影响混凝土坍落度经时损失的主要因素分析
- 格式:doc
- 大小:70.50 KB
- 文档页数:7
混凝土结构、构件表面损伤1、混凝土麻面主要表现为混凝土表面局部缺浆粗糙或有许多小凹坑,但无钢筋外露;1模块面清理干净,不得粘有干硬水泥砂浆等杂物;2木模板在浇筑混凝土前,应用清水充分湿润,清洗干净,不留积水,模板缝拼接严密,如有缝隙,应用油毡条,塑料条,纤维板或水泥砂浆等堵严,防止漏浆;3钢模板脱模剂要涂刷均匀,不得漏刷;4混凝土必须按操作规程分层均匀振捣密实,严防漏振,每层混凝土均应振捣至气泡排除为止;5麻面主要影响混凝土外观,对于表面不再装饰的部位应加以修补,将麻面部位用清水刷洗,充分湿润后用水泥浆或1:2水泥砂浆抹平.2、混凝土蜂窝蜂窝主要现象表现为混凝土局部疏松,砂浆少,石子多,石子之间出现空隙,形成蜂窝状的孔润;1混凝土搅拌时严格控制配合比,经常检查,保证材料计量准确;2混凝土应拌和均匀,按规范把握最短搅拌时间,确保振捣密实;3混凝土自由倾落高度一般高度不得超过2米,浇筑楼板混凝土时,自由倾落度,不宜超过1米,如超过上述高度,要采取串筒,溜槽筹措施下料;4浇筑混凝土时,应经常观察模板,支架,堵缝等情况;如发现有模板走动,应立即停止浇筑,并应在混凝土凝结前修整完好;5混凝土有小蜂窝,可先用水冲洗干净,然后用1:2左右水泥砂浆修补;如果是大蜂窝,则先将松动的石子和突出颗粒剔除,尽量剔成喇叭口状,然后用清水冲洗干净湿透,再用高一级的细石混凝土修补捣实,加强养护;3、混凝土露筋主要表现在混凝土内部主筋,副筋或箍筋局裸露在结构构件表面;1浇灌混凝土,应保证钢筋位置和保护层厚度正确,并加强检验查,钢筋密集时,应选用适当粒径的石子,配料所用石子最大粒径不超过结构截面最小尺寸的1/4,且不得大于钢筋净距的3/4,保证混凝土配合比准确和良好的和易性;浇灌高度超过2m,应用串筒,或溜槽进行下料,以防止离析;模板应充分湿润并认真堵好缝隙;混凝土振捣严禁撞击钢筋,操作时,避免踩踏钢筋,如有踩弯或脱扣等及时调整直正;保护层混凝土要振捣密实;正确掌握脱模时间,防止过早拆模,碰坏棱角;2表面漏筋,刷洗净后,在表面抹1:2左右水泥砂浆,将允满漏筋部位抹平;漏筋较深的凿去薄弱混凝上和突出颗粒,洗刷干净后,用比原来高一级的细石混凝土填塞压实;3振捣时先使用插入式振捣器振捣梁腹混凝土,使其下部混凝土溢出与箱梁地板混凝土相结合,然后再充分振捣使两部分混凝土完全融合在一起,从而消除底板与腹板之间出现脱节和空虚不实的现象;4、混凝土孔洞混凝土结构内部有尺寸较大的空隙,局部没有混凝土或蜂窝特别大,钢筋局部或全部裸露;1在钢筋密集处及复杂部位,采用细石混凝土浇灌,在模扳内充满,认真分层振捣密实,预留孔洞;2下料时应两侧同时下料,侧面加开浇灌门,严防漏振,砂石中混有粘土块,模板工具等杂物掉入混疑土内,应及时清除干净;3将孔洞周围的松散混凝土和软弱浆膜凿除,用压力水冲洗,湿润后用高强度等级细石混凝土仔细浇灌,捣实;5、混凝土缺棱掉角主要表现在结构或构件边角处混凝土局部掉落,不规则,棱角有缺陷;1木模板在浇筑混凝土前应充分湿润,混凝土浇筑后应认真浇水养护,拆除侧面非承重模板时,混凝土应具有一定强度;2拆模时注意保护棱角,避免用力过猛过急,吊运模板时,防止撞击混凝土结构棱角; 3缺棱掉角,可将该处松散颗粒凿除,冲洗充分湿润后,视破损程度用1:2左右的水泥砂浆抹补齐整,或支模用比原来高一级混凝土捣实补好,认真养护;混凝土裂缝1、混凝土路面裂缝主要预防措施:1混凝土的水灰比宜小,用水量应小,适当掺入减水剂;2石子不应过粗,减少表面含泥量,确保骨料级配良好;3降低混凝土入模温度,避开高温施工时间;4气温陡然降低采取防护措施,加强施工后养护及保护,切缝及时准确;2、混凝土楼板裂缝主要预防措施:1模板及其支撑系统要有足够的刚度,施工期间不要过早拆除楼板的模板支架,在楼板的混凝土施工完具有一定的强度后才进行下一道工序的施工;2预拌混凝土应严格控制水泥及拌和水用量,减少塌落度,不选用增加混凝土干缩的外加剂,同时力求砂石级配最优;3防止过度振捣楼板混凝土,过度的振捣会使混凝土产生离析和泌水,使其表面形成水泥含量较多的沙浆层和水泥浆层,易产生干缩裂缝;同时要在混凝土沉淀收缩基本完成后才开始楼板的最终抹面;4加强混凝土养护,保持混凝土楼板表面湿润,特别是在混凝土终凝初期,要严格按要求进行浇水养护,养护时间提前至浇筑后4小时以内洒水,在常温下养护不少于两周;养护期后,在施工期间特别干燥时也应进行浇水养护;混凝土表面“起粉砂”混凝土表面“起粉”对其抗压强度等级影响不大,但严重者会破坏混凝土路面或楼地面耐磨性,抗渗性,美观性与长期耐久性,对工程质量不利;1、主要原因分析:1混凝土泌水引起表层水灰比高,表层水化产物之间搭接不致密,空隙率大,结构松散,造成强度偏低;2施工养护不当,施工早期水分散失过快,形成大量的水孔,表层的水泥得不到足够的水分进行水化;3骨料级配不合理,含泥量高,过细的土砂也易导致地面起砂;4为了节省成本混凝土公司加入了过多的粉煤灰做掺合料,导致混凝土表层起砂,起粉; 5压光时间掌握的不好,混凝土表面未达到一定的强度就上人作业,低温下施工混凝土表面受冻等;2、主要预防措施:1混凝土配合比设计要合理,防止严重的泌水导致混凝土表层水灰比过大;2砂,石集料要符合国家质量要求,减少细骨料含土量,水泥的凝结时间要适宜;3施工过程要防止振捣过度造成混凝土严重的离析与泌水,在混凝土接近终凝时,要对混凝土进行二次抹面或压面,使混凝土表层结构更加致密;4施工后要注意及时保温保湿养护不少于14天,要防止混凝土表面硬化前被雨水冲刷造成混凝土表面水灰比过大而使强度降低,又要防止表层水在强度建立起前散失,表层无足够水化产物封堵大的毛细孔,形成水孔;5控制粉煤灰等掺和料的掺入量,避免其由于振捣过度等原因在混凝土表面富集,影响表层混凝土强度并导致起砂;混凝土泌水严重水泥凝结中,密度大的粒子要沉降,产生固体粒子与水的分离,即新拌不可避免的产生泌水现象,严重时用振动器振捣混凝土或拌和物静止一段时间后,在混凝土表面会产生较多水出现;1、主要原因分析:1混凝土配合比中水灰比大,自由水多,水与水泥的分离时间长,过多自由水在表面,影响表层凝结硬化;2在大磨高效旋粉机的生产工艺下,中细颗粒3-5ūm含量少,不足以封堵毛细孔,水分自下而上运动;3砂石含泥多,颗粒粗,砂率小,混凝土凝结时间长,外加剂中缓凝组分多,在混凝土凝结硬化前,水泥的沉降时间延长,导致泌水;4一般情况下强度等级低的混凝土易出现泌水,其中复合