同底数幂的除法1[下学期]--浙教版-
- 格式:pdf
- 大小:1003.52 KB
- 文档页数:8
浙教版八年级数学一、知识点总结。
1. 代数部分。
- 整式的乘除。
- 同底数幂的乘法:a^m× a^n = a^m + n(m,n为正整数),例如2^3×2^4=2^3 + 4=2^7。
- 同底数幂的除法:a^m÷ a^n=a^m - n(a≠0,m,n为正整数且m>n),如3^5÷3^2 = 3^5 - 2=3^3。
- 幂的乘方:(a^m)^n=a^mn,例如(2^3)^4=2^3×4=2^12。
- 积的乘方:(ab)^n=a^n b^n,如(2×3)^4 = 2^4×3^4。
- 因式分解。
- 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
例如ax+ay=a(x + y)。
- 公式法。
- 平方差公式:a^2 - b^2=(a + b)(a - b),如9x^2-16y^2=(3x + 4y)(3x -4y)。
- 完全平方公式:a^2±2ab + b^2=(a± b)^2,例如x^2+6x + 9=(x + 3)^2。
2. 几何部分。
- 三角形。
- 三角形的内角和为180^∘,可以通过作平行线等方法进行证明。
- 三角形的三边关系:两边之和大于第三边,两边之差小于第三边。
例如,若三角形三边为a,b,c,则a + b>c且| a - b|。
- 等腰三角形的性质:两腰相等,两底角相等;等腰三角形三线合一(底边上的高、中线、顶角平分线重合)。
- 等边三角形的性质:三边相等,三个内角都等于60^∘。
- 平行四边形。
- 平行四边形的定义:两组对边分别平行的四边形是平行四边形。
- 平行四边形的性质。
- 对边相等:若平行四边形ABCD,则AB = CD,AD = BC。
- 对角相等:∠ A=∠ C,∠ B=∠ D。
- 对角线互相平分:AO = CO,BO = DO(O为对角线交点)。
3.6 同底数幂的除法第2课时 零指数幂与负整数指数幂知识点1 零指数幂与负整数指数幂的概念零指数幂的意义:规定:a 0=1(a≠0),即任何不等于零的数的零次幂都等于1.负整数指数幂的意义:a -p=1a p (a≠0,p 是正整数).即任何不等于零的数的-p(p 是正整数)次幂,等于这个数的p 次幂的倒数.1.下列说法中,正确的是( ) A .(m -1)0的值总等于1 B .3-3表示-3个3相乘 C .a -m =-a mD .a -m (a≠0,m 是正整数)表示m 个a 乘积的倒数 知识点2 科学记数法表示绝对值较小的数对于绝对值较小的数,我们可以用a×10-n来表示,其中n 的值为第一个非零数前的零的个数.例如0.00123=1.23×10-3.2.某种生物细胞的直径约为0.00056 m ,将0.00056用科学记数法表示为( ) A .0.56×10-3 B .5.6×10-4 C .5.6×10-5 D .56×10-5探究 一 零指数幂与负整数指数幂的有关计算教材例5变式计算:(1)20+2-1;(2)(-15)-2×(7)0;(3)(-3)4÷36.[归纳总结] 正确理解零指数幂与负整数指数幂的意义,依据规定进行计算,这样才不易出错.探究 二 科学记数法表示绝对值较小的数教材例4变式题2016•苏州肥皂泡的泡壁厚度大约是0.0007 mm ,0.0007用科学记数法表示为( )A .0.7×10-3B .7×10-3C .7×10-4D .7×10-5[反思] 计算:-12x4y3z÷(-3x3y2).解:原式=-12÷(-3) x4-3y3-2①=-4xy.②(1)找错:从第________步开始出现错误;(2)纠错:一、选择题1.计算:⎝ ⎛⎭⎪⎫120=( ) A .-2 B .2 C .1 D .-12.下列运算正确的是( ) A .x 2·x 3=x 6 B .3-2=-6 C .(x 3)2=x 5 D .40=13.下列说法中正确的是( ) A .(π-3.14)0没有意义 B .任何数的零次幂都等于1C .一个不等于0的数的倒数的-p 次幂(p 是正整数)等于它的p 次幂D .计算(33-3×9)0的结果是14.2016·宜宾科学家在实验中检测出某微生物细胞的直径约为0.0000035米,将0.0000035用科学记数法表示为( )A .3.5×10-6B .3.5×106C .3.5×10-5D .35×10-55.2015·厦门2-3可以表示为( ) A .22÷25 B .25÷22 C .22·25D .(-2)×(-2)×(-2)6.计算10-⎝ ⎛⎭⎪⎫-122016×22017的结果是( )A .-2B .-1C .2D .3二、填空题7.计算:30-2-1=________.8.