一轮复习圆锥曲线离心率问题
- 格式:ppt
- 大小:2.64 MB
- 文档页数:32
1.(福建卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3.(辽宁卷)方程22520x x -+=的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2336. (全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A (B )12(C )2 (D 1 7. (广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )(B)32(C)83(D)238.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+B .13-C .213+D .13+9.[全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5 B . 5 C .25 D .45 10.( 福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32 C .22 D .2311.( 重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7312.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3 C.(3,+∞)D.[)3,+∞13.(江西卷 7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2C .(0,2D .,1)2 14.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(215.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABC D16.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=17.(江苏卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = . 18.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .19、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。
专题6 圆锥曲线离心率及范围问题离心率在圆锥曲线问题中有着重要应用,它的变化会直接导致曲线类型和形状的变化,同时它又是圆锥曲线统一定义中的三要素之一.有关求解圆锥曲线离心率的试题在历年高考试卷中均有出现.关于圆锥曲线离心率(范围)问题处理的主体思想是:建立关于一个,,a b c的方程(或不等式),然后再解方程或不等式,要注意的是建立的方程或不等式应该是齐次式.一般建立方程有两种办法:○1利用圆锥曲线的定义解决;○2利用题中的几何关系来解决问题。
另外,不能忽略了圆锥曲线离心率的自身限制条件(椭圆、双曲线离心率的取值范围不一致),否则很容易产生增根或者扩大所求离心率的取值范围.一、圆锥曲线的离心率方法1:利用定义法求离心率知识储备:椭圆和双曲线的第一定义。
方法技巧:一般情况题中出现圆锥曲线上的点与焦点联系在一起时,尽量转化为定义去考虑,会更简单!例1.(2015年浙江15题)椭圆22221x ya b+=(0a b>>)的右焦点(),0F c关于直线by xc=的对称点Q在椭圆上,则椭圆的离心率是.法一:(当时网上的主流解法)大家上网看到的基本上就是这种解法,此方法入手很容易,但是后期的运算量会很大,并且此题高次方程的因式分解要求很高(对大部分学生来说高次方程分解本来就是一个盲区)。
【解析】设左焦点为1F ,由F 关于直线by x c=的对称点Q 在椭圆上, 得到OM QF ⊥且M 为QF 中点,又O 为F 1F 的中点,所以OM 为中位线,且1F Q QF ⊥。
由点到线的距离公式计算得到:,bc MF a=再由tan b FOM c ∠=得到:2c OM a =. 所以2,bcQF a=212c QF a =, 据椭圆定义:12QF QF a +=得到:2222bc c a a a+=,化简得: b c =,即22e =.通过比较我们发现法二(定义法)计算过程更加简洁,不易出错。
我在给学生讲题的时候学生经常会问我,哪个时候用定义法,其实大家只要看到有曲线上的点和焦点有联系时,就可以往定义法多思考一些。
圆锥曲线中的离心率的问题一、题型选讲题型一 、求离心率的值求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。
常见的等式关系主要有:1、题目中给出等式关系;2、通过几何关系如垂直或者夹角的关系得出等式关系;3、挖掘题目中的等式关系。
例1、【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D例2、(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( )A B .53C .52D例3、(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :2221x y 相切,双曲线M 离心率的值为( )A BCD .3例4、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2D .例5、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( ) A .15 B .21 C .53D .73例6、(2020·浙江省温州市新力量联盟高三上期末)已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( ) A .233B .263C .3D .2题型二、求离心率的范围求离心率的值关键是找到不等关系,解出a 与c 的关系,进而求出离心率的范围。