水泥的泌水现象相对严重,水泥中掺非亲水性混合材或使用矿渣,粗粉煤灰等做混凝土掺和料时,泌水量会增大;5施工养护不规范,过度振捣加剧泌水;2、主要预防措施:1减少单位用水量,控制水灰比不过大,凝结时间适宜;2混凝土配制时优先选用保水性能较好的品种水泥,可掺些粉煤灰,火山灰等掺合料增强混凝土拌合物的保水性;砂石集料符合施工规范,选择合理的砂率,采用连续级配的碎石,且针片状含量小;3施工防止过度振捣,注意养护;4要求混凝土外加剂不过掺,同时改善外加剂性能,使其具有更好的保水,增稠性;5当发生泌水现象时应该考虑减少用水量或改变混凝土的配比,并将分泌到表面的水分排除出去;当轻微泌水时可不予处理,因为少量泌水可以使混凝土表面保持湿润,同时可一定程度上减低混凝土内水灰比提高混凝土实际强度;混凝土强度达不到设计要求1、主要原因分析:1未严格按照科学的混凝土施工要求控制水灰比,当用同一种水泥时,混凝土强度等级主要取决于水灰比,而水泥水化时所需的结合水,一般只占水泥重量的25%左右,但为了便于拌制和振捣,使混凝土应具有一定的流动性,施工中需要用较多的水,当混凝土硬化后,多余的水分就残留在混凝土中形成水泡或蒸发后形成气孔大大地减少了混凝土抵抗荷载的实际有效面积,而且可能在孔隙周围产生应力.并且水灰比愈大,水泥浆与骨料粘结为也愈低,因而混凝土中水灰比愈大,强度就愈低;如为求施工便捷随意加水,或虽有配合比设计,但因现场砂,石料含水率过高,施工配合比没有扣除骨料的水分,增大混凝土中的水灰比,将造成混凝土强度严重不足;2和易性欠佳,混凝土拌和不均匀,振捣不密实;混凝土中水灰比小固然从理论上讲可获得较高混凝土强度,但水灰比大小,势必影响混凝土的和易性,致使混凝土拌合物不易振捣密实也会影响混凝土的强度;3混凝土施工时原材料选用不符合要求:水泥混凝土强度的产生主要是由于水泥硬化的结果,使用的水泥品种是否符合要求及是否受潮,水泥贮存时间等都对混凝土强度产生重要影响;骨料,砂、石骨料在混凝土中起骨架作用,如果其质量达不到要求很难配制出强度较高的混凝土;拌和用水质量对混凝土强度会产生影响;4低温的影响,混凝土的强度增长与养护时期的气温有密切关系;当气温在零度以下时,水化作用基本停止;当气温低于-3℃时混凝土中的水冻结,而且水在结冰时体积膨胀近9%左右,从而混凝土有被胀裂的危险,使混凝土强度降低;5混凝土试块取样没有代表性,不按规定制作试块,试块没有振捣密实,或浇筑温度太低;试块养护管理不善或养护条件不符合要求;6施工方法不当,如施工中计量不准,混凝土加料顺序颠倒,搅拌时间不够等因素均会造成混凝土强度达不到设计要求;2、主要预防措施:1严格控制混凝土配合比,重点关注水灰比,控制水泥及拌和水用量;2确保混凝土施工用原材料符合规范要求,使用符合施工要求的相应品种,等级水泥,对各种原材料有条件的施工方应送检检验,确保品质符合要求;3规范施工,按顺序上料,施工中加强搅拌,振捣,搅拌时间应根据混凝土的坍落度和搅拌机容量合理确定,确保混凝土均匀性及密实性;4注重养护,确保养护温度及水泥水化速率;5规范混凝土的试块检验,确保试验的代表性,准确性;混凝土外加剂对水泥的适应性不佳1、主要原因分析:1.水泥本身问题,包括水泥中的碱含量,游离钙过高,细度不稳定,掺入的混合材无法有效提高水泥的流动性等;同时熟料矿物组分对水化速率及外加剂的吸附能力直接相关:C3A>C4AF>C3S>C2S, C3A含量较高的水泥,塌落度损失快,保水性好,与外加剂的适应性相对较差;2.水泥生产工艺中熟料急冷措施控制,石膏粉磨时的温度等,造成水泥中矿物组分,晶相状态,石膏形态发生改变,从而影响到混凝土外加剂对水泥的适应性;3.外加剂自身性能欠缺,如减水剂的减水率低,针对不同品种,等级及生产厂家的水泥无较好的适应兼容性等;4.环境温,湿度高低直接影响外加剂对水泥的适应性,水泥存放一段时间后,温度下降,使外加剂高温适应性得到改善;5.配合比中砂,石级配及混凝土配合比也影响外加剂对水泥的适应性;主要预防措施:1.优化水泥性能,加强水泥生产工序控制,严格控制有害组分的含量,确保适宜的熟料矿物组份及水泥粉磨细度,优选混合材掺入品种,寻求与外加剂适用性好的如矿渣,粉煤灰,优质石灰石等混合材;2.优选外加剂品种,施工单位及水泥厂家积极开展对不同外加剂的适应性试验并进行优选,同时外加剂生产厂家要针对水泥性能变化不断优化外加剂性能;3.严格按施工规范控制施工温,湿度,做好砂,石及掺和料的材料选择,合理控制混凝土配合比;七、混凝土塌落度经时损失大主要原因分析:1.混凝土外加剂与水泥适应性不好引起塌落度经时损失大;2.外加剂掺量不够,缓凝,保塑效果不理想;3.气温高,某些外加剂在高温下失效,水分蒸发快,尤其在夏季;4.配合比不当,水灰比小,水泥用量少,造成水泥水化时的石膏溶解度不够;5.选用水泥的需水量大,使用时水泥温度高;6.工地与搅拌站协调不好,压车,塞车时间长,导致塌落度损失过大;主要解决措施:1.调整外加剂配方,确保其与施工用水泥性能相适应,同时施工前必须做外加剂与水泥适应性试验;2.调整混凝土配合比,提高砂率,用水量,将初始塌落度调整到20cm以上,同时适量加大外加剂掺量,延缓凝结尤其在高温时;3.施工中加强养护,防止水分蒸发过快;4.改善混凝土运输车的保水,降温装置;5.关注水泥性能,有条件的可掺加适量粉煤灰,代替部分水泥;八、混凝土凝结时间异常1、凝结时间偏长主要原因分析:1.水泥凝结时间长,在配制成混凝土后水泥凝结时间波动将被放大近5倍,对混凝土凝结影响严重;2.缓凝剂或缓凝型减水剂掺量过大;3.环境养护温度过低,影响水化及凝结;4.掺和料活性未达要求及水泥细度过粗;5.施工水灰比大,水泥用量低;主要预防措施:1.强化工地养护,在低温时延时拆模;2.控制合理的配合比,减少外加剂中的凝剂组分,优选掺和料,确保其活性符合施工要求;3.跟踪水泥凝结时间等性能变化,与水泥厂家及时联系;4.冬夏季应作外加剂调节,环境温度低时不掺缓凝剂;2、凝结时间偏短主要原因分析:1.外加剂掺入不当;2.水泥凝结时间短,生产过程中使用了工业副产石膏或助磨剂;3.施工环境温度高,水化速率快;主要预防措施:1.关注水泥凝结时间等相关指标,对生产厂家生产工艺,材料发生变化的,及时沟通联系;2.控制施工环境温度及水泥温度,降低水化速率;3.优选外加剂品种及掺入量;九、混凝土拌合物和易性不好主要原因分析:1.水泥强度等级选用不当,当水泥强度等级与混凝土设计强度等级数值之比大于时,混凝土配制时水泥用量较少,混凝土拌合物松散;当水泥等级与混凝土设计强度等级数值之比小于时,混凝土配制时水泥用量过多,混凝土拌合物粘聚力大,成团,不易浇筑;2.