计算:(1)3-3=________;(2)10-3=________;(3)1-20=________;(4)20160=________.9.纳米是非常小的长度单位,已知1纳米=10-6毫米.已知某种病毒的直径约为100纳米,若将这种病毒排成1毫米长,则病毒的个数是________.10.当m________时,(m -2)0=1成立.11.(1)已知34000=3.4×10x,则x =________;(2)已知0.0000283= 2.83×10x,则x =________________________________________________________________________;(3)已知100=0.1x,则x =________. 三、解答题12.用整数或分数表示下列各数.(1)⎝ ⎛⎭⎪⎫142; (2)⎝ ⎛⎭⎪⎫14-2;(3)⎝ ⎛⎭⎪⎫-142; (4)⎝ ⎛⎭⎪⎫-14-2.13.计算:(1)5-2÷2-3;(2)⎝ ⎛⎭⎪⎫120-⎝ ⎛⎭⎪⎫13-2;(3)⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫150+⎝ ⎛⎭⎪⎫15-2;(4)⎝ ⎛⎭⎪⎫-122÷(-2)3×(-2)-2.14.(1)2016·台州计算:4-⎪⎪⎪⎪⎪⎪-12+2-1;(2)2016·嘉兴、舟山计算:|-4|×(3-1)0-2;(3)计算:(2-3)0-9-(-1)2017-|-2|+(-13)-2.1.已知(x -2)=1,则x =________.2.比较下列各数的大小,并用“=”和“<”把各数连接起来.104,100,10-4,(10-2)2,(102)-2,⎝ ⎛⎭⎪⎫110-4.详解详析教材的地位和作用本节内容是在学生系统地学习了幂的运算后而安排学习的,符合学生从易到难的认知规律.本节中零指数幂和负整数指数幂是同底数幂的除法的特殊情形.通过对本节内容的学习,同底数幂的除法运算的指数从正整数推广到了整数,完善幂的运算知识教学目标知识与技能1.了解零指数幂与负整数指数幂的概念;2.能用科学记数法表示绝对值较小的数;3.了解幂运算的法则可以推广到整数指数幂过程与方法经历探索零指数幂和负整数指数幂的法则的过程,进一步体会幂的意义,提高推理能力和有条理的表达能力情感、态度与价值观在探索零指数幂和负整数指数幂的法则的过程中获取成功的体验,建立自信心,提高学习数学的兴趣教学重点难点重点零指数幂和负整数指数幂的概念难点认识零指数幂和负整数指数幂的产生过程易错点在用科学记数法表示绝对值较小的数时,10的幂的次数较易出错【预习效果检测】1.[解析] D 因为按规定,在(m-1)0=1中,m-1≠0,当m-1=0时,(m-1)0无意义,所以选项A不正确.因为负整数指数幂有其特殊的意义,不能按照正整数指数幂的意义理解,所以选项B不正确.因为a-m=1a m≠-a m,所以选项C不正确.故选D.2.B【重难互动探究】例1解:(1)原式=1+12=32.(2)原式=(-5)2×1=25.(3)原式=3-2=19.例2[解析] C0.0007=7×10-4.故选C.【课堂总结反思】[反思] (1)①(2)原式=-12÷(-3) x4-3y3-2z=-4xyz. 【作业高效训练】[课堂达标]1.C2.[解析] D x 2·x 3=x 5,故A 项错.3-2=132=19,故B 项错.(x 3)2=x 6,故C 项错.D 项正确.3.C 4.A 5.A6.[解析] B 10-⎝ ⎛⎭⎪⎫-122016×22017=1-⎝ ⎛⎭⎪⎫122016×22017=1-⎝ ⎛⎭⎪⎫12×22016×2=1-2=-1.7.[答案] 128.[答案] (1)127 (2)0.001 (3)1 (4)19.[答案] 104[解析] 1÷(100×10-6)=1÷10-4=1÷1104=104(个).10.[答案] ≠211.[答案] (1)4 (2)-5 (3)-2 12.解:(1)⎝ ⎛⎭⎪⎫142=116.(2)⎝ ⎛⎭⎪⎫14-2=1⎝ ⎛⎭⎪⎫142=16.(3)⎝ ⎛⎭⎪⎫-142=⎝ ⎛⎭⎪⎫142=116.(4)⎝ ⎛⎭⎪⎫-14-2=1⎝ ⎛⎭⎪⎫-142=1⎝ ⎛⎭⎪⎫142=16. 13.解:(1)5-2÷2-3=152÷123=2352=825.(2)⎝ ⎛⎭⎪⎫120-⎝ ⎛⎭⎪⎫13-2=1-1⎝ ⎛⎭⎪⎫132=1-9=-8.(3)⎝ ⎛⎭⎪⎫152+⎝ ⎛⎭⎪⎫150+⎝ ⎛⎭⎪⎫15-2=125+1+1⎝ ⎛⎭⎪⎫152= 125+1+25=26125. (4)⎝ ⎛⎭⎪⎫-122÷(-2)3×(-2)-2=(-2)-2÷(-2)3×(-2)-2=(-2)-2-3-2=(-2)-7=-127.14.解:(1)原式=2-12+12=2.(2)原式=4×1-2=2.(3)原式=1-3+1-2+9=6. [数学活动]1.[答案] 5,3,1[解析] 当x -5=0,即x =5时,得30=1;当x -2=1,即x =3时,得1-2=1;当x -2=-1,即x =1时,得(-1)-4=1,所以x =5,3,1.2.[解析] 根据幂的运算性质,先把各数化为整数或小数.解:104=10000, 100=1,10-4=1104=110000=0.0001,(10-2)2=10-4=0.0001, (102)-2=10-4=0.0001,⎝ ⎛⎭⎪⎫110-4=1⎝ ⎛⎭⎪⎫1104=104=10000.因为0.0001<1<10000,所以10-4=(10-2)2=(102)-2<100<104=⎝ ⎛⎭⎪⎫110-4.。
