原子荧光光谱法测定水环境中汞
- 格式:pdf
- 大小:444.04 KB
- 文档页数:4
原子荧光法测定水中汞摘要:汞作为生物毒性较强的污染物之一,进入生物体之后很难被排出,容易对水质以及人体造成危害性影响。
近些年来,为加强对生活饮用水、地表水中汞元素的测定分析,工作人员主动利用原子荧光法实现对水中汞含量、形态的测定分析。
针对于此,为快速准确测定水中汞,本文主要对原子荧光法测定水中汞的应用原理及方法进行研究与分析,以期可以给相关人员提供一定的借鉴价值。
关键词:原子荧光法;水中汞;测定;分析前言:水质中的汞通常含有大量毒素,会对人体以及水生动植物造成严重危害影响。
一般来说,汞在天然地下水含量较少,在地表水中含量较多。
究其原因,主要是因为地表水中的汞多是源于生产产生工业废水,如化工厂、冶金厂等,经食物链被人体吸收。
结合我国《生活饮用水卫生标准》来看,国家对于饮用水中的汞含量有着严格要求,唯有汞含量低于0.001mg/L的饮用水才可以视为合格的饮用水。
结合相关实践证明来看,人体饮用水上限汞值为0.111mg/L。
近些年来,为强化我国饮用水安全,行业内部对于水质中的汞物质含量测定问题予以了高度重视。
在测定分析过程中,主动利用原子荧光法等测定方法进行实践应用,完成对水中汞物质含量的测定分析。
1测定水中汞的必要性分析水中汞对于人体身心健康以及生态环境安全均有较为严重的负面影响,如果不能加强对水中汞含量的控制与分析,往往会对生态环境安全以及人心健康构成威胁。
近几年来,随着我国测定方法多样化发展,以原子荧光法为首的测定方法在水中汞测定过程中发挥了良好作用。
举例而言,在环境监测期间,工作人员通过对水中汞成分进行严格控制与分析,基本上可以根据分析反馈结果,确立科学合理的管理方案[1]。
与此同时,在水中汞形态测定期间,工作人员可及时发现汞污染问题,并采取针对性措施加以解决。
最主要的是,在测定分析过程中,工作人员可根据测定数据反馈,确定质量控制指标以及相关依据,并在具体管控过程中,以良好机制以及体系形式加强对汞污染问题的管控。
原子荧光法测定地表水中的总汞摘要:通过高锰酸钾-过硫酸钾消解氢化物发生原子荧光光谱法测定地表水中总汞的含量,发现该方法的检出限、精密度和准确性完全满足现今地表水环境中总汞的评价标准,同时提出了日常实验中应该注意的事项,提升地表水环境中总汞测定的准确性。
关键词:原子荧光法地表水总汞汞(Hg)及其化合物属于剧毒物质,可在体内蓄积。
进入水体的无机汞离子可转变为毒性更大的有机汞,经食物链进入人体,引起全身中毒。
天然水中含汞极少,一般不超过0.1μg/L。
仪表厂、食盐电解、贵金属治炼、温度计及军工等工业废水中可能存在汞。
汞是我国实施排放总量控制的指标之一。
1 方法的选择现在测定总汞的方法有冷原子吸收法、冷原子荧光法和原子荧光法,它们测定水中微量、痕量汞的特效方法,干扰因素少,灵敏度较高,而原子荧光仪的普遍性和推广性强,因此原子荧光法为首选方法。
2 试验部分2.1仪器AFS-230E型原子荧光光度计;汞空心阴极灯。
2.2水样的采集和保存用250mL的玻璃瓶采集水样,加盐酸1%,如水样为中性,1L 水样加浓盐酸10mL,基本可以保持14天。
2.3水样的制备取25 mL的水样至50 mL比色管中,并依次加入(1+1)硝酸溶液0.4 mL、(1+1)硫酸溶液0.8 mL、5%高锰酸钾溶液3 mL、(如不能再15min内维持紫色,再补适量高锰酸钾溶液使维持紫色,但总量不超过30 mL)、5%过硫酸钾溶液3 mL,敞开瓶口,置沸水浴中使样液在近沸状态保温直至低于比色管25 mL的刻度,取下冷却。
