三视图还原方法及练习题
- 格式:pptx
- 大小:1.42 MB
- 文档页数:26
核心内容:三视图的长度特征一一“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES由正视图和侧视图中高度,确定点S的位置;如图I③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体SABCD 如图所示:o5/ VDR的(左)觇阁 匸)现图 厂1例题2: —个多面体的三视图如图所示,则该多面体的表面积为()经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3 解答:(24)答案:21+ .. 3计算过程:S=2x2X6-y X 1X1 >x6 + y xV2 x72 X^yX2= 21+^3步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点 E F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
同学们,今天我们来讲一下立体几何里面的三视图,其实三视图主要考察点是空间想象,如果同学们的空间想象能力比较强,如果你能快速还原出对应的立体图形,那么这道问题就马上解决,它无非就是考察几个点:1、让你判断其形状;2、由两个试图读出另一视图;3、考察的综合运算——让你去求多面体棱长最大值、求体积或者表面积。
对于这些问题,你只要把立体图形还原出来,这个题目没有任何难度了。
那么有的同学空间想象稍微偏弱,那种问题就不会得到快速解决,那么怎样快速准确还原对应的三视图呢?方法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正方体切等方法,但是我给同学们讲,这些方法都不能最高效、最准确的还原三视图,如果你所有的立体图形都用三线交汇、或者正方体切等方法,我告诉大家就想小题大做了,你会发现解题会比较困难。
那么我今天给大家讲一种方法叫——拔高法,它能够还原90%以上的三视图,还有10%是偏难的要用别的方法:六字箴言——先去除再确定,就能够把所有的三视图题快速准确还原出来,这个方法我以后再给大家讲。
首先,我们来看一下拔高法的步骤:1、拔高法最主要的就是俯视图,是三视图的根基,首先标出俯视图的所有节点;画出俯视图所对应的直观图;2、由主、侧视图的左、中、右找出所被拔高的点。
什么意思?那我们先来看一道题,大家要好好理解,好好掌握,只要理解透彻以后,再解题可能就10来秒一道题,是非常快速,而且非常准确。
拔高法还原三视图1.某多面体的三视图如圏所示’则这个多面体的最长棱长为好,我们先将俯视图作底座,这个最重要:(请注意:我们先只画俯视图外轮廓的直观图,至于哪个虚线那个实线,我们先不管它,先都画成虚线。
最终哪个需要是实线,到后面再看)。
③然后由俯视图看主视图,我们在俯视图和主视图上都标出它们相对应的节点左、中、右f4+47 PA j? AA拔高法还原三视图1.某多面体的三视图如圏所示’则这个多面体的最长棱长为现在大家看,不难发现,主视图的左边是没有被拔高的,中间虽然高了,但没有节点,我们 可以认为他没有高或者不用管它,那么由俯看主就只有右边被拔高了。
课后检测
1.一个几何体的三视图如图所示,已知这个几何体的体积为,则h= ()
A. B. C. D.
2.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2)()
A. B. C. D.
3.一个几何体的三视图如图所示,则这个几何体的体积是()
A. B.1 C. D.2
参考答案
1解:三视图复原的几何体是底面为边长5,6的矩形,一条侧棱垂直底面高为h,
所以四棱锥的体积为:,所以h=.
故选B.
2解:此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥
由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,
由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,
将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,
可求得此两侧面的面积皆为=,
故此三棱锥的全面积为2+2++=,
故选A.
