习题解答第16章(二端口网络)
- 格式:doc
- 大小:307.50 KB
- 文档页数:6
第十六章二端口网络16二端网络口1-61二端口网络16-2 二口端方的程和参数1-6 二3端的等口电路1效6-4 端口二的移转数函61-5二端的连接口166 -转回和器负抗变阻换器16- 二端口网1一、络一口端网络+ iI+u- UiN I U +-U OC+-Z-Y I S二C、二端网口络a. 1i= i1’i2= i’21b 不.含包任独立何电c.源零状+ 态1u1ii ’11 -二口端网络i2i ’2+ u22- 2由线性RL、C及、线性受控源组成在复,频域是络工程实际题问常要常研究一网个的络对端钮之间的两系关16- 二2口的端方程和数参1+u111i-二端口络网i2+u2 2- 2电压、电关系流描述的用(量描述相) I 1 , I2 U1 , U2 U1 ,U 2 I , 1I2 U1I , 1U 2 , I 2 1I U 1 = Y Y 数参矩阵I U 22 U1 I1 = Z Z数矩参阵U I 2 2 U1 U 2 =T 参数矩T 阵I -I 1 2 , I I U, 1 U = H I 1 U 12 参数矩阵H 1 2 I 2 2 Uii1bi βibi o+ uo-+ u 1i11-二端口网络i2+2u2- 2+ iu-一Y参数方、(导纳程数参矩)阵1 方、程导的出11 LTII+ U1I 2 20N U 2 1I = 1Y U1 +1Y1 2 U 2 I 2 =Y 211U +Y 22U 2 I1 Y11 Y1 2 U 1 = I 2Y Y12 2 2 U 2- 1 2、参2的数义含(路导纳参短数) I 2 12I 1LT I+ U1-N021IY 1 1= U1 U 20=1端2-2口短路,端口11-的入端导纳端2-口2 短路正,向移导转纳I2 2Y1= 1U2 =01UI1 TIL 0NI2 2+- 2U I1 = Y11 U1 + Y12U 2 I =2Y 1U12 +22 U 21Y2 I2Y22 = 2U I 1Y1 =2 U 2 U =01口1-1 端路,短端2口2 的-端入纳端导口11 短-路,反转向移导U1 纳0=例1Y求数。
第16章二端口网络1.求图16-1所示二端口的Y参数、Z参数和T参数矩阵。
图16-1解:(1)图16-1(a),两端口电压和电流参考方向,如图16-2(a)所示。
根据各元件的特性及电路的KVL和KCL定理,可得:将式②代入式①得:综上可得:图16-2(2)图16-1(b),两端口电压和电流参考方向,如图16-2(b)所示。
根据各元件的特性及电路的KVL和KCL定理,可得:将式②代入式①得:综上可得:2.求图16-3所示二端口的Y参数和Z参数矩阵。
图16-3解:图16-3所示电路为纯电阻电路,所以只求Z即可。
(1)图16-3(a),将三个电阻为1Ω的三角形电路转换为星形电路,如图16-4(a)所示,可得:所以(a)(b)图16-4(2)图16-3(b),电流电压方向如图16-4(b)所示,则有:又根据电路的对称特点可得:所以3.求图16-5所示二端口的T参数矩阵。
图16-5解:图16-6是五个二端口电路,分别标出了端口电压、,电流、及其参考方向。
图16-6(1)图16-6(a),,所以T参数矩阵为(2)图16-6(b),,所以T参数矩阵为(3)图16-6(c),建立KVL方程:整理得:所以T参数矩阵为:(4)图16-6(d),,所以T参数矩阵为(5)图16-6(e),,所以T参数矩阵为。
4.求图16-7所示二端口的Y参数矩阵。
图16-7解:图16-8是两个二端口电路,分别标出了端口电压、,电流、及其参考方向。
图16-8(1)图16-8(a),网孔电流方程为:所以Y参数矩阵为:(2)图16-8(b),结点电压方程为:。