圆锥曲线离心率归类目录题型01 离心率基础题型02 第一定义求离心率题型03 中点型求离心率题型04 点差法型求离心率(第三定义型)题型05 渐近线型离心率题型06 渐近线中点型求离心率题型07 构造a、b、c齐次式型题型08 焦半径型离心率题型09 焦点三角形求离心率题型10 双焦点三角形余弦定理型题型11 焦点三角形双角度型题型12 共焦点型椭圆双曲线离心率题型13 借助均值不等式求共焦点型题型14 焦点三角形内心型求离心率题型15 焦点三角形重心型求离心率题型16 小题大做型求离心率高考练场题型01离心率基础【解题攻略】求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得a,c得值,根据离心率的定义求解离心率e;2、齐次式法:由已知条件得出关于a,c的二元齐次方程或不等式,然后转化为关于e的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.1P是椭圆x2a2+y2b2=1(a>b>0)上的一点,F为椭圆的右焦点,PF⊥x轴,过点P作斜率为13的直线恰好经过左顶点,则椭圆的离心率为()A.16B.13C.23D.562(2021秋·山西晋城·高三晋城市第一中学校校考阶段练习)双曲线y =kx(k >0)的离心率用e =f (k )来表示,则f (k )()A.在(0,+∞)上是增函数B.在(0,+∞)上是减函数C.在(0,1)上是增函数,在(1,+∞)上是减函数D.是常数3(2023秋·高三课时练习)实轴长和虚轴长相等的双曲线称为等轴双曲线,则等轴双曲线的离心率为()A.2B.2C.3D.34已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,点P 为C 上一点,若PF 2⊥F 1F 2,且∠PF 1F 2=30°,则椭圆C 的离心率为()A.16B.36C.13D.335已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,P 为椭圆C 上一点,若△PF 1F 2的周长为18,长半轴长为5,则椭圆C 的离心率为( ).A.34B.45C.23D.225题型02 第一定义求离心率【解题攻略】解题时要把所给的几何特征转化为a ,b ,c 的关系式.求离心率的常用方法有:(1)根据条件求得a ,b ,c ,利用e =ca或e =1+b 2a2求解;(2)根据条件得到关于a ,b ,c 的方程或不等式,利用e =ca将其化为关于e 的方程或不等式,然后解方程或不等式即可得到离心率或其范围.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (5,0),点A ,B 为C 上关于原点对称的两点,且AF ⊥BF ,|AF ||BF |=43,则C 的离心率为.2设椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点F (2,0)点A (-2,1)为椭圆E 内一点,若椭圆E 上存在一点P ,使得PA +PF =8,则椭圆E 的离心率的取值范围是()A.49,47B.49,47C.29,27D.29,273椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2,直线l :y =kx 与C 交于A 、B 两点,若F 2O =12AB ,∠BAF 2=θ,当θ∈π12,π6时,C 的离心率的最小值为()A.2-1B.22C.63D.3-14已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (5,0),点A ,B 为C 上关于原点对称的两点,且AF ⊥BF ,|AF ||BF |=43,则C 的离心率为.5设椭圆x 2a 2+y 2b2=1的左右焦点分别为F 1,F 2,焦距为2c ,点Q c ,a2 在椭圆的内部,点P 是椭圆上的动点,且PF 1 +PQ <5F 1F 2 恒成立,则椭圆的离心率的取值范围为()A.14,22B.13,32C.13,22D.14,1题型03 中点型求离心率【解题攻略】直线与曲线相交,涉及到交线中点的题型,多数用点差法。
解题宝典圆锥曲线的离心率主要是指椭圆和双曲线的离心率,其中椭圆的离心率0<e <1,双曲线的离心率e >1(抛物线的离心率e =1).圆锥曲线的离心率问题的难度一般不大,常以选择题、填空题的形式出现.熟练掌握一些求解离心率问题常用的思路,有助于提升解题的效率.本文结合例题,主要谈一谈解答圆锥曲线离心率问题的两种措施.一、运用公式法圆锥曲线的离心率公式为e =ca ,求解圆锥曲线的离心率问题,通常要用到公式e =ca.而求a 、c 及其关系式,往往要根据圆锥曲线方程中的参数a 、b 、c 之间关系来进行转化.在椭圆中,a 2=b 2+c 2;在双曲线中,a 2=c 2-b 2.例1.已知椭圆C 1:x 2m +2-y 2n=1和双曲线C 2:x 2m +y2n=1有相同的焦点,则椭圆C 1离心率e 的取值范围是______.解:∵椭圆C 1:x 2m +2-y 2n =1,∴a 12=m +2,b 12=-n ,c 12=m +2+n ,即e 12=c 12a 12=1+n m +2,∵双曲线C 2:x 2m +y 2n =1,∴a 22=m ,b 22=-n ,c 22=m -n ,由题意可得m +2+n =m -n ,∴n =-1,∴e 12=c 12a 12=1-1m +2,∵m >0,m +2>2,∴1m +2<12,-1m +2>-12,∴e 12=1-1m +2>12,解得e 1∵0<e 1<1,e 1<1.要求椭圆C 1离心率e 的取值范围,需根据椭圆离心率公式求得a 、c 及其关系式.于是先根据椭圆与双曲线的方程明确a 2、b 2、c 2的表达式;然后根据圆锥曲线方程中的参数a 、b 、c 之间的关系和离心率公式,求得e 1、e 2的表达式,通过确定m 、n 的取值范围,求得离心率的取值范围.例2.设F 1、F 2为椭圆x 2a 2+y 2b2=1()a >b >0的左右焦点,且||F 1F 2=2c ,若椭圆上存在一点P ,使||PF 1⋅||PF 2=2c 2,则椭圆离心率的最小值为_____.解:由题意知F 1()-a,0、F 2()a,0,设P ()x 0,y 0,得||PF 1⋅||PF 2=()a +ex 0()a -ex 0=a 2-e 2x 02=2c 2,∴x 2=a 2-2c 2e 2≤a 2,即a 2-2c 2a 2=1-2e 2≤e 2,解得e 2≥13,即e∵0<e <1,e <1,∴我们首先设出P 点的坐标,根据椭圆的焦半径公式将已知条件||PF 1⋅||PF 2=2c 2转化为与a 、c 有关的等式;再根据椭圆上点的范围,建立关于a 、c 、e 的不等关系式,即可根据离心率公式e =ca,得到关于e 的不等式,通过解不等式,求得离心率的最小值.二、利用几何图形的性质我们知道圆锥曲线的离心率e =ca,其中a 为椭圆的长半轴长,双曲线的实半轴长,c 为椭圆和双曲线的半焦距.在解答圆锥曲线的离心率问题时,可根据椭圆和双曲线的定义、几何性质求得2a 、2c 的值,也可将椭圆的长半轴、双曲线的实半轴看作三角形、梯形的一条边,利用三角形、梯形的性质来求线段的长.例3.已知两定点A ()-1,0和B ()1,0,动点P ()x ,y 在直线l :y =x +3上移动,椭圆C 以A 、B 为焦点,且经过点42解题宝典P,则椭圆C离心率的最大值为().解:由题意可得,椭圆的半焦距为1,由椭圆的定义可知||PA+||PB=2a.而点A()-1,0关于直线l:y=x+3的对称点A'()-3,2,连接A'B,交直线l于点P,如图1所示.图1由图1可知||PA+||PB=||PA'+||PB=||A'B,而||A'B=25,则椭圆C的长半轴长的最小值为25,所以椭圆C离心率的最大值为e=ca=15故正确的答案为A.由于c=1,所以要求e=ca的最大值,需确定a的最小值.