配合比设计不合理,不符合施工工艺对和易性的要求,砂,石级配质量差,空隙率大,配合比中砂率过小,拌合物中水泥砂浆填不满石子之间的孔隙;3.混凝土拌和物配制时用水量偏大,施工坍落度过大,混凝土在运输,浇筑过程中难以控制其均匀性;4.搅拌时间过短,混凝土拌合物拌合不均匀,施工中计量管理不符合规范要求;主要预防措施:1.混凝土配合比设计和试验方法,应按有关技术规定执行,通常配制普通混凝土的最大水泥用量不宜大于550kg/m3,普通钢筋混凝土最小水泥用量不宜小于260 kg/m3,泵送混凝土最小水泥用量不宜小于300kg/m3;2.合理选用水泥品种等级,使水泥强度等级与混凝土设计强度等级之比控制在之间;客观情况做不到时,可采取在混凝土拌合物掺加适量混合材如磨细粉煤灰等或减水剂等技术措施,以改善混凝土拌合物和易性;3.加强施工管理,各原材料计量岗位应建立岗位责任制,计量方法力求简便易行,可靠,特别是水,外加剂的计量,混凝土拌和物坍落度控制范围应满足施工工艺要求;4.在混凝土拌合浇注过程中,应按规定检查混凝土组成材料的质量和用量,特别是砂石骨料中含水量的变化,如混凝土配合比受到外界因素影响而有变动时,应及时检查调整;5.随时检查混凝土搅拌时间,不低于混凝土连续搅拌要求的最短时间;十、混凝土外表面泛白泛白物质基本是不融于水的碳酸钙CaCO3,也有其它碱类泛白;由于这些盐类多数是可融性的,在雨雪的作用下会流去消失;初次泛白一般比较均匀地出现在表面,背风背光处出现的频率要比向阳迎风面小得多,且随着使用时间的延长逐渐减弱.经过外界水分重新渗入混凝土产生的泛白为二次泛白;主要原因分析:与水泥品种,用量,混凝土密实度,吸水率和空隙有关,表面粗糙易积水,内部疏松吸水率大的部位最容易产生多次泛白;主要预防措施:1.在满足施工浇捣允许的前提下,减少施工拌和水量;2.在浇筑结构强度未完全达到干燥前,不应过早停止养护和覆盖,必须移动时也应在逐渐干燥后再移动;3.施工配合比要求级配合理,尤其粗细骨料适当,及时振捣使混凝土内部密实,外部水不宜进入,从而防止二次泛白;。
混凝土坍落度损失过快的七大原因坍落度损失原因坍落度损失原因较多,主要有以下几个方面:1 原材料影响所用水泥和泵送剂是否匹配、适应,必须通过适应性检测得出,泵送剂掺量要通过与水泥胶凝材料的适应性检测,确定最佳掺量。
泵送剂中的引气、缓凝成分的多少,对混凝土坍落度损失影响较大,引气、缓凝成分多,混凝土坍落度损失慢,否则损失快。
萘系高效减水剂配制的混凝土坍落度损失快,在低正温+5℃以下时,损失较慢。
水泥中的调凝剂如果用的是硬石膏,就会造成混凝土坍落度损失加快,水泥中早强成分C3A含量多,使用“R”型水泥,水泥细度很细,水泥凝结时间快等都会造成混凝土坍落度损失加快,混凝土坍落度损失快慢与水泥中混合材料的质量和掺量多少均有关联。
水泥中的C3A含量宜在4%~6%内,含量低于4%时,应减少引气、缓凝剂成分,否则会造成混凝土长时间不凝固,C3A含量高于7%时,应增加引气缓凝成分,否则会造成混凝土坍落度很快损失或假凝现象出现。
混凝土所用粗细骨料的含泥量和泥块含量超标,碎石针片状颗粒含量超标等都会造成混凝土坍落度损失加快。
如果粗骨料吸水率大,尤其是所用碎石,在夏季高温季节经高温暴晒后,一旦投入到搅拌机内它会在短时间内大量吸水,造成混凝土短时间内(30min)坍落度损失加快。
2 搅拌工艺影响混凝土搅拌工艺对混凝土坍落度损失亦有影响,搅拌机的机型和搅拌效率都有关,因此,要求搅拌机要定期检修,搅拌叶片要定期更换。
混凝土搅拌时间不能少于30s,如低于30s混凝土坍落度不稳定,造成坍落度损失相对加快。
3 温度影响温度对混凝土坍落度损失的影响要特别关注。
炎热的夏季气温大于25℃或30℃以上时,相对于20℃时的混凝土坍落度损失要加快50%以上,当气温低于+5℃时,混凝土坍落度损失又很小或不损失。
因此,泵送混凝土生产和施工时,要密切关注气温对混凝土坍落度的影响。
原材料的使用温度高,会造成混凝土出现温度提高和坍落度损失加快。
一般要求混凝土出机温度应在5~35℃内,超出此温度范围,就要采取相应的技术措施,如加冷水、冰水、地下水以降温和加热水和原材料使用温度等等。
混凝土坍落度损失过快原因分析及解决方案随着混凝土工艺和性能的发展,高性能混凝土、自密实混凝土等相继得到广泛应用。
这些混凝土施工不再单纯考虑混凝土的强度,还要考虑混凝土的耐久性和施工性。
混凝土在拌合站开始搅拌至运到现场进行浇筑,中间需要运输、停放的时间,这期间会使混凝土的和易性变差,混凝土的这种现象又称为坍落度经时损失。
混凝土的坍落度损失直接影响了混凝土的施工性,给施工带来困难,可能造成施工事故,而且影响硬化混凝土的质量。
因此,分析引起混凝土坍落度过快的原因,对于预防混凝土坍落度损失具有指导意义,从而提高混凝土的施工性。
影响混凝土坍落度损失的因素十分复杂,如水泥水化放热及矿物组成、外加剂及掺加方式、环境条件、混凝土搅拌及运输方式、施工配合比、水泥用量和矿物掺合料用量等。
本论文主要从以下几个方面探讨引起混凝土坍落度损失的原因。
1. 混凝土坍落度损失影响因素-水泥水泥熟料的矿物组成和其矿物形态,直接影响到水泥水化硬化的进程以及对外加剂的吸附,因此对混凝土的施工性能有很大的影响。
水泥水化消耗自由水,并产生水化产物,使新拌混凝土的黏度增大是导致坍落度损失的主要原因。
水泥熟料四大矿物为硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙。
其中铝酸三钙水化最快,如果没有合适的调凝组分,铝酸三钙很快水化生成片状的水化铝酸四钙,这些水化产物相互搭接,致使新拌混凝土很快丧失流动性。
硅酸三钙水化反应也很快,并且由于硅酸三钙是水泥熟料中含量高的矿物,其水化程度直接影响浆体的凝结硬化。
因此,熟料中铝酸三钙和硅酸三钙含量的水泥,特别是铝酸三钙含量高的水泥,初期水化快,易造成混凝土坍落度损失。
水泥组分中的石膏也会对混凝土的坍落度产生很大影响。
在水泥粉磨过程中,由于熟料温度很高,会使水泥所用的二水石膏发生脱水形成半水石膏、无水石膏,使硫酸盐的活性增加。
因二水石膏的溶解度和溶解速率小于半水石膏,但大于无水石膏,故石膏能调节水泥硬化凝结时间。
影响混凝土坍落度的因素很多,你都了解吗?混凝土拌合物出现坍落度损失是一种正常现象,其主要原因是水泥水化造成的,但可以将坍落度损失应控制到施工可以可接受的程度。