第14讲:同底数幂的除法、零指数幂与负整数指数幂一、本讲知识标签同底数幂的除法:(≠0, 为正整数,并且). 同底数幂相除,底数不变,指数相减.零指数幂:即任何不等于零的数的零次方等于1.负整数指数幂:a-n=n a 1( a ≠0,n 为正整数)即:任何不为零的-n (n 为正整数)次幂等于这个数n 次幂的倒数要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.二、范例分析例1.已知,求的值.【分析】利用除法与乘法的互逆关系,通过计算比较系数和相同字母的指数得到的值即可代入求值.解:由已知,得,即,,,解得,,.所以. 也可以直接做除法,然后比较系数和相同字母的指数得到的值.【变式】(1)已知,求的值. (2)已知,,求的值. (3)已知,,求的值.【答案】解:(1)由题意,知.∴ . ∴ ,解得.a m n ,m n >()010.a a =≠312326834m n ax y x y x y ÷=(2)n m n a +-m n a 、、312326834m n ax y x y x y ÷=31268329284312m n n ax y x y x y x y +=⋅=12a =39m =2812n +=12a =3m =2n =22(2)(23212)(4)16n m n a +-=⨯+-=-=m n a 、、1227327m m -÷=m 1020a =1105b =293a b ÷23m =24n =322m n -312(3)327m m -÷=3(1)2333m m --=3323m m --=6m =(2)由已知,得,即.由已知,得.∴ ,即.∴ ∴. (3)由已知,得.由已知,得.∴ .例2.已知2a=3,4b=6,8c=12,a 、b 、c 的关系.【分析】本题逆用幂的运算规律,同底数幂乘除的规律,巧妙地将3用2a 代替将6用22b 代换,化成2的幂,从而找出a 、b 、c 之间的关系.解:因为8c=12,所以(23)c=2×6,又因为4b=6,所以23c=2×4b=2×22b=22b+1,所以3c=2b+1因为4b=6,所以22b=2×3,又因为2a=3,所以22b=2×2a=2a+1,所以2b=a+1,所以3c-1=a+1,所以a-4b+3c=0.三、训练提高(一)选择题:1.(2015•下城区二模)下列运算正确的是( )A .(a3﹣a )÷a=a2B .(a3)2=a5C .a3+a2=a5D .a3÷a3=12.化简11)(--+y x 为( ) A 、y x +1 B 、y x 1+ C.、1+xy y D 、1+xy x 3.已知P=,那么P 、Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定(二)填空题:4. 计算.5.(2015春•成都校级月考)(﹣a6b7)÷= . 1020a =22(10)20a =210400a =1105b =211025b =221101040025a b ÷=÷2241010a b -=224a b -=22222493333381a b a b a b -÷=÷===23m =3227m =24n =2216n =32322722216m n m n -=÷=9999909911,99Q =()()34432322396332x y x y x y x y x y xy -+÷=-+-6.若整数x 、y 、z 满足,则x=_______,y=_______,z=________.(三) 解答题:7.先化简,再求值:,其中=-5.8.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.(4分)9.若2010=a , 1510-=b ,求b a 239÷的值.10.已知,求整数x.11.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 …请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c +=+≠与它们的关系,猜想它的解是什么?并加以验证.12.请你来计算:若1+x +x2+x3=0,求x +x2+x3+…+x2012的值.91016()()()28915x y x ⨯⨯=()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦a 2(1)1x x +-=。