根据椭圆的定义可知||PA+||PB=2a,于是画出图形,作A关于直线l的对称点A',根据三角形的性质:两边之和大于第三边,即||PA'+||PB>||A'B,即可确定||PA+||PB取最小值的情形:A'、B、P三点共线,从而根据两点间的距离公式求得离心率的最大值.例4.已知椭圆C1:x2a2+y2b2=1()a>b>0与圆C2:x2+y2=b2,若椭圆上存在一点P,使由点P作圆C2的两条切线互相垂直,求椭圆C1离心率的取值范围.解:如图2,由椭圆长轴的端点作圆C2的两条切线PA、PB,设过P作圆的切线,切点为A、B,连接OA、OB、OP,图2由于PA⊥PB,所以根据圆的对称性可知∠APO=∠BPO=45°.在RtΔAPO中,PO=2PA≤a,即2b≤a,所以2b2≤a2,则2b2≤a2,由a2=b2+c2,可得a2c2,即e2≥12,解得e因为0<e<1,e<1,则椭圆C1离心率的取值范围为ëöø÷.解答本题需灵活运用圆的两个性质:圆的切线与过切点的半径成90°;对称性,以及全等三角形的性质.据此建立RtΔAPB的两条边PO、PA之间的关系,从而判断出椭圆的长半轴与焦半径之间的关系,求得椭圆离心率的取值范围.例5.已知双曲线x2a2-y2b2=1()a>0,b>0的左右焦点分别为F1、F2,点M在双曲线的左支上,且||MF2=7||MF1,则此双曲线离心率的最大值为().A.43B.53C.2D.73解:由双曲线的定义可得,||MF2-||MF1=6||MF1=2a,因为点M在双曲线的左支上,所以||MF1=a3≥c-a,则e=ca≤43,故双曲线离心率的最大值为43,则正确答案为A.求双曲线离心率的最大值,需求ca的最大值.于是首先根据双曲线的定义建立焦半径与虚半轴长之间的关系;然后根据双曲线的性质:双曲线的左(右)支上点到右(左)焦点的距离大于c-a,建立关于a、c的关系式,进而求得双曲线离心率的最大值.总之,求解圆锥曲线的离心率问题,可从离心率公式和图形的几何性质入手,来寻找解题的思路.这就要求同学们熟练掌握圆锥曲线的定义、公式、几何性质,以灵活运用这些知识来解题.(作者单位:江苏省南通市如皋市搬经中学)43。
圆锥曲线中的离心率问题(答案)圆锥曲线中的离心率问题(答案)一、直接求出a 、c ,求解e 已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解。
来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是(的离心率是( )A. 10B. 5C. 310D. 25 分析:这里的1b ,c 1a 2+==,故关键是求出2b ,即可利用定义求解。
,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b ,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ac e ==,从而选A 。
二、变用公式,整体求出e 例2. 已知双曲线)0b ,0a (1by a x 2222>>=-的一条渐近线方程为x 34y =,则双曲线的离心率为(心率为( )A. 35B. 34C. 45D. 23 分析:本题已知=a b 34,不能直接求出a 、c ,可用整体代入套用公式。
,可用整体代入套用公式。
解:由22222222k 1a b 1a b a ab a ace +=+=+=+==(其中k 为渐近线的斜率)。
这里34a b =,则35)34(1a c e 2=+==,从而选A 。
三、第二定义法三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e 是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例 3. 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(则该椭圆的离心率为( )A. 2B. 22C. 21D. 42解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F ,则x F M ^轴,知|MF|是通径的一半,则有22|MF |=。
第10讲 圆锥曲线的综合问题圆锥曲线中的定点、定值问题[学生用书P182][典例引领](2016·高考北京卷)已知椭圆C :x 2a 2+y 2b 2=1过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.【解】 (1)由题意得,a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1.又c =a 2-b 2=3, 所以离心率e =c a =32.(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.又A (2,0),B (0,1),所以, 直线P A 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1.所以四边形ABNM 的面积S =12|AN |·|BM |=12(2+x 0y 0-1)(1+2y 0x 0-2) =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 从而四边形ABNM 的面积为定值.定点、定值问题的求解策略(1)定点问题多为两类,一是证明直线过定点,应根据已知条件建立直线方程中斜率k 或截距b 的关系式,此类问题中的定点多在坐标轴上;二是证明圆过定点,此类问题应抓住圆心,利用向量转化相应条件,从而找出相应参数满足的条件,确定定点.(2)定值问题,涉及面较多,解决此类问题以坐标运算为主,需建立相应的目标函数,然后代入相应的坐标运算结果即可得到.(3)无论定点或定值问题,都可先用特殊值法求出,然后再验证即可,这样可确定代数式的整理方向和目标.(2017·石家庄市第一次模考)已知抛物线C :y 2=2px (p >0)过点M (m ,2),其焦点为F ′,且|MF ′|=2.(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F :(x -1)2+y 2=1相切,切点分别为A ,B ,求证:直线AB 过定点.[解] (1)抛物线C 的准线方程为x =-p2,所以|MF ′|=m +p2=2,又4=2pm ,即4=2p ⎝⎛⎭⎫2-p 2, 所以p 2-4p +4=0,所以p =2, 所以抛物线C 的方程为y 2=4x .(2)证明:设点E (0,t )(t ≠0),由已知切线不为y 轴,设直线EA :y =kx +t ,联立错误!,消去y ,可得k 2x 2+(2kt -4)x +t 2=0,①因为直线EA 与抛物线C 相切,所以Δ=(2kt -4)2-4k 2t 2=0,即kt =1,代入①可得1t 2x 2-2x +t 2=0,所以x =t 2,即A (t 2,2t ).设切点B (x 0,y 0),则由几何性质可以判断点O 、B 关于直线EF :y =-tx +t 对称,则⎩⎨⎧y 0x 0×t -00-1=-1y 02=-t ·x 02+t ,解得⎩⎨⎧x 0=2t 2t 2+1y 0=2t t 2+1,即B ⎝⎛⎭⎫2t 2t 2+1,2t t 2+1.