预拌混凝土生产及施工中坍落度损失过大会造成一些不良的后果,主要有以下几方面:(1)出料困难。
(2)卸料困难。
(3)施工困难。
(4)不能满足泵送需要。
(5)质量不稳定等。
探索混凝土坍落度损失规律及制定正确的控制方法,对混凝土的生产和施工提供参考依据,有利于控制好施工坍落度。
混凝土坍落度损失主要受水泥水化影响,而水化时间、温度、水泥组成以及所掺的外加剂都影响坍落度损失。
从生产实践来看,对混凝土运输距离及时间没有仔细评估,往往出机混凝土的各项指标都很好,但到施工现场出现坍落度、流动性不断降低,坍落度的损失也在不断增大,有时甚至影响混凝土施工。
(1)水泥预拌混凝土坍落度损失和水泥的品牌有着密切的关系,不同水泥的矿物组成、细度、混合材掺量以及生产工艺上的差异,会造成不同品牌的水泥的性能差别较大。
水泥熟料中的C3A含量一般不超过10%,虽然C3A含量较少,但其水化速度快,对混凝土坍落度损失也较大。
硅酸盐水泥熟料中,C4AF大约占10%~19%,其对混凝土坍落度的影响和C3A的机理一样。
水泥企业常常将石膏作为一种缓凝剂使用,石膏的状态对水泥的凝结时间影响不大,有时凝结时间正常等水泥,拌制等混凝土坍落度损失却难以控制。
水泥厂家往往很少考虑石膏对水泥与外加剂适应性的影响,但不同形态的石膏却对外加剂适应性有很大的影响,石膏的溶解速度与C3A溶解速率匹配时,坍落度损失便容易控制。
水泥熟料中的碱是以一种固溶的形态存在的,水泥水化反应的快慢和其含碱量成正比,含碱量越高,反应越快。
也正是如此,使得用碱含量高的水泥配制出的混凝土坍落度损失比较快。
水泥细度对混凝土坍落度损失的影响也十分显著,水泥颗粒越细,其和水化反应速度也越快,坍落度相应越大。
(2)矿物掺合料矿物掺合料已成为混凝土中不可缺少的成分,其质量和掺量对混凝土用水量及外加剂吸附量有很大影响。
混凝土损失原因及常用解决方法一、影响混凝土坍落度及其损失的因素单位体积用水量单位体积用水量是指在单位体积水泥混凝土中,所加入水的质量,它是影响水泥混凝土工作性的最主要的因素。
新拌混凝土的流动性主要是依靠集料及水泥颗粒表面吸附一层水膜,从而使颗粒间比较润滑。
而粘聚性也主要是依靠水的表面张力作用,如用水量过少,则水膜较薄,润滑效果较差;而用水量过多,毛细孔被水分填满,表面张力的作用减小,混凝土的粘聚性变差,易泌水。
因此用水量的多少直接影响着水泥混凝土的工作性,而且大量的试验表明,当粗集料和细集料的种类和比例确定后,在一定的水灰比范围内(W/C=~),水泥混凝土的坍落度主要取决于单位体积用水量,而受其他因素的影响较小,这一规律称为固定加水量定则,它为水泥混凝土的配合比设计提供了极大的方便。
水泥特性水泥的品种、细度、矿物组成以及混合材料的掺量等都会影响需水量。
由于不同品种的水泥达到标准稠度的需水量不同,所以不同品种水泥配制成的混凝土拌合物具有不同的和易性。
通常普通水泥的混凝土拌合物比矿渣水泥和火山灰水泥的工作性好。
矿渣水泥拌合物的流动性虽大,但粘聚性差,易泌水离析。
火山灰水泥流动性小,但粘聚性最好。
此外,水泥细度对混凝土拌合物的工作性亦有影响,适当提高水泥的细度可改善混凝土拌合物的粘聚性和保水性,减少泌水、离析现象。
水泥对混凝土坍落度经时损失的影响主要体现在水泥细度和化学参数两个方面。
水泥的比表面积越小,颗粒形状越接近球形,混凝土的和易性将越好,坍落度经时损失也越小。
影响混凝土坍落度损失的水泥化学参数中,C3A和C4AF的含量、C3A的形态、硫酸钙含量及形态、碱含量等是影响混凝土坍落度经时损失的主要因素。
水泥的矿物组成不同会影响减水剂的坍落度损失,因为水泥中不同的矿物组成成分对减水剂的吸附能力有大有小。
水泥中几种主要矿物对减水剂的吸附能力有大有小。
水泥中几种主要矿物对减水剂(表面活性剂类外加剂)吸附能力顺序如下:C3A>C4AF>C3S>C2S在水泥加水搅拌后,外加剂随之被吸附到水泥颗粒表面。
混凝土坍落度及其经时损失的控制文章发表于:2010-10-19 10:44:20混凝土坍落度及其经时损失的控制一、新拌混凝土和易性1.1 新拌混凝土和易性的概念新拌混凝土的和易性,也称工作性,是指混凝土拌合物易于施工操作(拌合、运输、浇注、振捣)并获得质量均匀、成型密实的性能。
混凝土拌合物的和易性是一项综合技术性质,它至少包括流动性、粘聚性和保水性三项独立的性能。
流动性是指混凝土拌合物在自重或机械(振捣)力作用下能产生的流动并均匀密实地添满模板的性能。
粘聚性是指混凝土拌合物各组成材料之间有一定的粘聚力,不致在施工过程中产生分层和离析的现象。
保水性是指混凝土拌合物具有一定的保水能力,不致在施工过程中出现严重的泌水现象。
可见,新拌混凝土的流动性、粘聚性和保水性有各自的内涵,因此,影响它们的因素也不尽相同。
正是因为新拌混凝土的流动性、粘聚性和保水性有其各自独立的内涵,目前,尚没有能够全面反映混凝土拌合物和易性的测定方法。
通常是测定混凝土拌合物的流动性,辅以其他方法或直接观察(结合经验)评定混凝土拌合物的粘聚性和保水性,然后综合评定混凝土拌合物的和易性。
测定流动性的方法目前有数十种,最常用的是坍落度试验方法。
将搅拌好的混凝土拌合物按一定方法装入圆台形筒内(坍落度筒,见图1),并按一定方式插捣,待装满刮平后,垂直平稳地向上提起坍落度筒,量测筒高与坍落后混凝土试体最高点之间的高度差(mm),即为该混凝土拌合物的坍落度值。
作为流动性指标,坍落度越大表示流动性越好。
实际施工时,混凝土拌合物的坍落度要根据构件截面尺寸大小、钢筋疏密和捣实方法来确定。
当构件截面尺筋较密,或采用人工捣实时,坍落度可选择大一些。
反之,若构件截面尺寸较大,或钢筋较疏,或采用机械振捣,则坍落度可选择小一些。
表1列出《混凝土结构工程施工质量验收规范》(GB 50204-2002)关于选用坍落度的规定。
表1 混凝土浇筑时坍落度选择范围结构种类坍落度/mm基础或地面等的垫层、无配筋的大体积结构(挡土墙、基础等)或配筋稀疏的结构 10~30板、梁和大型及中型截面的柱子等 30~50配筋密列的结构(薄壁、斗仓、筒仓、细柱等) 50~70配筋特密的结构 70~90注:a. 本表是采用机械振捣混凝土时的坍落度,当采用人工捣实混凝土时坍落度可适当增大;b. 当需要配置大坍落度混凝土时,应掺用外加剂;c. 曲面或斜面结构混凝土的坍落度应根据实际需要另行选定;d. 泵送混凝土的坍落度宜为80~180mm。