第十六章(二端口网络)习题答案选择题1、ffi示n 掃口的2参数£B 、C 、3G 答案:AC 1.5S0.5S 0.5S 1.5SD0.5S1.5S 0.5S答案:B3.图示二端口网络的F 参数矩阵中r 叛(答案:C5、设两个无源二端口 P,P 的传输参数分别为匚八则当两个无源二端口级联时,•其复合二端口的传输鉢r 为:()B. T-TC 、T +T答案:D答案:A7x 对线性无源二制口而言,以下关系式正确的是(答案:B2.图示二端口的F 参数为:<A -0.5S 1.5S0.5S-1.5SB 0.5S -1.5S -0.5S 1.5S A.1 r B. C 、 1D 、~T答案:BZ2D,1.5S4>图示二端口网络的N 参魏e 阵中右区 为:(lo<■3A 、2 +Z ,ZBs 2 ,2 C> Z ,2 +ZD 、Q2D 、 丁丁6,在对称二端口网络的F 参数矩阵中,只有()个参数是独立的。
Ax 2个CxD 、4个C>A^HD 、H =F答案:B10.将两个无源二端口 £严串联时,其复合二端口的参数为:(AvD 、7 + r答案: 二、填空题8.若两个传输参数都为 ■3 42'3 的二端口级联,则级联后复合二端口传输参数矩阵为( A. 飞 4-B, 9 4'£ 16 9JG 17 12'D 、 12 IJ 1 ™24 1717 24答案: C49B.亠身胡G3Ci3 F12 D\ 2^^— 79、若e 知二4崗口传输参数矩阵T ・ A 、严 £ 1c 、-mQ;,则图示T 型等效电路参数2忆忆依次分别为C 、 1.图 16 — 3 (a )所示二端口电路的 Y 参数矩阵为丫=〔丫丫I 图16—3 ( b )所示二端口的 Z 参数矩阵为k 丫」Z=E Z图1A32 •图16—4所示二端口网络的 丫参数矩阵是丫 =「1 3 7L 6_11 6 2 3」 602Qk L 51 节。
电路教案第16章二端口网络教学目标:1.了解二端口电路的基本概念和特性。
2.掌握二端口网络的矩阵描述方法。
3.掌握二端口网络的参数化描述方法。
教学准备:教材、讲义、黑板、白板、投影仪、计算机、实验装置等。
教学过程:一、引入(10分钟)1.教师通过提问的方式,引导学生回顾一端口电路的内容。
2.通过引入实际生活中的例子,如声学系统、通信系统等,引导学生了解二端口电路的概念。
二、理论讲解(40分钟)1.二端口电路的基本概念和特性:a.什么是二端口电路?b.二端口电路的输入端口和输出端口。
c.二端口电路的参数:传输参数、散射参数、互阻参数和互导参数。
d.二端口电路的特性:传输特性、散射特性。
2.二端口网络的矩阵描述方法:a.传输矩阵(ABCD参数)的定义和计算方法。
b.传输矩阵的特性和应用。
3.二端口网络的参数化描述方法:a.K参数的定义和计算方法。
b.K参数的特性和应用。
三、实例分析(30分钟)1.教师通过实例分析的方式,讲解如何使用传输矩阵和K参数对二端口网络进行分析和设计。
2.学生根据所学知识,结合实例进行讨论,加深对二端口电路的理解和应用能力。
四、实践操作(30分钟)1.学生根据教师的指导,使用实验装置进行实验操作。
2.学生通过实验,掌握使用传输矩阵和K参数对二端口电路进行测量和分析的方法和技巧。
五、小结(10分钟)1.回顾本节课的学习内容和重点。
2.强调二端口电路的重要性和应用领域。
3.鼓励学生在日常学习中多进行实践操作,提高实际应用能力。
教学反思:本节课通过引入实际例子,结合理论讲解和实例分析,使学生对二端口电路有了更深入的了解。
通过实践操作,让学生掌握了使用传输矩阵和K参数对二端口电路进行测量和分析的方法和技巧。
但由于时间限制,实践操作可能不够充分,需要在后续的教学中加强实践环节。
)习题解答(第十六章二端口网络一、选择题1.二端口电路的a 。
参数方程是H????????IU?HH?UU?IH?HI21111111112122b. a .????????UI?H?HI?HUU?HI??22222122112221????????IH??HUUH?IUI?H21112121222111d.. c ????????I??UHIU?IH?HUH??22221222112121b —161所示二端口网络的Z参数方程为。
.图2j4j43?j4???j43????.b;a;.????j1??j4j1j4??????j43?j4j43j4??????cd.;.????j1?j4?j4j1????T。
