术,可以清除这些噪声和异常值,将数据转化为可用的信息,为智能设备和自动化系统提供更加准确和可靠的数据支持。
数据预处理流程数据预处理是数据挖掘过程中的一个重要环节,其目的是清洗原始数据,使其适合进行建模和分析。
数据预处理流程包括数据清洗、数据集成、数据变换和数据规约四个步骤。
数据清洗是数据预处理的第一步,其目的是检测和修复数据中的错误、缺失、重复或不一致的部分。
在数据清洗过程中,我们需要对数据进行缺失值处理、异常值处理、重复值处理和一致性处理。
缺失值处理是指对数据中的缺失值进行处理,常用的方法包括删除缺失值、插补缺失值和不处理缺失值。
删除缺失值是指直接将包含缺失值的样本删除,适用于缺失值较少的情况;插补缺失值是指通过一定的方法对缺失值进行填充,常用的插补方法包括均值、中位数、众数插补和回归插补;不处理缺失值是指在建模过程中不对缺失值进行处理,而是由模型自动处理。
异常值处理是指对数据中的异常值进行处理,常用的方法包括删除异常值、平滑处理和离群点识别。
删除异常值是指直接将异常值删除,适用于异常值较少的情况;平滑处理是指通过一定的方法对异常值进行平滑处理,常用的平滑方法包括移动平均法、指数平滑法和多项式拟合法;离群点识别是指通过一定的方法识别出异常值,常用的方法包括箱线图和3σ原则。
重复值处理是指对数据中的重复值进行处理,常用的方法包括直接删除重复值和合并重复值。
直接删除重复值是指直接将重复值删除,适用于重复值较少的情况;合并重复值是指将重复值进行合并,常用的合并方法包括求平均值、求和和取最大最小值。
一致性处理是指对数据中的不一致值进行处理,常用的方法包括统一单位、统一格式和统一命名。
统一单位是指将数据中的不同单位进行统一,例如将长度统一为米;统一格式是指将数据中的不同格式进行统一,例如将日期格式统一为年-月-日;统一命名是指将数据中的不同命名进行统一,例如将性别命名统一为男女。
数据集成是指将多个数据源中的数据进行整合,常用的方法包括数据清洗、数据变换和数据规约。
数据清洗是指对数据进行清洗,使其适合进行整合;数据变换是指对数据进行变换,使其适合进行整合;数据规约是指对数据进行规约,使其适合进行整合。
M a a b笔记数据预处理剔除异常值及平滑处理The latest revision on November 22, 2020012. 数据预处理(1)——剔除异常值及平滑处理测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。
为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数据(1)剔除异常值;另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。
为了提高数据的质量,必须对数据进行(2)平滑处理(去噪声干扰);(一)剔除异常值。
注:若是有空缺值,或导入Matlab数据显示为“NaN”(非数),需要①忽略整条空缺值数据,或者②填上空缺值。
填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。
一、基本思想:规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,就认为它是异常值,从而予以剔除。
二、常用方法:拉依达方法、肖维勒方法、一阶差分法。
注意:这些方法都是假设数据依正态分布为前提的。
1. 拉依达方法(非等置信概率)如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。
3x i x x S ->其中,11nii x x n ==∑为样本均值,12211()1nx i i S x x n =⎛⎫ ⎪⎝⎭=--∑为样本的标准偏差。
注:适合大样本数据,建议测量次数≥50次。
代码实例(略)。
2. 肖维勒方法(等置信概率)在 n 次测量结果中,如果某误差可能出现的次数小于半次时,就予以剔除。
这实质上是规定了置信概率为1-1/2n ,根据这一置信概率,可计算出肖维勒系数,也可从表中查出,当要求不很严格时,还可按下列近似公式计算:10.4ln()n n ω=+Tab1. 肖维勒系数表如果某测量值与平均值之差的绝对值大于标准偏差与肖维勒系数之积,则该测量值被剔除。
数据预处理的常用操作
数据预处理是数据分析中的重要环节,其目的是通过一系列的操作,将原始数据转化为适合进行分析的数据。
以下是数据预处理中常用的操作:
1. 缺失值处理:删除含有缺失值的样本或变量,或者采用插值法来填充缺失值。
2. 异常值处理:检测并处理数据中的异常值,常用的方法有删除、平均值修正、中位数修正、截尾和分段处理等。
3. 数据平滑:将数据中的波动平滑,常用的方法有滑动平均、指数平滑、Loess回归等。
4. 数据归一化:将数据进行缩放处理,使其在统计上具有可比性,常用的方法有最小-最大规范化、Z-score规范化等。
5. 数据变换:对数据进行变换,使其更适合进行建模和分析,常用的方法有对数变换、指数变换、幂变换等。
6. 数据集成:将多个数据源的数据进行整合,常用的方法有追加、合并、连接等。
7. 数据降维:将高维数据转化为低维数据,以减少计算复杂度和提高模型性能,常用的方法有主成分分析、因子分析等。
8. 数据离散化:将连续数据离散化,以便于分析和处理,常用的方法有等宽离散化、等频离散化、k-means离散化等。