混凝土坍落度损失因素分析及控制方法摘要:混凝土坍落度是混凝土工程中一个关键性能指标,直接关系到施工的可塑性和操作性,同时对混凝土的强度和耐久性也有着重要的影响。
然而,在混凝土施工过程中,坍落度的损失问题时常引发实际工程质量和进度方面的担忧。
本论文旨在通过深入研究混凝土坍落度损失的原因,提出切实可行的控制方法,以解决这一问题。
为验证我们提出的控制方法的有效性,我们进行了实验研究,并结合实际工程案例进行了详细的分析。
实验结果显示,通过采用我们提出的方法,可以有效减少混凝土坍落度的损失,提高施工效率和工程质量。
关键词:混凝土坍落度;施工控制方法;工程质量1引言混凝土作为建筑领域中不可或缺的建材之一,其性能直接关系到工程质量与耐久性[1]。
其中,混凝土的坍落度是一个至关重要的指标,它不仅关系到混凝土的可塑性和施工性能,还直接影响混凝土的强度和耐久性。
然而,在混凝土施工过程中,坍落度的损失问题时常引起关注。
由于多种因素的综合作用,混凝土坍落度可能出现降低、失控等问题,从而影响工程的质量和进度[2]。
为了更好地理解混凝土坍落度损失的原因以及提出有效的控制方法,本论文将系统性地进行深入研究。
通过分析混凝土坍落度的形成机理,以及在施工过程中可能遇到的各种影响因素,旨在为解决混凝土坍落度损失问题提供科学合理的方法和策略。
2工程概况狮城国际三期51-54号楼、商业(G3、G4)及其一期地下室项目位于广州市花都区狮岭镇杨赤公路西。
该项目底板混凝土方量较大,一次底板混凝土方量为3000m³,需要我们保证混凝土供应,并控制混凝土坍落度损失。
我们通过结合此次工程,全面探讨混凝土坍落度的损失机制,可以为混凝土工程的可靠性和持久性提供更为可行的解决方案。
3坍落度损失的主要影响因素3.1减水剂的种类及掺量减水剂是一类在混凝土拌和过程中添加的化学物质,旨在改善混凝土的流动性和降低水灰比,从而提高其工作性能[3]。
对于混凝土的坍落度而言,减水剂的种类和掺量对其表现产生显著的影响。
混凝土坍落度及其影响因素一、基本概念坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。
和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。
影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。
坍落度的测试方法:用一个上口100mm、下口200mm、高300mm喇叭状的塌落度桶,灌入混凝土后捣实,然后拔起桶,混凝土因自重产生塌落现象,用桶高(300mm)减去塌落后混凝土最高点的高度,称为塌落度.如果差值为10mm,则塌落度为10。
混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。
影响混凝土坍落度的因素混凝土原材料影响:沙河水洗砂由于存料时间和批次不同,含水量不稳定,且通过试验确定含水量时局限性较大,粗骨料一般情况含水量比较稳定,但有时也会变化,原因是骨料厂多为开敞式存放,在雨后骨料含水量发生变化,拌制混凝土时骨料吸水率不同会造成混凝土坍落度不同程度的偏差。
机械和搅拌时间影响:混凝土搅拌时间长会造成骨料吸水量加大,使混凝土熟料中的自由水份减少,造成混凝土坍落度的损失。
混凝土搅拌机械计量系统误差也会造成混凝土坍落度损失,混凝土配和比是通过精确计算并经过多次试配调整得出来的,任何一种材料由于计量不准确,都会使单位内材料比表面积发生变化,材料比表面积变化越大,坍落度经时损失也越大。
混凝土运输机械的影响:混凝土搅拌运输车运输距离和时间越长,混凝土熟料由于发生化学反应、水份蒸发、骨料吸水等多方面原因,自由水份减少,造成混凝土坍落度经时损失,混凝土皮带运输机、串筒还会造成砂浆损失,这也是造成混凝土坍落度损失的重要原因。
混凝土浇筑速度的影响混凝土浇筑过程中,混凝土熟料到达仓面内的时间越长,会因为发生化学反应、水份蒸发、骨料吸水等多方面原因使混凝土熟料中的自由水份迅速减少造成坍落度损失,特别是混凝土暴露在皮带运输机上时,表面与外界环境接触面积较大,水份蒸发迅速,对混凝土坍落度损失的影响最大。
混凝土坍落度经时损失与控制方法研究一、研究背景混凝土是现代建筑中最常用的建筑材料之一。
混凝土的坍落度是衡量混凝土流动性的重要指标之一。
坍落度的大小直接影响混凝土的工作性能和强度。
随着时间的推移,混凝土的坍落度会发生变化,这种变化被称为时损失。
时损失是混凝土生产和使用过程中不可避免的问题,因此如何控制混凝土坍落度的时损失是混凝土技术研究的热点之一。
二、研究内容1.混凝土坍落度的定义和测量方法混凝土坍落度是指在一定的条件下,混凝土在自重和外部力的作用下,坍落至规定高度的程度。
混凝土坍落度的测量方法有多种,常用的方法有斯利普槽法、坍落锥法和流动度法。
2.混凝土坍落度时效性的原因和表现形式混凝土坍落度时效性的原因包括水灰比、胶凝材料种类和用量、掺合料种类和用量等。
随着时间的推移,混凝土的坍落度会逐渐降低,表现为坍落度的减小、自由水的分离和混凝土的硬化。
3.混凝土坍落度时效性的影响因素混凝土坍落度时效性的影响因素包括环境温度、相对湿度、风速、混凝土温度、搅拌时间、施工方式等。
4.混凝土坍落度时效性的控制方法控制混凝土坍落度时效性的方法包括控制混凝土配合比、采用适量的减水剂、添加掺合料、控制混凝土搅拌时间、采用温度控制技术等。
三、研究结论1.混凝土坍落度时效性是混凝土生产和使用过程中不可避免的问题。
2.混凝土坍落度时效性的原因包括水灰比、胶凝材料种类和用量、掺合料种类和用量等。
3.混凝土坍落度时效性的影响因素包括环境温度、相对湿度、风速、混凝土温度、搅拌时间、施工方式等。
4.控制混凝土坍落度时效性的方法包括控制混凝土配合比、采用适量的减水剂、添加掺合料、控制混凝土搅拌时间、采用温度控制技术等。
四、研究意义混凝土坍落度时效性的研究对于提高混凝土工程质量、降低工程成本、推动混凝土技术发展具有重要意义。
同时,控制混凝土坍落度时效性的方法也可以为混凝土生产和使用过程中的技术创新提供参考和借鉴。
【揭秘混凝土】第5篇:影响坍落度损失的五大因素从机理上讲,新拌混凝土坍落度损失的主要原因是水泥颗粒的物理凝聚。
水泥加水拌合后,产生絮凝结构,其结构内部束缚大量的自由水,使新拌混凝土变得比较干燥,坍落度降低。
此外,新拌混凝土本身水化消耗的水、水分蒸发损失的水也是造成坍落度损失的重要原因。
影响坍落度损失的五大因素包括:一、水泥因素1、水泥的细度:水泥中3—32um的颗粒含量决定了28天的强度,这部分颗粒的含量应该越多越好。