同底数幂的除法同底数幂除法法则:同底数幂相除,底数不变,指数相减。
即a m ÷a n ==a m -n (a ≠0,m ,n 都是正整数,且m >n )正确理解法则的含义应注意的问题:1. 在运算公式n m n m aa a -=÷中,0≠a ,因为当a=0时,a 的非零次幂都为0,而0不能作除数,所以0≠a2. 底数相同,如23)5(6-÷-是除法运算,但不是同底数幂相除,不能运用这个法则3. 相除运算,如23a a +是同底数幂,但不是相除运算,不能运用这个法则4. 运算结果是底数不变,指数相减,而不是指数相除例1 计算 (1)22243647)4();())(3(;)())(2(;b bxy xy x x a a m ÷÷-÷-÷+ 解:(1)(2)(3)(4)知能点6 同底数幂的除法应用例2 计算:(1)8322158213)())(2(;a a a x x x ÷-÷-÷÷提示:对于两个或三个以上的同底数幂相除,仍然适用运算性质。
解:(1)(2)知能点7 零指数与负整数指数的意义(1)零指数 )0(10≠=a a 即任何不等于0的数的0次幂都等于1(2)负整数指数 =-p a (p 是正整数)即任何不等于零的数的-p(p 是正整数)次幂,等于这个数的p 次幂的倒数。
规律点拔:(1) 零指数幂和负整数指数幂中,底数都不能为0,即0≠a(2) 规定了零指数和负整数指数的意义后,正整数指数幂的运算性质就可以推广到整数指数幂知能点8用小数或分数表示绝对值较小的数例3 (1)4203106.1)3(;87)2(;10---⨯+解:(1)(2)(3)【知能整合提升】一、选择题1、如果mn n m a A a =÷)(,那么A 的值为( )A 、m a ;B 、n a ;C 、1;D 、mn a 。
浙教版数学七年级下册3.6《同底数幂的除法》教学设计一. 教材分析同底数幂的除法是初中数学中的一个重要概念,也是幂的运算法则之一。
浙教版数学七年级下册3.6节主要介绍同底数幂的除法法则,内容包括同底数幂的除法运算、指数的变化规律以及应用。
通过本节课的学习,学生能够掌握同底数幂的除法运算规则,并能够运用这些规则解决实际问题。
二. 学情分析学生在学习同底数幂的除法之前,已经学习了同底数幂的乘法、幂的乘方等知识。
因此,学生对于幂的概念和幂的运算规则已经有一定的了解。
但学生在运用同底数幂的除法规则解决实际问题时,可能会遇到一些困难。
因此,在教学过程中,教师需要引导学生通过实际例子来理解同底数幂的除法规则,并能够灵活运用。
三. 教学目标1.理解同底数幂的除法规则,掌握同底数幂的除法运算方法。
2.能够运用同底数幂的除法规则解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.同底数幂的除法规则的理解和运用。
2.指数变化规律的把握。
五. 教学方法1.情境教学法:通过实际例子引导学生理解同底数幂的除法规则。
2.归纳教学法:引导学生通过实际例子总结同底数幂的除法规则。
3.练习法:通过大量的练习题,让学生巩固同底数幂的除法运算。
六. 教学准备1.教学PPT:制作同底数幂的除法相关内容的PPT。
2.练习题:准备一些同底数幂的除法运算题目,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过一个实际例子,如“计算34÷32”,引导学生思考同底数幂的除法规则。
让学生回顾已学的同底数幂的乘法规则,激发学生的学习兴趣。
2.呈现(15分钟)教师通过PPT展示同底数幂的除法规则,并用简洁的语言进行解释。
同时,教师可以通过一些具体的例子来说明同底数幂的除法规则,让学生更好地理解。
3.操练(15分钟)教师让学生进行同底数幂的除法运算练习。
教师可以设置一些不同难度的题目,让学生逐步掌握同底数幂的除法规则。
数学教案-同底数幂的除法第二课时一、教学目标1.理解同底数幂的除法法则,并能正确运用法则进行运算。
2.培养学生的逻辑思维能力和解决问题的能力。
3.培养学生合作交流、自主探究的学习习惯。
二、教学重难点重点:同底数幂的除法法则的应用。
难点:灵活运用同底数幂的除法法则解决实际问题。
三、教学过程1.导入新课师:同学们,上一节课我们学习了同底数幂的除法,谁能告诉我同底数幂的除法法则是什么?生1:同底数幂相除,底数不变指数相减。
师:很好,那我们今天就来进一步学习同底数幂的除法,看看有哪些新的发现和运用。
2.学习新课(1)探究同底数幂的除法法则生2:同底数幂相除,底数不变指数相减。