以上是数据预处理中常用的操作,不同数据预处理方法的选择与实现取决于数据的特性和分析目的。
数据预处理——剔除异常值及平滑处理测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。
为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数据剔除异常值。
另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。
为了提高数据的质量,必须对数据进行平滑处理(去噪声干扰)。
(一)剔除异常值。
注:若是有空缺值,或导入Matlab 数据显示为“NaN ”(非数),需要忽略整条空缺值数据,或者填上空缺值。
填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。
一、基本思想:规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,就认为它是异常值,从而予以剔除。
二、常用方法:拉依达方法、肖维勒方法、一阶差分法。
注意:这些方法都是假设数据依正态分布为前提的。
1. 拉依达方法(非等置信概率)如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。
3x i x x S ->其中,11n i i x x n ==∑为样本均值,12211()1nx i i S x x n =⎛⎫ ⎪⎝⎭=--∑为样本的标准偏差。
注:适合大样本数据,建议测量次数≥50次。
代码实例(略)。
2. 肖维勒方法(等置信概率)在 n 次测量结果中,如果某误差可能出现的次数小于半次时,就予以剔除。
这实质上是规定了置信概率为1-1/2n ,根据这一置信概率,可计算出肖维勒系数,也可从表中查出,当要求不很严格时,还可按下列近似公式计算:10.4ln()n n ω=+Tab1. 肖维勒系数表如果某测量值与平均值之差的绝对值大于标准偏差与肖维勒系数之积,则该测量值被剔除。
n x i x x S ω->例1. 利用肖维勒方法对下列数据的异常值(2.5000)进行剔除: 1.5034 1.5062 1.5034 1.5024 1.4985 2.5000 1.50071.5067 1.4993 1.4969上述数据保存于文件erro.dat代码:x=load('error.dat');n=length(x);subplot(2,1,1);plot(x,'o');title('原始数据')axis([0,n+1,min(x)-1,max(x)+1]);w=1+0.4*log(n);yichang = abs(x-mean(x)) > w*std(x);% 若用拉依达方法,把w改成3即可,但本组数据将不能成功剔除异常值。
x(yichang)=[];save errornew.dat x -ASCIIsubplot(2,1,2);plot(x,'rs');title('异常值剔除后数据');axis([0,n+1,min(x)-1,max(x)+1]);运行结果:x =1.5034 1.5062 1.5034 1.5024 1.49852.5000 1.5007 1.5067 1.4993 1.4969y =1.5034 1.5062 1.5034 1.5024 1.4985 1.5007 1.5067 1.4993 1.49693. 一阶差分法(预估比较法)用前两个测量值来预估新的测量值,然后用预估值与实际测量值比较,若大于事先给定的允许差限值,则剔除该测量值。
预估值112()ˆn n n n xx x x ---+-= 比较判别:ˆn n x xW -< 注:该方法的特点是(1)适合于实时数据采集与处理过程;(2)精度除了与允许误差限的大小有关外,还与前两点测量值的精确度有关;(3)若被测物理量的变化规律不是单调递增或单调递减函数,这一方法将在函数的拐点处产生较大的误差,严重时将无法使用。
(二)数据的平滑处理对于一组测量数据(xi ,yi ) i=1,…,n ,不要直接就想着求出的拟合多项式的线性参数,而是要先平滑处理去掉“噪声”。
平滑处理在科学研究中广泛使用,它可以减少测量中统计误差带来的影响,尤其被用于无法利用多次重复测量来得到其平均值的情况和当yi 随xi 有徒然变化的那些测量段。
1. “(2n+1点)单纯移动平均”平滑滤波取出以yi 为中心的前后各n 个数据(yi-n, …,yi-1,yi,…yi+n )求平均值代替yi ,即'1121ni i k ny y n +=-=+∑ 优点:方法简单,计算方便。
缺点:方法产生误差会造成信号失真;前后各n 个数据无法平滑。
适用性:适用于变化缓慢的数据。
注:n 越大平滑效果越好,但失真也越大。
例2. “9点单纯移动平均”平滑滤波代码:% 建立“n 点单纯移动平均”的滤波函数 % 注意函数要单独保存为与函数名同名的.m 文件 function Y=smooth_data(y,n)m=length(y); j=1;for i=(n-1)/2+1:(m-(n-1)/2) p=i-(n-1)/2;q=i+(n-1)/2;Y(j)=sum(y(p:q))/n;j=j+1;endend% 主程序clccleart=-15:0.5:15;n=length(t);Y=5./(1+t.^2); % 原始测试数据y=Y+(0.5-rand(1,n)); % 给测试数据加上噪声干扰y1=smooth_data(y,9); % 调用函数作9点滤波处理plot(1:n,Y,1:n,y,'-o',5:n-4,y1,'-*'); legend('无噪声','含噪声','9点平滑后');运行结果:2.“加权移动平均”平滑滤波加权的基本思想:作平均的区间内中心处数据的权值最大,愈远离中心处的数据权值越小小。