直线AF 的斜率为k AF =2tt 2-1(t ≠±1),直线BF 的斜率为k BF =2tt 2+1-02t 2t 2+1-1=2tt 2-1(t ≠±1),所以k AF =k BF ,即A ,B ,F 三点共线.当t =±1时,A (1,±2),B (1,±1),此时A ,B ,F 三点共线. 所以直线AB 过定点F (1,0).圆锥曲线中的范围、最值问题[学生用书P183][典例引领](2016·高考浙江卷)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.【解】 (1)由题意可得,抛物线上的点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由错误!,消去x 得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝⎛⎭⎫1t2,-2t . 又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t .从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2tt 2-m =2t +2t t 2-t 2+3t 2-1, 于是m =2t 2t 2-1=2+2t 2-1.所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).范围、最值问题的求解策略(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.(2017·贵阳市监测考试)设点F 1(-c ,0),F 2(c ,0)分别是椭圆C :x 2a2+y2=1(a >0)的左、右焦点,P 为椭圆C 上任意一点,且PF 1→·PF 2→的最小值为0.(1)求椭圆C 的方程;(2)如图,动直线l :y =kx +m 与椭圆C 有且仅有一个公共点,作F 1M ⊥l ,F 2N ⊥l 分别交直线l 于M ,N 两点,求四边形F 1MNF 2的面积S 的最大值.[解] (1)设P (x ,y ),则PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),所以PF 1→·PF 2→=x 2+y 2-c 2=a 2-1a2x 2+1-c 2,x ∈[-a ,a ],由题意得,1-c 2=0,c =1,则a 2=2, 所以椭圆C 的方程为x 22+y 2=1.(2)将直线l 的方程l :y =kx +m 代入椭圆C 的方程x 22+y 2=1中,得(2k 2+1)x 2+4kmx +2m 2-2=0,由直线l 与椭圆C 有且仅有一个公共点知Δ=16k 2m 2-4(2k 2+1)(2m 2-2)=0,化简得m 2=2k 2+1.设d 1=|F 1M |=|-k +m |k 2+1,d 2=|F 2N |=|k +m |k 2+1.①当k ≠0时,设直线l 的倾斜角为θ,则|d 1-d 2|=|MN |·|tan θ|,所以|MN |=1|k |·|d 1-d 2|,所以S =12·1|k |·|d 1-d 2|·(d 1+d 2)=2|m |k 2+1=4|m |m 2+1=4|m |+1|m |,因为m 2=2k 2+1,所以当k ≠0时,|m |>1,|m |+1|m |>2,即S <2. ②当k =0时,四边形F 1MNF 2是矩形,此时S =2. 所以四边形F 1MNF 2面积S 的最大值为2.圆锥曲线中的探索性问题[学生用书P184][典例引领](2015·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a>0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【解】 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ),即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x+2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),易知直线PM ,PN 的斜率存在,并分别记为k 1,k 2.将y =kx +a 代入C 的方程, 得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a .从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a.当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM =∠OPN ,所以点P (0,-a )符合题意.探索性问题的求解策略(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2017·河北省“五校联盟”质量检测)已知椭圆E :x 2a 2+y 2b2=1的右焦点为F (c ,0)且a >b >c >0,设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G 两点,且|GF →|+|CF →|=4.(1)求椭圆E 的方程;(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4P A →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由.[解] (1)由椭圆的对称性知|GF →|+|CF →|=2a =4,所以a =2.又原点O 到直线DF 的距离为32,所以bc a =32,所以bc =3,又a 2=b 2+c 2=4,a >b >c >0,所以b =3,c =1. 故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1,代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0,所以x 1+x 2=8k (2k -1)3+4k 2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0,所以k >-12. 因为OP →2=4P A →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)·(y 2-1)]=5,所以4(x 1-2)(x 2-2)(1+k 2)=5, 即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5,所以4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k 2-2×8k (2k -1)3+4k 2+4(1+k 2)=4×4+4k 23+4k 2=5,解得k =±12, k =-12不符合题意,舍去.