(2)巩固练习师:请同学们完成练习题1、2、3。
生3:练习题1,2^5÷2^2=2^(5-2)=2^3。
生4:练习题2,3^7÷3^4=3^(7-4)=3^3。
生5:练习题3,5^9÷5^6=5^(9-6)=5^3。
师:同学们做得很好,看来大家已经掌握了同底数幂的除法法则。
3.拓展提高师:我们来看一些稍微复杂一些的题目。
请同学们完成练习题4、5、6。
生6:练习题4,(2^5)^3÷2^2=2^(53)÷2^2=2^13÷2^2=2^(13-2)=2^11。
生7:练习题5,(3^4)^2÷3^5=3^(42)÷3^5=3^8÷3^5=3^(8-5)=3^3。
生8:练习题6,(5^3)^2÷5^7=5^(32)÷5^7=5^6÷5^7=5^(6-7)=5^(-1)。
师:同学们做得非常好,这些题目涉及到了幂的乘方和同底数幂的除法,需要灵活运用法则。
5.课堂小结师:同学们,今天我们学习了同底数幂的除法,大家掌握得怎么样?谁能来说说同底数幂的除法法则?生9:同底数幂相除,底数不变指数相减。
师:很好,看来大家已经掌握了这个法则。
解码专训一:运用幂的运算法则巧计算名师点金:同底数幂的乘法、幂的乘方、积的乘方和同底数幂的除法等运算是整式乘除运算的基础,同底数幂的除法和整式的除法分别是同底数幂的乘法和整式的乘法的逆运算,要熟练掌握同底数幂相乘、幂的乘方、积的乘方、同底数幂相除的运算法则,并能利用这些法则解决有关问题.运用同底数幂的乘法法则计算题型1:底数是单项式的同底数幂的乘法1.计算:(1)a2·a3·a;(2)-a2·a5;(3)a4·(-a)5.题型2:底数是多项式的同底数幂的乘法2.计算:(1)(x+2)3·(x+2)5·(x+2);(2)(a-b)3·(b-a)4;(3)(x-y)3·(y-x)5.题型3:同底数幂的乘法法则的逆用3.(1)已知2m=a,2n=b,求2m+n的值;(2)已知2x=c,求2x+3的值.运用幂的乘方法则计算题型1:直接运用求字母的值4.已知273×94=3x ,求x 的值.题型2:逆用法则求字母式子的值5.已知10a =2,10b =3,求103a +b 的值.题型3:运用幂的乘方解方程6.解方程:⎝ ⎛⎭⎪⎫34x -1=1-716.运用积的乘方法则进行计算题型1:逆用积的乘方计算7.用简便方法计算:(1)⎝ ⎛⎭⎪⎫-1258×(0.25)5×⎝ ⎛⎭⎪⎫578×(-4)5; (2)0.1252 015×(-82 016).题型2:运用积的乘方求字母式子的值8.若|a n |=12,|b|n =3,求(ab)4n 的值.运用同底数幂的除法法则进行计算题型1:运用同底数幂的除法法则计算9.计算:(1)x 10÷x 4÷x 4;(2)(-x)7÷x 2÷(-x)3;(3)(m -n)8÷(n -m)3.题型2:运用同底数幂的除法解方程10.解方程:已知(x-1)x2-1=1,求x的值.解码专训二:巧用幂的有关法则比较大小名师点金:巧用幂的乘方比较大小的方法:(1)底数比较法:运用幂的乘方变形为指数相等,底数不同的形式进行比较;(2)指数比较法:运用幂的乘方变形为底数相等,指数不同的形式进行比较.比较幂的大小方法一:指数比较法1.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a方法二:底数比较法2.350,440,530的大小关系是()A.350<440<530B.530<350<440C.530<440<350D.440<530<350方法三:作商比较法3.已知P=999999,Q=119990,那么P,Q的大小关系是()A.P>Q B.P=QC.P<Q D.无法比较比较指数大小4.已知x a=3,x b=6,x c=12,那么下列关系正确的是()A .a +b >cB .2b <a +cC .2b =a +cD .2a <b +c比较底数大小5.已知a ,b ,c ,d 均为正数,且a 2=2,b 3=3,c 4=4,d 5=5,那么a ,b ,c ,d 中最大的数是( )A .aB .bC .cD .d解码专训三:幂的运算之误区名师点金:幂的相关运算法则种类较多,彼此之间极易混淆,易错点易误点较多,主要表现在混淆法则,符号辨别不清,忽略指数“1”等.混淆运算法则1.下列计算正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a 5C .(a 2)3=a 5D .a 3÷a 2=a 52.计算:(1)(a 3)2+a 5;(2)a 4·a 4+(a 2)4+(-4a 4)2.符号辨别不清3.计算⎝ ⎛⎭⎪⎫-12ab 23的结果是( ) A .-32a 3b 6 B .-32a 3b 5C .-18a 3b 5D .-18a 3b 64.