但10um以下水泥颗粒主要起早强作用,这部分颗粒含量过多,需水量将增加,水化热将增大,会加剧坍落度损失。
因此,流变性好的水泥,10um以下的颗粒含量应少于10%。
2、水泥的粒型:水泥的粒型越接近球形,混凝土的和易性越好,坍落度损失也越小。
3、水泥的矿物组成:水泥的矿物组成不同会影响减水剂的效果,因此也会影响混凝土的坍落度损失。
水泥中不同的矿物组成成分对减水剂的吸附能力有大有小,对表面活性剂类减水剂的吸附能力顺序如下:C3A>C4AF>C3S>C2S。
在水泥加水搅拌后,减水剂随之被吸附到水泥颗粒表面。
按上述顺序减水剂很快被吸附到C3A及C4AF等表面,而水泥水化的顺序也是C3A>C4AF>C3S>C2S。
C3A、C4AF水化很快,等到C3S、C4S开始水化时,液相中减水剂的浓度已变得很低。
随着水化时间的延续,混凝土和易性变差,坍落度下降。
4、水泥的含碱量:水泥中的含碱量越高,早期水化速度越快,浆体流动度经时损失越大,坍落度损失越大。
二、矿物外掺料因素1、粉煤灰:粉煤灰具有球形颗粒形态,有所谓的滚珠效应,能减少颗粒间的摩擦。
且球形颗粒的表面积与体积比值最小,使湿润颗粒表面的需水量最低,导致浆体中自由水较多,坍落度增大。
2、矿渣:矿渣微粉的球形度不如粉煤灰,但优于水泥。
同时,矿渣微粉颗粒表面致密光滑,极不容易吸附水分子,改善水泥浆体的流动性。
矿渣微粉填充于水泥颗粒间,改善了微观级配,减少颗粒空隙用水量,增加了浆体的和易性。
浅谈混凝土坍落度的影响因素摘要:从原材料、配合比、环境因素、外加剂、掺和料等等方面对混凝土坍落度损失的影响因素进行详细分析。
关键词:混凝土坍落度坍落度控制中图分类号:tu37 文献标识码:a 文章编号:前言混凝土是当今使用量最大、使用面积最广的建筑材料,己普遍应用于各类建筑工程中。
随着建筑技术的不断进步,对混凝土的要求也越来越高。
混凝土坍落度损失是商品混凝土使用过程中经常遇到的一个问题,特别是泵送混凝土问题更加突出,已严重影响施工质量。
因此,有必要对预拌混凝土坍落度的损失进行深入分析。
造成混凝土坍落度损失的原因是多方面的,且这些因素相互关联。
主要包括四个方面: 一是水泥方面,如水泥中的矿物组分种类、不同矿物成分的含量、碱含量、细度、颗粒级配等;二是掺合料方面,如烧失量等;三是集料方面,如级配、含泥量、吸水率等;四是化学外加剂方面,如高效减水剂的化学成分、分子量、硫化程度、平衡离子浓度以及用量等;五是环境条件,如温度、湿度、运输时间等。
一、混凝土坍落度影响因素1、人员因素1.1 砂石料卸料砂石料运输车司机未经过收料人员查看,直接将进厂的湿料运至料场,就近卸车,将含水率较大的砂石料直接卸至料仓。
搅拌站操作人员在不知道砂石含水率有变的情况下仍按照干料用水量操作,导致混凝土坍落度突然变大。
1.2 铲车上料铲车司机不按开盘人员指定部位上料,随意上料,将含水率大的湿料与含水率小的干料混上,搅拌站操作人员在实际操作过程中,由于每盘用水量调整频繁,导致混凝土坍落度失控。
1.3 沟通搅拌站操作人员在混凝土坍落度突然变化或搅拌车内有剩灰时,未通知开盘人员及时接灰进行查看,根据经验私自进行调整,造成混凝土坍落度出厂时不符合施工要求。
1.4 工地管理水平混凝土运送至现场后,工长应及时组织施工人员进行混凝土浇筑。
在现场等待时间长,随着混凝土内自由水分的蒸发,混凝土坍落度将逐渐变小。
另外,工地施工人员一味追求大坍落度混凝土,混凝土运送至现场后私自加水,往往导致混凝土坍落度离析。
1外加剂经时损失引起的问题混凝土是应用最广泛的建筑材料,在混凝土中使用高效减水剂,这样就可以用常规的方法生产低水灰比和大流动性的混凝土。
这些混凝土具有良好的工作性、很高的强度和耐久性,产生了巨大的社会经济效益。
近几年,由于外加剂经时损失引起的问题归纳如下:1)混凝土现场加水,或添加过量外加剂调整混凝土坍落度,造成混凝土强度下降或凝结时间不正常。
由于混凝土坍落度经时损失引起新拌混凝土流动性变差,混凝土运输到施工工地时,坍落度变小,无法泵送施工,现场工作人员加入外加剂使混凝土重新获得大流动性,但由于增加外加剂掺量使混凝土凝结时间延长,造成混凝土凝结时间的不确定。
有的工作人员,直接往混凝土里加水,改变混凝土水灰比,造成混凝土强度下降、离析、开裂等质量问题。
2)过量使用缓凝组分,造成混凝土凝结时间过长或无法凝结。
由于混凝土经时损失的存在,一些工作人员为了克服这一问题加入大量的缓凝剂,使得混凝土的初凝、终凝时间大幅延长,给施工、养护等带来麻烦,甚至出现混凝土长时间不凝,最终拆除的质量事故。
3)新拌混凝土发生离析,泌水和滞后泌水的现象,缓凝组分使用较多或不当时会出现以上问题。
4)混凝土早期开裂。
由于使用的缓凝组分较多,混凝土受温度的影响敏感,早期强度发展缓慢,在没有达到一定的抗拉强度时,撤掉养护,这时干缩裂缝就会出现。
5)混凝土坍落度损失很快,混凝土浇筑后很难振捣密实,或来不及振捣就凝结,这种情况在夏季高温季节最易发生。
针对这一问题,近些年,混凝土领域开始提出:混凝土的和易性是混凝土第一性能的观点。
保持混凝土的坍落度是非常重要的技术和质量措施。
2混凝土外加剂和水泥的适应性的原理在掺加高效减水剂的水泥混凝土中,高效减水剂在低水灰比的混凝土中,不同程度的存在坍落度经时损失快的突出问题,我们称为外加剂和水泥不适应。
而另一种情况,水泥和水接触后,在开始的60min~90min内,坍落度仍能保持,而且没有离析和泌水现象,这种情况下外加剂和水泥是适应的。
混凝土坍落度损失的原因及对策混凝土坍落度是混凝土工程中一个重要的指标,它直接关系到混凝土的质量和施工效果。
然而,在实际施工中,经常会出现混凝土坍落度损失的情况,严重影响了工程质量和进度。
本文将从原因和对策两个方面进行探讨。
一、混凝土坍落度损失的原因1. 水灰比不合理:水灰比是指混凝土中水和水泥的质量比值。
当水灰比过低时,混凝土中水分不足,难以充分润湿骨料,导致坍落度不够;而当水灰比过高时,混凝土会出现过度流动,导致坍落度过大,难以控制。
因此,水灰比的不合理是混凝土坍落度损失的主要原因之一。
2. 骨料不合理:混凝土中的骨料包括粗骨料和细骨料,它们的选择和配合比例对混凝土的坍落度有着重要影响。
如果骨料的粒径不合理、分布不均匀或含有过多的细颗粒,会导致混凝土坍落度下降。
此外,骨料的含水率过高也会导致混凝土坍落度损失。
3. 混凝土搅拌不均匀:混凝土在搅拌过程中,如果搅拌时间不足、搅拌速度不匀或搅拌方式不正确,会导致混凝土中的骨料和水泥不充分混合,从而影响混凝土的坍落度。