所以存在满足条件的直线l ,其方程为y =12x .[学生用书P184]——直线与圆锥曲线的综合问题(本题满分12分)(2015·高考全国卷Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝⎛⎭⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.[思维导图](1)设直线l 的方程――→代入关于x 的一元二次方程 ――→根与系数的关系M 的坐标―→OM 的斜率―→结论 (2)条件―→k 的范围―→联立直线OM 的方程与椭 圆的方程―→x P ――→点⎝⎛⎭⎫m3,m 在直线l 上 b 用m 、k 表示―→x M ――→▱OAPB x P =2x M ―→k 的值(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9bk 2+9.(3分) 于是直线OM 的斜率k OM =y M x M =-9k,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值.(5分) (2)四边形OAPB 能为平行四边形.因为直线l 过点⎝⎛⎭⎫m3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.(6分)由(1)得OM 的方程为y =-9k x .设点P 的横坐标为x P .由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9 .(8分) 将点⎝⎛⎭⎫m 3,m 的坐标代入直线l 的方程得b =m (3-k )3, 因此x M =k (k -3)m3(k 2+9).(9分)四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即x P =2x M .(10分)于是±km 3k 2+9=2×k (k -3)m 3(k 2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当直线l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.(12分)(1)在解题过程中,注意答题要求,严格按照题目及相关知识的要求答题,不仅注意解决问题的巧解,更要注意此类问题的通性通法.如本例(1)中,先设出直线方程,再联立椭圆方程构造方程组,利用根与系数的关系求出x M 、y M 的值即为通法.(2)本例(2)中由平行四边形知x P =2x M 这一技巧,从而得出关于k 的方程,即可求出k 的值.[学生用书P306(独立成册)]1.(2017·郑州市第二次质量检测)已知曲线C 的方程是mx 2+ny 2=1(m >0,n >0),且曲线过A ⎝⎛⎭⎫24,22,B ⎝⎛⎭⎫66,33两点,O 为坐标原点. (1)求曲线C 的方程;(2)设M (x 1,y 1),N (x 2,y 2)是曲线C 上两点,向量p =(mx 1,ny 1),q =(mx 2,ny 2),且p ·q =0,若直线MN 过点⎝⎛⎭⎫0,32,求直线MN 的斜率. [解] (1)由题可得:⎩⎨⎧18m +12n =116m +13n =1,解得m =4,n =1.所以曲线C 的方程为y 2+4x 2=1.(2)由题意可知,直线MN 的斜率存在,设直线MN 的方程为y =kx +32,代入椭圆方程y 2+4x 2=1得(k 2+4)x 2+3kx -14=0,所以x 1+x 2=-3kk 2+4,x 1x 2=-14k 2+4,所以p ·q =(2x 1,y 1)·(2x 2,y 2)=4x 1x 2+y 1y 2=0, 所以-1k 2+4+-14k 2k 2+4+32k ·(-3k )k 2+4+34=0, 即k 2-2=0,k =±2.2.(2017·东北三校联合模拟)已知圆M :x 2+(y -2)2=1,直线l :y =-1,动圆P 与圆M 相外切,且与直线l 相切.设动圆圆心P 的轨迹为E .(1)求E 的方程;(2)若点A ,B 是E 上的两个动点,O 为坐标原点,且OA →·OB →=-16,求证:直线AB 恒过定点.[解] (1)设P (x ,y ),则x 2+(y -2)2=(y +1)+1⇒x 2=8y . 所以E 的方程为x 2=8y .(2)证明:易知直线AB 的斜率存在,设直线AB :y =kx +b ,A (x 1,y 1),B (x 2,y 2). 将直线AB 的方程代入x 2=8y 中,得x 2-8kx -8b =0, 所以x 1+x 2=8k ,x 1x 2=-8b .OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 21x 2264=-8b +b 2=-16⇒b =4,所以直线AB 恒过定点(0,4).3.(2017·昆明市两区七校调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,其离心率e =12,点M 为椭圆上的一个动点,△MAB 面积的最大值是2 3.(1)求椭圆的方程;(2)若过椭圆C 右顶点B 的直线l 与椭圆的另一个交点为D ,线段BD 的垂直平分线与y 轴交于点P ,当PB →·PD →=0时,求点P 的坐标.[解] (1)由题意可知e =c a =12,12×2ab =23,a 2=b 2+c 2,解得a =2,b =3,所以椭圆方程是x 24+y 23=1.(2)由(1)知B (2,0),设线段BD 的方程为y =k (x -2),D (x 1,y 1),把y =k (x -2)代入椭圆方程x 24+y 23=1,整理得(3+4k 2)x 2-16k 2x +16k 2-12=0,所以2+x 1=16k 23+4k 2⇒x 1=8k 2-63+4k 2,则D ⎝ ⎛⎭⎪⎫8k 2-63+4k 2,-12k 3+4k 2,所以BD 中点的坐标为⎝ ⎛⎭⎪⎫8k 23+4k 2,-6k 3+4k 2,则线段BD 的垂直平分线方程为y --6k 3+4k 2=-1k ⎝⎛⎭⎫x -8k 23+4k 2,得P⎝⎛⎭⎫0,2k 3+4k 2. 又PB →·PD →=0,即⎝⎛⎭⎫2,-2k 3+4k 2·⎝ ⎛⎭⎪⎫8k 2-63+4k 2,-14k 3+4k 2=0,化简得64k 4+28k 2-36(3+4k 2)2=0⇒64k 4+28k 2-36=0, 解得k =±34.故P ⎝⎛⎭⎫0,27或⎝⎛⎫0,-27.4.(2016·高考全国卷乙)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.[解] (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC . 所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0). (2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1), A 到m 的距离为2k 2+1, 所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83). 