计算:(1)(-a2)3;(2)(-a3)2;(3)[(-a)2]3; (4)a·(-a)2·(-a)7.忽略指数“1”5.下列算式中,正确的是()A.3a3·2a2=6a6B.2x3·4x5=8x8C.3x·3x4=9x4D.5x7·5y7=10y14不能灵活运用整体思想6.化简:(1)(x+y)5÷(-x-y)2÷(x+y);(2)(a-b)9÷(b-a)4÷(a-b)3.不能灵活运用转化思想7.(1)若3x+2y-3=0,求27x·9y的值;(2)已知3m=a,9n=b,求32m-4n+1的值.用科学记数法表示较小的数时指数出错8.已知1毫米=1 000微米,用科学记数法表示2.5微米是________毫米.解码专训四:整体思想在整式乘除运算中的应用 名师点金:解决某些数学问题时,把一组数或一个代数式看作一个整体进行处理,不仅可以简化解题过程,而且还能拓宽思路,培养创新意识,体现了数学中的一种重要思想——整体思想.这一思想在整式的乘法运算中体现明显,在解题中应用较多,要引起重视.利用整式的运算化简求值1.先化简,再求值:(1)⎝ ⎛⎭⎪⎫-518x 4y 5z 5÷23xy 2z÷⎝ ⎛⎭⎪⎫-56x 3y 2z 3-⎝ ⎛⎭⎪⎫-78x 3y 4z 7·4xy÷72y 4z 5,其中x =-1,y =-2,z =3;(2)x(x 2-4)-(x +3)(x 2-3x -2)-2x(x -2),其中x =5.利用整式的运算解方程2.求适合方程2x(x -1)-x(2x -5)=12的未知数x 的值.利用整式的运算解决面积问题(数形结合思想)3.如图,某市有一块长为(3a +b) m ,宽为(2a +b) m 的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出a =3,b =2时的绿化面积.(第3题)利用整式乘积中项的特征求字母的取值4.多项式(mx+8)(2-3x)展开后不含x的一次项,求m的值.整体思想在整式运算中的应用5.已知(2 016-a)(2 014-a)=2 015,求(2 016-a)2+(2 014-a)2的值.6.计算:(a1+a2+…+a n-1)(a2+a3+…+a n-1+a n)-(a2+a3+…+a n-1)(a1+a2+…+a n).解码专训五:巧用乘法公式进行计算名师点金:乘法公式是指平方差公式和完全平方公式,公式可以正用,也可以逆用.在使用公式时,要注意以下几点:(1)公式中字母a ,b 广泛的含义,a ,b 可以是任意一个代数式;(2)公式可以连续使用;(3)掌握好公式中各项的关系及整个公式的结构特点;(4)在运用公式时要学会运用一些变形技巧.乘法公式的灵活运用1.计算:(1)(4x -5y +3)(4x +5y +3);(2)(3a +2b +7c)2.巧用乘法公式的变形求代数式的值2.已知(a +b)2=7,(a -b)2=4.求a 2+b 2和ab 的值.3.已知x +1x =3,求x 4+1x 4的值.巧用乘法公式进行简便运算4.(1)2 0172-2 016×2 018;(2)⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×⎝ ⎛⎭⎪⎫1-142×…×⎝ ⎛⎭⎪⎫1-192× ⎝ ⎛⎭⎪⎫1-1102;(3)(2+1)×(22+1)×(24+1)×…×(21 024+1).巧用乘法公式解决整除问题5.试说明:(n +7)2-(n -5)2(n 为整数)能被24整除.巧用乘法公式解决复杂问题(换元法)6.计算错误!的值.巧用乘法公式解决实际问题(分类讨论思想)7.王老师在一次团体体操队列造型设计中,先让全体队员排成一方阵(行与列的人数一样多的队形,且总人数不少于25人),人数正好够用,然后再进行各种造型变化,其中一个造型需分为5人一组,手执彩带变换图形,在讨论分组方案时,有人说现在的队员人数按5人一组分将多出3人,你说这可能吗?答案解码专训一1.解:(1)a 2·a 3·a =a 6.(2)-a 2·a 5=-a 7.(3)a 4·(-a)5=-a 9.2.解:(1)(x +2)3·(x +2)5·(x +2)=(x +2)9.(2)(a -b)3·(b -a)4=(a -b)3·(a -b)4=(a -b)7.(3)(x -y)3·(y -x)5=(x -y)3·[-(x -y)5]=-(x -y)8.3.解:(1)2m +n =2m ·2n =a·b =ab ;(2)2x +3=2x ·23=8·2x =8c.4.解:273×94=(33)3×(32)4=39×38=317=3x ,所以x =17.5.解:103a +b =103a ·10b =(10a )3·10b =23×3=24.6.解:⎝ ⎛⎭⎪⎫34x -1=1-716 ⎝ ⎛⎭⎪⎫34x -1=916 ⎝ ⎛⎭⎪⎫34x -1=⎝ ⎛⎭⎪⎫342 所以x -1=2,x =3.7.