3解:由已知易得该几何体是一个以正视图为底面,以1为高的四棱锥
由于正视图是一个上底为1,下底为2,高为1的直角梯形
故棱锥的底面面积S==
则V===
故选A。
焦点内容:之五兆芳芳创作三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和仰望图一样长,左视图和仰望图一样宽.复原三步调:(1)先画正方体或长方体,在正方体或长方体地面上截取出仰望图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出方才截取出的仰望图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不克不及确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及仰望图各个节点连线,隐去所有的帮助线条便可得到复原的几何体.办法展示(1)将如图所示的三视图复原成几何体.复原步调:①依据仰望图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不成能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD辨别连接,隐去所有的帮助线条,便可得到复原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³.解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的概略积为()答案:21+3计较进程:步调如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M、N处不成能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点'','''BGG地位置如图;D,,,,FE第三步:由三视图中线条的虚实,将点G与点E、F辨别连接,将'G与点'E、'F辨别连接,隐去所有的帮助线便可得到复原的几何体,如图所示.例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)复原图形办法一:若由主视图引发,具体步调如下:(1)依据主视图,在长方体后正面初绘ABCM如图:(2)依据仰望图和左视图中显示的垂直关系,判断出在节点A、B、C出不成能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由仰望图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C辨别连接,隐去所有的帮助线条便可得到复原的几何体D—ABC如图所示:解:置于棱长为4个单位的正方体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=24,DB=DC=52,可得DA=6.故最长的棱长为6.办法2若由左视图引发,具体步调如下:(1)依据左视图,在长方体右正面初绘BCD如图:(2)依据正视图和仰望图中显示的垂直关系,判断出在节点C、D处不成能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由仰望图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D辨别连接,隐去所有的帮助线条便可得到复原的几何体D—ABC如图:办法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体复原:(1)按照正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线暗示.如图,也就是说正视图的四个顶点肯定是由原图中红线上的点投影而成;(2)左视图有三个顶点,画出它们的原象所在的线段,用蓝线暗示,如图;(3)仰望图有三个顶点,画出它们的原象所在的线段,用绿线暗示,如图;(4)三种颜色的公共点(一定要三种颜色公共交点)即为几何体的顶点,连接各顶点即为原几何体,如图.然后计较出最长的棱.课后习题:1、某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.314C.316 答案:B2、某几何体的三视图,如图所示,则此几何体的概略积是( )cm²答案:D。
中心内容:三视图的长度特点——“长对齐,宽相等,高平齐”,即正视图和左视图同样高,正视图和俯视图同样长,左视图和俯视图同样宽。
复原三步骤:1)先画正方体或长方体,在正方体或长方体地面上截拿出俯视图形状;2)依照正视图和左视图有无垂直关系和节点,确立并画出刚才截拿出的俯视图中各节点处垂直拉升的线条(剔除此中无需垂直拉升的节点,不可以确立的先垂直拉升),由高平齐确立其长短;3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去全部的协助线条即可获得复原的几何体。
方法展现(1)将以下图的三视图复原成几何体。
复原步骤:①依照俯视图,在长方体地面初绘ABCDE如图;②依照正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不行能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确立点S的地点;如图③将点S与点ABCD分别连结,隐去全部的协助线条,即可获得复原的几何体S-ABCD以下图:)cm3。
经典题型:例题1:若某几何体的三视图,以下图,则此几何体的体积等于(解答:(24)例题2:一个多面体的三视图以下图,则该多面体的表面积为()答案:21+3计算过程:步骤以下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依照正视图和左视图中显示的垂直关系,判断出节点E、F、M、N处不行能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确立点G,G',B',D',E',F'地地点如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连结,将G'与点E'、F'分别连结,隐去全部的协助线即可获得复原的几何体,以下图。
例题3:以下图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)复原图形方法一:若由主视图引起,详细步骤以下:(1)依照主视图,在长方体后侧面初绘ABCM如图:2)依照俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不行能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确立点D的地点如图:3)将点D与A、B、C分别连结,隐去全部的协助线条即可获得复原的几何体D—ABC以下图:解:置于棱长为4个单位的正方体中研究,该几何体为四周体D—ABC,且AB=BC=4,AC=42,DB=DC=25,可得DA=6.故最长的棱长为6.方法2若由左视图引起,详细步骤以下:((1)依照左视图,在长方体右边面初绘BCD如图:(2)依照正视图和俯视图中显示的垂直关系,判断出在节点C、D处不行能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确立点A的地点,如图:3)将点A与点B、C、D分别连结,隐去全部的协助线条即可获得复原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,因此我们能够用一个正方体做载体复原:1)依据正视图,在正方体中画出正视图上的四个极点的原象所在的线段,用红线表示。