4. 外界温度和湿度:外界环境的温度和湿度也会对混凝土的坍落度产生影响。
在高温和干燥的环境中,混凝土的水分容易蒸发,造成坍落度损失;而在低温环境中,混凝土的流动性会受到限制,同样会导致坍落度下降。
二、混凝土坍落度损失的对策1. 合理控制水灰比:根据混凝土的设计强度和施工要求,合理确定水灰比,保证混凝土的坍落度在要求范围内。
在施工过程中,严格按照配合比进行配料,避免人工调整水灰比,以确保混凝土质量的稳定性。
2. 优化骨料配合比例:选择合适的骨料粒径和配合比例,保证骨料的质量稳定,并进行充分搅拌,确保骨料与水泥的充分混合,提高混凝土的坍落度。
3. 控制搅拌工艺:在混凝土搅拌过程中,要严格控制搅拌时间、搅拌速度和搅拌方式,确保混凝土充分搅拌均匀,提高混凝土的坍落度。
4. 控制施工环境:根据外界温度和湿度的变化,采取相应的措施,如增加混凝土的配合水量、采用覆盖保温措施等,保持混凝土的适宜湿度和温度,提高混凝土的流动性和坍落度。
泵送混凝土坍落度的损失与对策对于泵送混凝土而言,其坍落度经时损失是非常重要的技术指标。
本论文主要分析了影响混凝土坍落度经时损失的主要原因一混凝土配合比、组成材料、生产条件和环境因素及其影响关系;在此基础上提出了控制混凝土坍落度经时损失的对应措施。
标签:混凝土;坍落度经时损失;配合比;水灰比;砂率一、前言众所周知,商品混凝土本身是一种半成品,混凝土质量优劣,首先从混凝土的坍落度表现出来,可以说,混凝土坍落度是混凝土内在质量的外在表现。
混凝土坍落度是一项综合性的定量指标;泵送混凝土的“四性”即:和易性、粘聚性、保水性、可泵性(工作性),是混凝土定性的表现。
(一)混凝土坍落度的概述混凝土坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度的因素主要有级配变化、含水量、衡器的称量偏差、外加剂的用量,容易被忽视的还有水泥的温度等。
(二)混凝土坍落度的研究混凝土的商品化在我国的推行与发展已有二十多年的历史,商品混凝土产量、质量等各方面都有了长足的进步。
但与西方国家和日本相比,我国的商品混凝土仍处于发展的初级阶段,混凝土产品进入市场,参与市场竞争,最关键的就是要看混凝土的质量。
二、影响混凝土坍落度经时损失的原因分析总体分析,影响混凝土坍落度经时损失的主要因素有混凝土配合比设计(主要是初始坍落度、水灰比和砂率的大小),混凝土所用材料的性能、施工和环境条件(如运输距离、泵的性能和湿度)等,简要分析如下。
(一)配合比因素1.初始坍落度值泵送混凝土的初始坍落度值要大于一般施工的混凝土的坍落度值。
在水灰比和其他因素不变情况下,混凝土坍落度由水泥浆用量决定;坍落度越大,则水泥和水的用量增加,水泥浆量就越多,混凝土生产成本增加。
若混凝土浆量过多,集料就会相应减少,超过限度会出现流浆现象,混凝土拌合物的黏聚性、保水性变差,对强度、耐久性有负面影响。
反之,则会出现崩坍现象。
2.水灰比大小水灰比由混凝土强度决定,不能随意改变。
影响混凝土坍落度之水灰比水灰比是指水泥混凝土中水的用量与水泥用量之比。
在单位混凝土拌合物中,集浆比确定后,即水泥浆的用量为一固定数值时,水灰比决定水泥浆的稠度。
水灰比较小,则水泥浆较稠,混凝土拌合物的流动性亦较小,当水灰比小于某一极限值时,在一定施工方法下就不能保证密实成型;反之,水灰比较大,水泥浆较稀,混凝土拌合物的流动性虽然较大,但粘聚性和保水性却随之变差。
当水灰比大于某一极限值时,将产生严重的离析、泌水现象。
因此,为了使混凝土拌合物能够密实成型,所采用的水灰比值不能过小,为了保证混凝土拌合物具有良好的粘聚性和保水性,所采用的水灰比值又不能过大。
由于水灰比的变化将直接影响到水泥混凝土的强度,因此在实际工程中,为增加拌合物的流动性而增加用水量时,必需保证水灰比不变,同时增加水泥用量,否则将显著降低混凝土的质量,决不能以单纯改变用水量的办法来调整混凝土拌合物的流动性。
在通常使用范围内,当混凝土中用水量一定时,水灰比在小的范围内变化,对混凝土拌合物的流动性影响不大。
影响混凝土坍落度之水泥特性水泥的品种、细度、矿物组成以及混合材料的掺量等都会影响需水量。
由于不同品种的水泥达到标准稠度的需水量不同,所以不同品种水泥配制成的混凝土拌合物具有不同的和易性。
通常普通水泥的混凝土拌合物比矿渣水泥和火山灰水泥的工作性好。
矿渣水泥拌合物的流动性虽大,但粘聚性差,易泌水离析。
火山灰水泥流动性小,但粘聚性最好。
此外,水泥细度对混凝土拌合物的工作性亦有影响,适当提高水泥的细度可改善混凝土拌合物的粘聚性和保水性,减少泌水、离析现象。
水泥对混凝土坍落度经时损失的影响主要体现在水泥细度和化学参数两个方面。
水泥的比表面积越小,颗粒形状越接近球形,混凝土的和易性将越好,坍落度经时损失也越小。
影响混凝土坍落度损失的水泥化学参数中, 和 的含量、 的形态、硫酸钙含量及形态、碱含量等是影响混凝土坍落度经时损失的主要因素。
水泥的矿物组成不同会影响减水剂的坍落度损失,因为水泥中不同的矿物组成成分对减水剂的吸附能力有大有小。
影响混凝土坍落度经时损失的主要因素分析
1引言
目前,我国商品混凝土应用的最为广泛,其特点在于集中拌制、商品化供应。
这就将混凝土从传统的施工现场分离出来,是工程施工技术的一种革新,同时也是混凝土发展的一种必然趋势。
随着现在商品混凝土的大范围应用,这就要求混凝土在经过了较长时间的运输和停放以后仍然能够维持比较高的坍落度。
在施工过程中,坍落度的损失很容易造成堵泵和施工困难以及拆模以后混凝土的蜂窝麻面现象,甚至产生工程质量问题。
这些都严重地影响到了商品混凝土的泵送距离和泵送高度以及商品混凝土搅拌站的供应半径。
2混凝土坍落度经时损失机理
通常认为,坍落度损失的机理在于几个方面:
(1)因为水泥水化反应的发生,同时还有一部分游离水吸附于水化产物表面,另外一些游离水不断蒸发,造成混凝土拌合物中的游离水逐渐减少,再加上分子作用力和外力等作用促进了水化产物的凝聚。
(2)对于掺高效减水剂的混凝土,随着时间的延长,减水剂的减水作用降低,这也造成混凝土坍落度的损失。
因为高效减水剂吸附在水化产物表面,部分减水剂被水化产物包裹,还有部分减水剂随着水化反应的发生而被消耗掉,因此造成水泥颗粒之间的斥力减小,水泥
颗粒絮凝,从而使混凝土坍落度变小。
(3)由于水泥的水化作用,水泥在水化过程中会产生大量的Ca(OH)2以及C-S-H等水化产物,这会增加体系的黏度,从而使混凝土的坍落度经时损失增大。