d 参数应满足3.无任何电源的线性二端口电路的1BC?BCAD???BC?AD1DA?.b..cda.c 联接,其端口条件总是满足的。
4.两个二端口三种、cba .串联b.并联c.级联d.、a.图516—2所示理想变压器的各电压、电流之间满足的关系为d 。
iiuu111111n???n?? b ; a ..,;,uinuni2222iiuu111111n?n????d..c,;;,uinuni2222二、填空题Y?Y??3,图=参数矩阵为Y)所示二端口电路的(316.图1—a Y16—??Y?Y??ZZ??)所示二端口的b(Z参数矩阵为Z=。
??ZZ??6113????Y2.图Y 参数矩阵是。
16—4所示二端口网络的??3627???6?2三角形连接的电阻,则电路416—中三个星形连接的电阻等效为三个解:将图a416a如图164—()所示。
由图—()得:UUU?11211?UI?U??1216663U?UUU1141??2122U4U?????4I?I???UU??2111226616633??72UU?=213661?13??Y =于是??3627??g10??T所示回转器的5—3.图16参数矩阵为。
Chapter 16 二端口网络习题精选一、填空题1. 如果一对端子,在所有时刻都满足 这一条件,则可称为一端口网络。
2. 对任何一个无源线性二端口,只要 个独立的参数就足以表征它的外特性。
3. 二端口的对称有两种形式: 和 ,对于对称二端口的Y 参数,只有 个是独立的。
4. 有两个线性无源二端口1P 和2P , 它们的传输参数矩阵分别为1T 和2T ,它们按级联方式连接后的新二端口的传输矩阵T = 。
5. 两个线性无源二端口1P 和2P ,它们的导纳参数矩阵分别为1Y 和2Y ,它们的阻抗参数矩阵分别为1Z 和2Z 。
当1P 和2P 并联连接后的新二端口的导纳矩阵Y , 则Y = ; 当1P 和2P 串联连接后的新二端口的阻抗矩阵Z , 则Z = 。
6. 对于内部无独立源和附加电源的线性无源二端口,其转移函数(或称传递函数)就是用 表示的输出电压或电流与输入电压或电流之比。
7. 对于所有时间t ,通过回转器的两个端口的功率之和等于 。
8. 回转器具有把一个端口上的 “回转”为另一端口上的 或相反过程的性质。
正是这一性质,使回转器具有把电容回转为一个 的功能。
9. 负阻抗变换器具有 的功能,从而为电路设计 实现提供了可能性。
10. 在一个回转系数为r =20Ω的回转器的负载端,接以10Ω的电阻,则回转器的输入端等效电阻 。
11. 有些端口网络不可能用短路参数矩阵Y 表示,试举一例: 。
12. 有些端口网络不可能用开路参数矩阵Z 表示,试举一例: 。
二、选择题1. 回转器如图16-1所示,回转常数为r ,则回转器的Z 参数矩阵为( )。
A . ⎥⎦⎤⎢⎣⎡-00r rB .⎥⎦⎤⎢⎣⎡-r r 00C .⎥⎦⎤⎢⎣⎡-00r rD .⎥⎦⎤⎢⎣⎡-r r 002. 如图16-2所示电路,回转器的回转常数为r ,则从端口1-1’看进去的输入阻抗in Z =( )。
A . sC r 2B . sC r 2- C . sC r /2D . 2/r sC3. 有一电流反向型负阻抗变换器(NIC )如图16-3所示,已知1I (s)=2kI (s),在端口2-2’接阻抗2Z ,则从1-1’看进去的输入阻抗1Z =( ).A .kZ 2 B . kZ2- C . 2kZ D . 2kZ -4.电路如图16-4所示,此二端口的导纳矩阵为( )。
《电路》邱关源第五版课后习题答案答案第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。
【题2】:D 。
【题3】:300;-100。
【题4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】:3123I +⨯=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。