5.(2017·云南省第一次统一检测)已知焦点在y 轴上的椭圆E 的中心是原点O ,离心率等于32,以椭圆E 的长轴和短轴为对角线的四边形的周长为4 5.直线l :y =kx +m 与y 轴交于点P ,与椭圆E 交于A ,B 两个相异点,且AP →=λPB →.(1)求椭圆E 的方程;(2)是否存在m ,使OA →+λOB →=4OP →?若存在,求m 的取值范围;若不存在,请说明理由.[解] (1)根据已知设椭圆E 的方程为y 2a 2+x 2b2=1(a >b >0),焦距为2c , 由已知得c a =32,所以c =32a ,b 2=a 2-c 2=a 24. 因为以椭圆E 的长轴和短轴为对角线的四边形的周长为45,所以4a 2+b 2=25a =45,所以a =2,b =1.所以椭圆E 的方程为x 2+y 24=1.(2)根据已知得P (0,m ),由AP →=λPB →,得OP →-OA →=λ(OB →-OP →).所以OA →+λOB →=(1+λ)OP →.因为OA →+λOB →=4OP →,所以(1+λ)OP →=4OP →.若m =0,由椭圆的对称性得AP →=PB →,即OA →+OB →=0.所以m =0能使OA →+λOB →=4OP →成立.若m ≠0,则1+λ=4,解得λ=3.设A (x 1,kx 1+m ),B (x 2,kx 2+m ),由⎩⎪⎨⎪⎧y =kx +m 4x 2+y 2-4=0,得(k 2+4)x 2+2mkx +m 2-4=0, 由已知得Δ=4m 2k 2-4(k 2+4)(m 2-4)>0,即k 2-m 2+4>0,且x 1+x 2=-2km k 2+4,x 1x 2=m 2-4k 2+4. 由AP →=3PB →得-x 1=3x 2,即x 1=-3x 2.所以3(x 1+x 2)2+4x 1x 2=0,所以12k 2m 2(k 2+4)2+4(m 2-4)k 2+4=0,即m 2k 2+m 2-k 2-4=0. 当m 2=1时,m 2k 2+m 2-k 2-4=0不成立.所以k 2=4-m 2m 2-1. 因为k 2-m 2+4>0,所以4-m 2m 2-1-m 2+4>0,即(4-m 2)m 2m 2-1>0. 所以1<m 2<4,解得-2<m <-1或1<m <2.综上,当-2<m <-1或m =0或1<m <2时,OA →+λOB →=4OP →.。
专题63圆锥曲线的离心率专题知识梳理1.离心率的概念:在圆锥曲线中,我们把c a 称为离心率,在椭圆中a 是长半轴长,在双曲线中,a 是实半轴长,c 都称为半焦距,离心率都用字母e 表示.当离心率1e >时,表示的图形是双曲线;当离心率1e =时,表示的图形是抛物线;当离心率01e <<时,表示的图形是椭圆.2.在计算离心率的大小时,通常有三种方法:一是根据题目中的条件,直接求出,,a b c 的值,再计算离心率;二是建立,,a b c 之间的齐次等量关系,再化归为关于离心率e 的方程求解;三是建立,,a b c 之间的齐次不等式,再化归为关于离心率e 的不等式,求离心率e 的取值范围.3.要得到a 、b 、c 的关系式,常常有两种途径,一是利用图形中存在的几何特征,譬如焦点三角形,圆锥曲线的定义等构造等式;二是利用坐标运算,如果题目中的条件难以发掘几何关系,则考虑将点的坐标用a 、b 、c 表示,再利用条件列出等式或不等式求解..考点探究【例1】已知椭圆方程为22143x y +=,则椭圆的离心率为.【解析】由题意知,椭圆的长半轴长为2a =,短半轴长为b =,解得1c ==,∴离心率12c e a ==.【例2】如图,F 1、F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,以坐标原点O 为圆心,|OF 1|为半径的圆与该双曲线左支交于A 、B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为____.【解析】连接AF 1,则△AF 1F 2为直角三角形,由△F 2AB 是等边三角形,得∠AF 2F 1=30°,|AF 2|=3c ,|AF 1|=c ,|AF 2|-|AF 1|=2a =(3-1)c ,e =c a =23-1=3+1.【例3】在平面直角坐标系xOy 中,设直线:10l x y ++=与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线都相交且交点都在y 轴左侧,则双曲线C 的离心率e 的取值范围是.【解析】∵双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线方程为b y x a =±,而直线:10l x y ++=与b y x a =的交点肯定在y 轴左侧,只要保证直线:10l x y ++=与b y x a =-的交点也在y 轴左侧,即1b a->-,∴b a <,222c a a -<,离心率1e <<题组训练1.已知双曲线22221x y a b -=的一焦点坐标为,且这点到一条渐近线的距离为1,则双曲线的离心率为.【解析】由题意知半焦距为c =,且到渐近线b y x a=的距离为1,1=,解得224a b =,又225a b +=,解得24=a ,2,1=b ∴离心率为2e =.2.设双曲线22221x y a b-=()0,0a b >>的左、右焦点分别为1F ,2F ,P 为该双曲线上一点,若1PF 与x 轴垂直,2112cos 13PF F ∠=,则该双曲线的离心率为▲.【解析】在12PF F ∆中,∵2112cos 13PF F ∠=,122F F c =,∴2136c PF =,156c PF =,又∵212PF PF a -=,∴135266c c a -=,得32c a =.即离心率为32e =.3.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为45°的直线与椭圆的一个交点为M ,若MF 2垂直于x 轴,则椭圆的离心率为____.【解析】过F 1作倾斜角为45°的直线y =x +c ,由MF 2垂直于x 轴得点M 的横坐标为c ,所以点M 的纵坐标为2c ,代入椭圆方程得c 2a 2+4c 2b 2=1,∴e 2+4c 2a 2-c2=1,∴(1-e 2)2=4e 2,∴e =2-1.4.在平面直角坐标系xOy 中,以椭圆x 2a 2+y 2b2=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是____.【解析】由题意得,圆半径r =b 2a ,因为△ABC 是锐角三角形,所以cos 0>cos A 2=c r >cos π4,即22<c r<1,所以22<ac a 2-c 2<1,即22<e 1-e 2<1,解得e ∈(6-22,5-12).5.椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,上顶点为A ,右顶点为B ,若△FAB 的外接圆圆心P (m ,n )在直线y =-x 的左下方,则该椭圆离心率e 的取值范围是____.