实际工程中,减水剂等外加剂的广泛应用会增强水泥的分散作用,使水泥颗粒的反应面积增大,因此,掺混凝土外加剂特别是减水剂的混凝土坍落度经时损失会更大。
同时减水剂中大量的极性集团与一些金属离子产生络合物,造成液相中的离子浓度降低,加速了水泥水化初期的速度,使得整体混凝土体系的黏度增加,导致混凝土坍落度的经时损失。
3影响混凝土坍落度经时损失的因素分析
3.1胶凝材料
3.1.1水泥细度
水泥水化的过程是水泥熟料与水的反应过程,在这一过程中,水泥熟料与水不断反应生成水化物,使得液相减少。
温汉美的研究表明,在水泥水化过程中,3~30μm的熟料颗粒主要起强度增长作用,而大于60μm的颗粒则对强度不起作用,小于10μm的颗粒主要起早强作用,3μm以下的颗粒只起早强作用。
小于10μm的颗粒需水量大。
流变性好的水泥10μm以下颗粒应少于10%。
颗粒越细,细颗粒越多,需水量越大,早期强度越高,这必将加剧坍损。
同时由于水化反应的进行,固相增多,固体颗粒之间相互联结,从而导致混凝土的坍落度损失。
因此,混凝土的流动性与水泥的水化过程有着重要的关系:水泥的水化速度越快,混凝土的坍落度损失也就越大。
在相同条件下,
水泥颗粒越细,用其拌制混凝土需水量就越大,水化反应越剧烈,这必然导致新拌混凝土的坍落度损失。
另一方面,水泥颗粒越细水泥颗粒的数量越多,在相同的水灰比条件下,水泥颗粒之间的距离也就越小,在发生水化反应时,生成的水化物能够很容易的相互联结在一起,造成混凝土坍落度的损失。
在水泥熟料磨细过程中设法使熟料颗粒形成合理的、大小不同的颗粒级配,颗粒间相互填充,形成最低孔隙率,从而优化水泥石结构性能。
水泥中粗细颗粒级配恰当,则可得到良好的流变性能。
用这种水泥配制的混凝土流动性好、需水量低、坍落度损失小。
3.1.2水泥熟料矿物成分
铝酸盐矿物成分对减水剂的吸附能力要大于硅酸盐矿物,并且吸附量越大,适应性越差。
随着铝酸三钙(C3A)含量的升高,混凝土坍落度损失明显增大。
因为铝酸盐含量较高,特别是C3A含量较高的水泥,C3A会对聚羧酸系减水剂进行吸附,影响硅酸盐矿物硅酸三钙(C3S)和硅酸二钙(C2S)对聚羧酸系减水剂的吸附,同时,刘厚奋等人的研究表明,C3A水化热大,水化反应的速率快,容易造成坍落度损失和减水率低。
3.2矿物掺合料
目前,在配置高性能混凝土时,会添加如粉煤灰类的矿物掺合料,其优点在于可以降低成本和改善混凝土的和易性、强度和耐久性。
黄煜镔等人的实验表明,掺粉煤灰和矿渣以后能够有效地控制混凝土的坍落度经时损失的趋势。
其原因在于:
1)由于矿物掺合料其表面光滑致密,在拌合混凝土时,其分散在水泥粒子间,这些致密的颗粒起到了分散剂的作用,并且这种物理的分散效果不会随着时间的延长而减弱;
2)矿物掺合料的加入减缓了水化反应,使整个体系的反应速率减慢;
3)大掺量矿物掺合料体系中,由于掺合料高效减水剂的饱和吸附量低,故整个体系的高效减水剂饱和吸附量低,混凝土拌合物液相中残存减水剂的浓度就高;
4)掺合料,特别是粉煤灰,具有的保水作用,减少了水分的外溢;
5)掺合料的加入,大大降低了水泥水化热,也就降低了拌合物的内部温升。
3.3环境温度
张登祥通过实验得出早期的坍落度损失与混凝土的温度成正比,温度较高时,坍落度损失较大。
同时,坍落度损失的大小与初始坍落度成正比,初始坍落度越大,坍落度损失也越大,因此不宜使用在设计时提高初始坍落度的方法来抵消预计会产生的坍落度损失,如图1和图2所示。
许将也通过实验得出环境温度越高,混凝土坍落度的损失越大的结果,如表1所示。
究其原因,在于环境温度越高,水泥的水化速度越快,导致混凝土的坍落度损失越大。
与此同时,在较高的温度下,水分蒸发的较快,这也影响着混凝土坍落度损失。
3.4地材
杜毅、白荣良等人的研究表明,砂和石子中的含泥量对混凝土的坍落度影响较大,具体体现在:随着砂中的含泥量的增加,混凝土的坍落度值下降,在砂的含泥量为1%时最为明显;石子中的含泥量每增大1%,混凝土的坍落度减小10mm以上,并且坍落度减小的程度会随着混凝土强度等级的提高成倍增加。
在实际工程应用中,应尽量选择含泥量较少的砂石,如受到环境
限制,无法获得较少含泥量的砂石,则应适当提高减水剂的掺量来减小混凝土坍落度损失。
3.5混凝土配合比
3.5.1水灰比
水灰比的大小由混凝土强度来决定,不能随意进行改变。
当水泥浆用量一定时,水灰比越大,水泥浆越稀,混凝土拌合物的黏聚性和保水性越差,产生流浆和离析现象,混凝土的坍落度会有减小的趋势。
究其原因,是因为此时粗细骨料没有被足够的水泥浆体包裹,润滑作用严重不足,骨料之间的摩擦力增大,混凝土拌合物流动性降低。
水灰比越小,水泥浆越干稠,混凝土拌合物的流动性越差,坍落度也越小。
为增加混凝土的流动性可以采用适当掺减水剂或者同时增加水和水泥用量的方法,尽量避免单纯提高用水量的方法。
因为水灰比过高会使混凝土的黏聚性和保水性变差,生产出来的混凝土容易离析,从而影响泵送。
3.5.2砂率
杨志通过实验得出,在混凝土不同的砂率中应该有一个合理的砂率值,如表2所示,此时砂率为39%,混凝土的坍落度经时损失相对较小。
其原因在于,在水泥浆用量一定的条件下。
砂率过大,导致骨料的总表面积增大,此时,包裹在骨料上的水泥浆厚度变薄,润滑作用减小,混凝土拌合物坍落度降低。
当砂率过小时,虽然骨料的总表面积有所减小,但砂浆量也减小,粗骨料没有足够的砂浆起包裹润滑作用,此时的混凝土显得粗涩,和易性差,混凝土拌合物坍落度小。
4结论及建议
由以上分析可知,控制混凝土坍落度,应考虑以下几个方面的因素:
1)充分认识到胶凝材料的特性。
可以添加缓凝剂延缓C3A等铝酸盐的水化反应或者添加保坍剂,以解决水泥细度对混凝土坍落度经时损失的影响。
2)合理适量添加矿物掺料。
适量掺加粉煤灰等掺合料,可以节约水泥同时降低造价,还可以降低混凝土水化热,提高其后期强度。
3)充分考虑环境温度的影响。
一般情况下,环境温度越高,混凝土坍落度损失越大。
因此,在夏季作业时,可以在早晚温度较低的情况下拌制混凝土。
4)应尽量选择含泥量较少的砂石。
实际工程中,如受到环境限制,无法获得较少含泥量的砂石,则应适当提高减水剂的掺量来减小混凝土坍落度损失。
5)合理设计混凝土配合比。
在设计混凝土配合比的时候应该充分考虑到环境温度、运距、外加剂品种等影响混凝土坍落度损失的因素,设计好配合比以后要进行实验室适配,以确保其满足强度、和易性、耐久性的要求,发现问题应及时进行调整。