式中:△z = z11 z22 - z12z21、 △y = y11 y22 - y12y21
并非所有的二端口均有Z,Y 参数。
+
I1
Z
I2
+
U1 U 2 Z ( I1 I 2 )
Z Z Z Z Z
1
U1
U2
YZ
不存在
例16-2 求图中T形电路的Z参数。 解: 方法1:列电路方程法。
I2 y22 |U1 0 U2
入口短路时 的输出导纳
Y参数具有导纳的量纲, 而且是在端口短路的
情况下, 通过计算或测量得到的, 因此称为短路导
I1 y11 将Y方程写成矩阵形式为: I 2 y 21
纳参数。
y12 U 1 y 22 U 2
第十六章
二端口网络
本章内容
概述 两端口的参数和方程 两端口的等效电路 两端口的连接
§16-1
二端口概述
在工程实际中,研究信号及能量的传输和信号变换时, 经常碰到如下形式的电路……四端网络。
R C C
滤波器
一. 端口 (port)
+ u1 i1 ′ i1 + u1 i1 i1′ i2 + u2
出端导纳
互易性和对称性
互易二端口:
对称二端口:
H12 H 21
H11 H 22 H12 H 21 1
I1
I2
+ R1
例题:求三极 管等效电路的 H参数
+
U1
β I1
R2 U 2