【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上式,得UAC=-7V。
【题18】:PPII12122222==;故I I1222=;I I12=;⑴ KCL:43211-=I I;I185=A;U I IS=-⨯=218511V或16.V;或I I12=-。
⑵ KCL:43211-=-I I;I18=-A;US=-24V。
第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5A;U Ia b.=+=9485V;IU162125=-=a b.A;P=⨯6125.W=7.5W;吸收功率7.5W。
二端口网络练习题及答案二端口网络是电子电路中的一个重要概念,它由两个端口组成,可以是输入端口和输出端口。
在电路分析中,二端口网络通常用来描述电路元件的电气特性,如电阻、电感和电容。
以下是一些关于二端口网络的练习题及答案:练习题1:二端口网络参数定义1. 什么是二端口网络的Z参数矩阵?2. 什么是二端口网络的Y参数矩阵?3. 什么是二端口网络的h参数矩阵?答案1:1. Z参数矩阵,也称为阻抗参数矩阵,是一个2x2的矩阵,用于描述二端口网络的输入和输出阻抗。
2. Y参数矩阵,也称为导纳参数矩阵,是一个2x2的矩阵,用于描述二端口网络的输入和输出导纳。
3. h参数矩阵,也称为混合参数矩阵,是一个2x2的矩阵,用于描述二端口网络的输入和输出混合参数。
练习题2:二端口网络参数转换1. 如何从Z参数矩阵转换到Y参数矩阵?2. 如何从Y参数矩阵转换到Z参数矩阵?答案2:1. 从Z参数矩阵转换到Y参数矩阵,可以使用以下公式:\[ Y =Z^{-1} \] 其中Z^{-1}表示Z矩阵的逆矩阵。
2. 从Y参数矩阵转换到Z参数矩阵,可以使用以下公式:\[ Z =Y^{-1} \]练习题3:二端口网络的等效电路1. 如何使用Z参数矩阵构建二端口网络的等效电路?2. 如何使用Y参数矩阵构建二端口网络的等效电路?答案3:1. 使用Z参数矩阵构建二端口网络的等效电路,可以通过将Z参数矩阵的元素视为电路元件的阻抗值来实现。
2. 使用Y参数矩阵构建二端口网络的等效电路,可以通过将Y参数矩阵的元素视为电路元件的导纳值来实现。
练习题4:二端口网络的串联和并联1. 两个二端口网络串联时,它们的Z参数矩阵如何计算?2. 两个二端口网络并联时,它们的Y参数矩阵如何计算?答案4:1. 两个二端口网络串联时,它们的Z参数矩阵可以通过矩阵加法来计算,即:\[ Z_{total} = Z_1 + Z_2 \] 其中Z_1和Z_2分别是两个二端口网络的Z参数矩阵。
第十六章(二端口网络)习题解答一、选择题1.二端口电路的H参数方程是 a 。
a.⎩⎨⎧+=+=22212122121111UHIHIUHIHUb.⎩⎨⎧+=+=22212122121111IHUHUIHUHIc.⎩⎨⎧+=+=22222112122111UHIHUUHIHId.⎩⎨⎧+=+=22212112121112IHUHIIHUHU2.图16—1所示二端口网络的Z参数方程为 b 。
a.⎥⎦⎤⎢⎣⎡---+j1j4j4j43;b.⎥⎦⎤⎢⎣⎡----j1j4j4j43;c.⎥⎦⎤⎢⎣⎡--j1j4j4j43;d.⎥⎦⎤⎢⎣⎡--+j1j4j4j433.无任何电源的线性二端口电路的T参数应满足 d 。
a.DA=b.CB= c.1=-ADBC d.1=-BCAD4.两个二端口 c 联接,其端口条件总是满足的。
a.串联 b.并联 c.级联 d.a、b、c三种5.图16—2所示理想变压器的各电压、电流之间满足的关系为 d 。
a.nuu121=,nii=21; b.nuu=21,nii121-=;c.nuu121-=,nii=21; d.nuu=21,nii121=;二、填空题1.图16—3(a)所示二端口电路的Y参数矩阵为Y=⎥⎦⎤⎢⎣⎡--YYYY,图16—3(b)所示二端口的Z参数矩阵为Z=⎥⎦⎤⎢⎣⎡ZZZZ。
2.图16—4所示二端口网络的Y参数矩阵是Y =⎥⎦⎤⎢⎣⎡-32676131。
解:将图16—4中三个Ω2星形连接的电阻等效为三个Ω6三角形连接的电阻,则电路如图16—4(a)所示。