这样就减小了对真实信号本身的平滑作用。
权重系数可以采用最小二乘原理,使平滑后的数据以最小均方差逼近原始数据。
即令'2min ()i k i k ky y ++-∑通常采用“五点二次平滑” (n=5, k=-2,-1,0,1,2)2201222201222220122()0()0()0i k k i k k i k k y A A k A k y A A k A k k y A A k A k k +=-+=-+=-⎧---=⎪⎪⎪---=⎨⎪⎪---=⎪⎩∑∑∑ 五点二次平滑权重系数表:()'02101213121712335y y y y y y --=-+++-3.用“smooth函数”平滑滤波调用格式:Z = smooth(Y, span, method)说明:Z:平滑后的数据向量Y:被平滑的数据向量span:平滑点数,缺省为5点method :平滑方法,缺省为移动平滑,其它还有‘moving’——Moving average (default)单纯移动平均‘lowess’——Lowess (linear fit)线性加权平滑‘loess’——Loess (quadratic fit)二次加权平滑'sgolay' ——Savitzky-Golay'rlowess' ——Robust Lowess (linear fit)'rloess' ——Robust Loess (quadratic fit)例3.用matlab自带的平滑函数作平滑滤波实例。
代码:t=-10:0.5:10;n=length(t);y=5./(1+t.^2); % 原始测试数据y1=y+0.5*(0.5-rand(1,n)); % 给测试数据加上噪声干扰% 调用多个滤波函数作滤波处理y2=smooth(y1,3); y3=smooth(y1,9);y4=smooth(y1,3,'lowess'); y5=smooth(y1,9,'lowess');y6=smooth(y1,3,'loess'); y7=smooth(y1,9,'loess');y8=smooth(y1,3,'rloess'); y9=smooth(y1,9,'rloess');figure(1); % 第一张图subplot(3,2,1);plot(t,y); axis([-10 10 -1 6]); grid ontitle('无噪声信号');subplot(3,2,2);plot(t,y1,'-*'); axis([-10 10 -1 6]); grid on title('含噪声信号');subplot(3,2,3);plot(t,y2,'-*'); axis([-10 10 -1 6]); grid on title('3点单纯移动平均');subplot(3,2,4);plot(t,y3,'-*'); axis([-10 10 -1 6]); grid on title('9点单纯移动平均');subplot(3,2,5);plot(t,y4,'-*'); axis([-10 10 -1 6]); grid on title('3点线性加权平滑');subplot(3,2,6);plot(t,y5,'-*'); axis([-10 10 -1 6]); grid on title('9点线性加权平滑');figure(2); % 第二张图subplot(3,2,1);plot(t,y); axis([-10 10 -1 6]); grid ontitle('无噪声信号');subplot(3,2,2);plot(t,y1,'-*'); axis([-10 10 -1 6]); grid on title('含噪声信号');subplot(3,2,3);plot(t,y6,'-*'); axis([-10 10 -1 6]); grid on title('3点二次加权平滑');subplot(3,2,4);plot(t,y7,'-*'); axis([-10 10 -1 6]); grid on title('9点二次加权平滑');subplot(3,2,5);plot(t,y8,'-*'); axis([-10 10 -1 6]); grid on title('3点rloess平滑');subplot(3,2,6);plot(t,y9,'-*'); axis([-10 10 -1 6]); grid on title('9点rloess平滑');运行结果:Figure 1Figure 24.用“smoothts函数”(盒子法、高斯窗法、指数法)平滑滤波调用格式:output = smoothts(input)output = smoothts(input, ‘b’, wsize) % 盒子法output = smoothts(input, ‘g’, wsize, stdev) % 高斯窗方法output = smoothts(input, ‘e’, n) % 指数法例4.读取股市数据,对开盘价的240条数据,调用smoothts函数进行平滑处理。