解:(1)⎝ ⎛⎭⎪⎫-1258×(0.25)5×⎝ ⎛⎭⎪⎫578×(-4)5 =⎝ ⎛⎭⎪⎫-758×⎝ ⎛⎭⎪⎫145×⎝ ⎛⎭⎪⎫578×(-4)5 =[(-75)8×(57)8]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫145×(-4)5 =1×(-1)=-1.(2)0.1252 015×(-82 016)=⎝ ⎛⎭⎪⎫182 015×(-82 015×8) =⎝ ⎛⎭⎪⎫182 015×(-82 015)×8 =-1×8=-8.8.解:∵|a n |=12,|b|n =3,∴a n =±12,b n =±3. ∴(ab)4n =a 4n ·b 4n =(a n )4·(b n )4=⎝ ⎛⎭⎪⎫±124×(±3)4=116×81=8116. 9.解:(1)x 10÷x 4÷x 4=x 2;(2)(-x)7÷x 2÷(-x)3=-x 7÷x 2÷(-x 3)=x 2;(3)(m -n)8÷(n -m)3=(n -m)8÷(n -m)3=(n -m)5.10.解:∵(x -1)x 2-1=1,∴x 2-1=0,∴x 2=1,解得:x =±1.∵x -1作为底数不能为0,∴x =-1.综上所述x =-1.1.A点拨:因为a=8131=(34)31=3124,b=2741=(33)41=3123,c=961=(32)61=3122,而124>123>122,所以3124>3123>3122,即a>b>c,故选A.本题采用的是指数比较法.将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.2.B点拨:因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440,故选B.本题采用的是底数比较法.将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.3.B点拨:因为PQ=999999×990119=(9×11)9999×990119=99×119999×990119=1,所以P=Q,故选B.本题采用的是作商比较法.当a>0,b>0时,利用“若ab>1,则a>b;若ab=1,则a=b;若ab<1,则a<b”比较.4.C点拨:因为x a=3,x b=6=2×3,x c=12=22×3,而(2×3)2=3×(22×3),所以(x b)2=x a·x c,即x2b=x a+c,所以2b=a+c,故选C.5.B点拨:直接比较四个数的大小较烦琐,可两个两个地比较,确定最大的数.因为(a2)3=a6=23=8,(b3)2=b6=32=9,所以a6<b6,于是a<b.因为(b3)4=b12=34=81,(c4)3=c12=43=64,所以b12>c12,于是b>c.因为(b3)5=b15=35=243,(d5)3=d15=53=125,所以b15>d15,于是b>d.综上可知,b是最大的数,故选B.1.B2.解:(1)(a3)2+a5=a6+a5.(2)a4·a4+(a2)4+(-4a4)2=a8+a8+16a8=18a8.3.D4.解:(1)(-a2)3=-a6;(2)(-a3)2=a6;(3)[(-a)2]3=a6;(4)a·(-a)2·(-a)7=a·a2·(-a7)=-a10.5.B6.解:(1)原式=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.(2)原式=(a-b)9÷(a-b)4÷(a-b)3=(a-b)2. 7.解:(1)27x·9y=(33)x·(32)y=33x·32y=33x+2y.∵3x+2y-3=0,∴3x+2y=3,∴原式=33=27.(2)32m-4n+1=32m÷34n×31=(3m)2÷(32n)2×3=(3m)2÷(9n)2×3=a2÷b2×3=3a2 b2.8.2.5×10-31.解:(1)原式=-518×32·x4-1y5-2·z5-1÷(-56x3y2z3)-(-78×4·x3+1y4+1z7)÷72y4z5=-512x3y3z4÷⎝⎛⎭⎪⎫-56x3y2z3+72x4y5z7÷72y4z5=512×65·x3-3y3-2z4-3+x4y5-4z7-5=12x0yz+x4yz2=12yz+x4yz2.当x=-1,y=-2,z=3时,原式=12×(-2)×3+(-1)4×(-2)×32=-3-18=-21.(2)原式=x3-4x-x3+3x2+2x-3x2+9x+6-2x2+4x=-2x2+11x+6.当x=5时,原式=-2×52+11×5+6=11.2.解:2x(x-1)-x(2x-5)=12.2x2-2x-2x2+5x=12.3x=12.x= 4.故适合方程2x(x-1)-x(2x-5)=12的未知数x的值为4.3.