由图16—4(a)得:212111613166UUUUUI-=-+=⎪⎭⎫⎝⎛-++-=-+++=21211221226131434616641UUUUUUUIUI=213267UU+于是Y =⎥⎦⎤⎢⎣⎡-326761313.图16—5所示回转器的T参数矩阵为⎥⎦⎤⎢⎣⎡1gg。
解:由回转器两个端口电压、电流的关系,得211igu-=,121igu=即211igu-=,21gui=由此可见T =⎥⎦⎤⎢⎣⎡1gg4.图16—6所示的二端口网络中,设子二端口网络1N的传输参数矩阵为⎥⎦⎤⎢⎣⎡DCBA,则复合二端口网络的传输参数矩阵为⎥⎦⎤⎢⎣⎡++DBYCAYBA。
解:图16—6所示的二端口网络可看成由1N和虚线框中的二端口级连而成。
虚线框中的二端口的传输参数矩阵为⎥⎦⎤⎢⎣⎡11Y。
设图16—6所示二端口网络的传输参数矩阵为T,则T = ⎥⎦⎤⎢⎣⎡11Y⎥⎦⎤⎢⎣⎡⋅DCBA=⎥⎦⎤⎢⎣⎡++DBYCAYBA5.图16—7所示二端口网络的Y参数矩阵为⎥⎦⎤⎢⎣⎡∆∆-∆-∆12nnn,式中212RRn+=∆。
解:由图16—7得:3111UIRU+=……①4222UIRU+=……②34UnU=……③21I nI-=……④从以上四式中消去3U ,4U 和2I 得2212121221URRnnURRnnI+-+=消去3U ,4U 和1I 得2212121221URRnURRnnI+++-=因此Y =⎥⎦⎤⎢⎣⎡∆∆-∆-∆12nnn,式中212RRn+=∆三、计算题1.图16—8所示二端口网络的Z参数是Ω=1011Z、Ω=1512Z、Ω=521Z,Ω=2022Z。
试求sUU2。
解:由给定的Z参数得2111510IIU+=……①212205IIU+=……②由输入、输出端口得11100UIUs+=……③2225IU-=……④由①、③得2115110IIUs+=由②、④得219II-=于是2222239)25(3997515)9(110UIIIIUs=-⨯=-=+-⨯=即3912=sUU2.已知某二端口的Y参数矩阵为Y ⎥⎦⎤⎢⎣⎡--=3225S,求其π形等效电路(如图16—9所示)中的1Y、2Y、3Y。
解:由题目给出的Y参数矩阵得⎩⎨⎧+-=-=2122113225UUIUUI而图16—9的Y参数方程为⎩⎨⎧++-=-+=232122221211)()(UYYUYIUYUYYI对照上述两组方程得521=+YY,332=+YY,22-=-Y故S22=Y,S31=Y,S13=Y3.已知图16—10所示二端口SN的Z参数为Ω=10011Z,Ω-=50012Z,Ω=32110Z,Ω=1022Z,求:LZ等于多少时其吸收功率最大。
解:将LZ以左的部分视为一端口电路,那么当LZ和此一端口电路匹配时LZ可获得最大功率,计算此一端口电路戴维南阻抗的等效电路如图16—10(a)。
由给定的条件可得211500100IIU-=,212101000IIU+=,11500IU-=从以上三式中消去1U 和1I ,得3253022=IU,因此Ω=32530LZ4.求图16—11所示二端口网络的T参数。
解:图16—11所示的二端口网络可视为三个子二端口网络级连而成。
设左、中、右三个子二端口网络的传输参数矩阵分别为T1,T2,T3则T1⎥⎦⎤⎢⎣⎡=1gg,T2⎥⎦⎤⎢⎣⎡=nn1,T3⎥⎦⎤⎢⎣⎡=111R而T= T1T2T3⎥⎦⎤⎢⎣⎡=1gg⎥⎦⎤⎢⎣⎡nn1⎥⎦⎤⎢⎣⎡111R⎥⎦⎤⎢⎣⎡=)(1)(1ngngngR5.电路如图16—12所示,试求用H参数表示的双端接二端口电压转移函数sUU2。
解:由H参数方程及端口外电路的伏安关系⎪⎩⎪⎨⎧-=+=-=+=zssRUUHIHIIZUUHIHU2222121212121111从上两式中消去1I 得 s s zU U H Z H R H H =⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-211222112)(11 ∴ )(111222112212H Z H R H H H U Us z s+⎪⎭⎫⎝⎛+-=。