【解析】设F(-c ,0),A(0,b),B (a ,0),且ΔFAB 的外接圆的方程为x 2+y 2+Dx +Ey +F =0,将F (-c ,0),A (0,b ),B (a ,0)分别代入可得m =-c +a 2,n =b 2-ac 2b ,由m +n <0可得-c +a 2+b 2-ac 2b<0,即1-c +b -c b <0⇒b -c +b -c b<0,所以b -c <0,即b 2<c 2∴e 2>12,所以e 6.(2019徐州期中调研)设双曲线22221x y a b-=()0,0a b >>的左、右焦点分别为1F ,2F ,P 为该双曲线上一点,若1PF 与x 轴垂直,2112cos 13PF F ∠=,则该双曲线的离心率为▲.【解析】在12PF F ∆中,∵2112cos 13PF F ∠=,122F F c =,∴2136c PF =,156c PF =,又∵212PF PF a -=,∴135266c c a -=,得32c a =.即离心率为32e =.7.如图,椭圆22221(0)xya b a b+=>>的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是.【解析】设00(,)P x y ,∵线段AP 的垂直平分线过点F ,∴PF AF =,又∵20PFc a ax c =-,∴0PF a ex =-,2a AF c c =-,∴20a c a ex c -=-,即20a a ex a c a c-≤=+-≤11e -≤<.8.在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A ,B ,M 为线段AB 的中点,且OM →·AB →=-32b 2.则椭圆的离心率为.【解析】由题意知(,0),(0,)A a B b ,则(,22a b M ,∴2223(,)(,)22222a b a b b OM AB a b ⋅=-=-+=- ,即2222444a b a c ==-,∴234e =,即2e =.9.椭圆22221(0)xya b a b+=>>,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则离心率e =【解析】由题意知(,0),(0,)F c B b ,直线2:a l x c =,则1d =,22a d c c =-,∵126d d =,∴22a c c -=,即2224()6a c a c -=,∴42610e e +-=,解得213e =,即3e =.10.椭圆的左焦点为F,若F 关于直线03=+y x 的对称点A 是椭圆上的点,则椭圆的离心率为【解析】设椭圆方程为22221(0)x y a b a b+=>>,点(,0)F c -0y +=的对称点00(,)A x y ,则000(1,0,2y x c y ⎧⋅=-⎪+⎪=解得00,2,2c x y ⎧=⎪⎪⎨⎪=⎪⎩,∵点00(,)A x y 在椭圆上,∴22223144c c a b +=,解得1e =-.。
纳思个性化辅导教案姓名:学科老师:年级:高三班主任:科目:数学教育咨询师:学科带头人/教学校长签字:专 题 复 习————离心率问题1.直线:220l x y -+=过椭圆左焦点1F 和一个顶点B ,则该椭圆的离心率为__________ 答案:e =c a =2552.若椭圆2214x y m +=m =________ 答案:m 的取值为1或163.过椭圆22221(0)x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为__________答案:e =334.已知焦点在x 轴上的椭圆的离心率为12,它的长轴长等于圆22:2150C x y x +--=的半径,则椭圆的标准方程是_________________ 答案:x 24+y23=15.已知椭圆22221(0)x y a b a b+=>>的焦点分别为12,F F ,4b =,离心率为35,过F 的直线交椭圆于,A B 两点,则2ABF ∆的周长为________ 答案:△ABF 2的周长为206.已知12,F F 是椭圆22121x y k k +=++的左、右焦点,弦AB 过1F ,若2ABF ∆的周长为8,则椭圆的离心率为________ 答案:e =c a =127.已知正方形ABCD ,则以,A B 为焦点,且过,C D 两点的椭圆的离心率为________ 答案:2-18.设椭圆的两个焦点分别为12,F F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是_______________答案:1e =9.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 作倾斜角为30°的直线,与椭圆的一个交点为P ,且2PF x ⊥轴,则此椭圆的离心率e 为________ 答案:e =3310.如图,椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P ,若2AP PB =,则椭圆的离心率是______答案:1211.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y2b 2=1(a >b >0)的两个焦点,P 为椭圆上一点且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________解析 设P(x ,y),则PF 1→·PF 2→=(-c -x ,-y)(c -x ,-y)=x 2-c 2+y 2=c 2① 将y 2=b 2-b 2a2x 2代入①式解得x 2=2-a 22c2,又x 2∈[0,a 2]∴2c 2≤a 2≤3c 2,∴e =c a∈⎣⎢⎡⎦⎥⎤33,22答案 ⎣⎢⎡⎦⎥⎤33,22 12.如图,在平面直角坐标系xOy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________答案:e =27-513.以椭圆22221(0)x y a b a b+=>>的左焦点(,0)F c -为圆心,c 为半径的圆与椭圆的左准线交于不同的两点,则该椭圆的离心率的取值范围是________ 答案:e∈(22,1) 14.若椭圆的两准线之间的距离不大于长轴长的3倍,则它的离心率e 的范围是_____________ 答案:)1,31[15.已知12,F F 分别为椭圆C :22221(0)x y a b a b+=>>的左,右焦点,过1F 且垂直于x 轴的直线交椭圆C 于,A B 两点,若2ABF ∆为钝角三角形,则椭圆C 的离心率e 的取值范围为__________ 答案:0<e <2-116.