解:绿化的面积是:(3a+b)(2a+b)-(a+b)2=6a2+3ab+2ab+b2-a2-2ab-b2=(5a2+3ab)(m2).当a=3,b=2时,绿化面积是5×32+3×3×2=63(m2).4.解:(mx+8)(2-3x)=2mx-3mx2+16-24x=-3mx2+(2m-24)x+16.因为展开后不含x的一次项,所以2m-24=0,所以m=12.点拨:该多项式展开后不含x的一次项,说明展开后x的一次项的系数为0,因此,本题只要利用多项式乘法法则展开后,令x的一次项的系数为0,即可列出方程求m的值.5.解:(2 016-a)2+(2 014-a)2=[(2 016-a)-(2 014-a)]2+2(2 016-a)(2 014-a)=22+2×2 015=4+4 030=4 034.点拨:本题运用乘法公式的变形x 2+y 2=(x -y)2+2xy ,结合整体思想求解,显得简便.6.解:设a 2+a 3+…+a n -1=M ,则原式=(a 1+M)(M +a n )-M(a 1+M +a n )=a 1M +a 1a n +M 2+a n M -a 1M -M 2-a n M =a 1a n .点拨:本题如果按正常展开的方式来运算显然是很复杂的.这一类带“…”的题中,往往蕴藏着重要的技巧,而发现技巧的关键是观察.因此,在解决这类问题时,不要忙于解答,而要冷静观察,寻找解决问题的突破口.比如此题,在观察时能发现a 2+a 3+…+a n -1这个式子在每一个因式中都存在.因此,可以考虑将这个式子作为一个整体,设为M ,问题就简化了,体现了整体思想的运用.解码专训五1.解:(1)原式=[(4x +3)-5y][(4x +3)+5y]=(4x +3)2-(5y)2=16x 2+24x +9-25y 2.(2)原式=[(3a +2b)+7c]2=(3a +2b)2+2(3a +2b)·7c +49c 2=9a 2+12ab +4b 2+42ac +28bc +49c 2.2.解:(a +b)2=a 2+2ab +b 2=7,①(a -b)2=a 2-2ab +b 2=4,②所以a 2+b 2=12×(①+②)=12×11=112,ab =14×(①-②)=14×3=34. 3.解:因为x +1x =3,所以(x +1x )2=9,所以x 2+1x 2=7,所以⎝ ⎛⎭⎪⎫x 2+1x 22=49,所以x 4+1x 4=47.4.解:(1)原式=2 0172-(2 017-1)×(2 017+1)=2 0172-(2 0172-12)=2 0172-2 0172+1=1.(2)原式=⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+13×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+14×⎝ ⎛⎭⎪⎫1-14×…×⎝ ⎛⎭⎪⎫1+19×⎝ ⎛⎭⎪⎫1-19×⎝ ⎛⎭⎪⎫1+110×⎝ ⎛⎭⎪⎫1-110 =32×12×43×23×54×34×…×109×89×1110×910=12×1110=1120.(3)原式=(2-1)×(2+1)×(22+1)×(24+1)×…×(21 024+1)=(22-1)×(22+1)×(24+1)×…×(21 024+1)=(24-1)×(24+1)×…×(21 024+1)=(28-1)×…×(21 024+1)=(21 024-1)×(21 024+1)=22 048-1.5.解:(n +7)2-(n -5)2=(n +7+n -5)·(n +7-n +5)=(2n +2)·12=24(n +1).因为n 为整数,所以(n +7)2-(n -5)2能被24整除.6.解:设20 172 016=m ,则原式=m 2(m -1)2+(m +1)2-2=m 2(m 2-2m +1)+(m 2+2m +1)-2=m 22m 2=12.7.解:人数可能为(5n)2,(5n +1)2,(5n +2)2,(5n +3)2,(5n +4)2(n 为正整数).(5n)2=5n·5n ;(5n +1)2=25n 2+10n +1=5(5n 2+2n)+1;(5n +2)2=25n 2+20n +4=5(5n 2+4n)+4;(5n +3)2=25n 2+30n +9=5(5n 2+6n +1)+4;(5n +4)2=25n 2+40n +16=5(5n 2+8n +3)+1.由此可见,无论哪一种情形总人数按每组5人分组所多出的人数只可能是1或4,不可能是3.点拨:因为全体队员可排成一个方阵,所以总人数是一个完全平方数,设排成m行m列,则总人数为m2.根据其中一个造型需分为5人一组,可考虑m为5n,5n+1,5n+2,5n+3,5n+4中的某种情形,其中n为正整数,从而全体人数m2的可能情况即可求出.初中数学试卷。