点M 是椭圆x 2a 2+y2b 2=1(a>b>0)上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于P ,Q ,若△PQM 是钝角三角形,则椭圆离心率的取值范围是________ 解析 由条件MF ⊥x 轴,其半径大小为椭圆通径的一半,R =b2a ,圆心到y 轴距离为c ,若∠PMQ 为钝角,则其一半应超过π4,从而c b 2a <22,则2ac<2b 2,即2ac<2(a 2-c 2),两边同时除以a 2,则2e 2+2e -2<0,又0<e<1,∴0<e<6-22答案 ⎝ ⎛⎭⎪⎫0,6-22 17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin acPF F PF F =,则该椭圆的离心率的取值范围为__________________ 答案:1,1)e ∈18.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是__________答案:219.设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,P 是其右准线上纵坐标(c 为半焦距)的点,且122||||F F F P =,则椭圆的离心率是_______________答案:220.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是_________________答案:12⎫⎪⎪⎣⎭21.椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是____________ 解析:由题意,椭圆上存在点P ,使得线段AP 的垂直平分线过点F , 即F 点到P 点与A 点的距离相等而|FA|=22a b c c c -= , |PF|∈[a -c,a +c],于是2b c∈[a -c,a +c] 即ac -c 2≤b 2≤ac +c 2∴222222ac c a c a c ac c ⎧-≤-⎪⎨-≤+⎪⎩⇒1112ca c c aa ⎧≤⎪⎪⎨⎪≤-≥⎪⎩或 又e ∈(0,1)故e ∈1,12⎡⎫⎪⎢⎣⎭。
微专题2圆锥曲线的离心率化,同时它又是圆锥曲线统一定义中的三要素之一.有关求解圆锥曲线离心率的试题在历年高考试卷中均有出现.一般地,求解离心率的值或者取值范围的问题,关键是将几何条件转化为a,b,c的方程或不等式,然后再解方程或不等式,要注意的是建立的方程或不等式应该是齐次式.另外,不能忽略了圆锥曲线离心率的自身限制条件(椭圆、双曲线离心率的取值范围不一致),否则很容易产生增根或者扩大所求离心率的取值范围.一、直接求出a、c,求解离心率e已知标准方程或a、c易求时,可利用离心率公式e=c来求解.已知双曲线x2a2-y2=1(a>0)的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率为________.二、构造a、c的齐次式,解出离心率e抓住题目中的等量关系,根据a,b,c的关系,构造出关于a,c(尤其是a,c的齐次式),设F1,F2分别是椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,P是其右准线上纵坐标为3c(c 为半焦距)的点,且|F1F2|=|F2P|,则椭圆的离心率是________.反思提炼:这种方法也是圆锥曲线中最常用的方法,应该引起重视.在解题中要牢牢抓住试题中的等量关系,根据等量关系列出a,c得式子(有b的转化为a,c),再经过变形就可以求出e=ca的值.同时应注意椭圆和双曲线中e的范围限制.如图,在平面直角坐标系xOy 中,A 1、A 2、B 1、B 2为椭圆x a 2+y b 2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________.·变式训练·(1)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为________.(2)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b 2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.三、求离心率e 的取值范围求解此类题目一般要根据题目给出的条件,建立有关字母(主要是a ,c )的关系式或不等设P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,且∠F 1PF 2=90°,其中F 1,F 2是椭圆的两个焦点,求椭圆离心率的取值范围.反思提炼:上面两种方法是我们求离心率范围的实质,要抓住题目中的不等量关系建立起关于a ,c 的不等式,从而求出e 的范围.·变式训练·如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,P 是椭圆上一点,Q 为上顶点,M 在PF 1上,F 1M →=λMP →(λ∈R ),PO ⊥F 2M .若λ=2,求椭圆离心率e 的取值范围.【总结】椭圆离心率的考查,一般分两个层次:一是由离心率的定义,只需分别求出a ,c ,这注重考查椭圆标准方程中量的含义;二是整体考查,求a ,c 的比值,这注重于列式,即需根据条件列出关于a ,c 的一个等量关系,通过解方程得到离心率的值.抓住这两点,你无往而不胜.1.椭圆x a 2+y b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为45°的直线与椭圆的一个交点为M ,若MF 2垂直于x 轴,则椭圆的离心率为__________.2.设双曲线x 2a 2-y 2b2=1(b >a >0)的半焦距为c ,直线l 过A (a ,0)、B (0,b )两点,且坐标原点O 到直线l 的距离为34c ,则双曲线的离心率e =__________. 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆C :x 2+y 2-6x =0所截得的弦长等于25,则该双曲线的离心率等于__________.4.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于__________.5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为e ,若椭圆上存在点P ,使得PF 1PF 2=e ,则该椭圆离心率e 的取值范围是__________. 6.在平面直角坐标系xOy 中,以椭圆x 2a 2+y 2b2=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是__________.7.已知椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,左、右顶点分别为A ,C ,上顶点为B .过F ,B ,C 作⊙P ,其中圆心P 的坐标为(m ,n ).(1)当m +n >0时,求椭圆离心率的范围;(2)直线AB 与⊙P 能否相切?证明你的结论.8.如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.第8题图。