临近测定时,边摇边滴加20%盐酸羟胺溶液,直至刚好使过剩的高锰酸钾退色及二氧化锰全部溶解为止,再用纯水定容至25 mL刻度。
测定前,摇匀上机。
2.4样品的测定2.4.1空白试样每分析一批试样,应同时用无汞去离子水代替样品,按样品制备步骤进行相同的操作。
2.4.2标准曲线先将Hg标准储备液稀释成浓度为100μg/L的标准溶液,用此溶液配制标准系列,见表12.5 仪器测定条件载气流量300mL/min,屏蔽气流量900mL/min,光电管增管负高压280V,测量方式标准曲线法,读数方式峰面积,原子化器的高度10mm,读数时间10s,延迟时间1s,灯电流15mA。
冷原子吸收光谱法和冷原子荧光光谱法是两种常用的分析方法,用于测定水样中的汞。
汞是一种重金属,具有较高的毒性和易积累性,因此对于水样中的汞浓度进行准确监测和分析至关重要。
本文将从原理、方法步骤、应用、优缺点等方面对这两种方法进行深入探讨。
1. 原理冷原子吸收光谱法是一种利用原子在特定波长光照射下发生原子吸收的分析方法。
当汞原子处于基态时,会吸收特定波长的紫外光,从而使原子跃迁至激发态,然后快速退激发并发光。
而冷原子荧光光谱法是利用原子在激发态下发生自发辐射的分析方法。
通过对样品进行前处理,将水样中的汞转化为气态汞原子,然后在特定温度下冷却,使得原子能量较低,从而利用吸收光谱或荧光光谱进行测定。
2. 方法步骤将水样中的汞通过适当的前处理方法转化为气态汞原子。
将气态汞原子冷却至较低温度,使其处于基态或激发态。
使用特定波长的紫外光照射样品,观察汞原子的吸收光谱或发射光谱。
根据吸收或发射的强度,可以准确测定水样中的汞浓度。
3. 应用这两种方法在环境监测、地质勘探、化工生产等领域具有广泛的应用。
特别是在水质监测中,可以准确、快速地测定水样中的汞浓度,保障水环境的安全。
4. 优缺点冷原子吸收光谱法和冷原子荧光光谱法在测定水样中的汞具有灵敏度高、准确度高、选择性强等优点。
而在操作上,需要严格控制实验条件,对仪器要求较高,且前处理方法较为繁琐。
个人观点:在分析汞等重金属元素时,冷原子吸收光谱法和冷原子荧光光谱法是两种非常有效的分析方法。
它们在监测水质中的汞浓度方面具有明显的优势,能够准确、快速地进行分析。
但是在操作上需要非常小心谨慎,确保实验条件的准确性和稳定性。
总结回顾:通过本文的介绍,我们了解到冷原子吸收光谱法和冷原子荧光光谱法在测定水样中的汞具有重要的应用价值。
它们的原理和方法步骤虽有些复杂,但在分析汞元素时能够提供准确、可靠的数据支持。
应用中需要严格控制实验条件,以确保准确性和可重复性。
对于水质监测和环境保护而言,这两种方法无疑起着重要的作用。
原子荧光光谱法测定水中总汞的试验报告作者:杨帆等来源:《黑龙江水产》 2016年第3期杨帆热比古丽·沙吾提(新疆维吾尔自治区水产科学研究所新疆乌鲁木齐 830000)摘要:当汞被释放到水体中时,水中的微生物能够促使其转化为甲基汞形态。
因此,对水中总汞的检测尤为重要。
本文采用硝酸—盐酸混合试剂热消解水样,然后用氢化物发生原子荧光法测定水质中的总汞。
本次实验的校准曲线相关系数为1.0000,回收率为92.5%~112%,仪器检出限为0.019μg/L。
实验结果说明采用标准方法HJ694-2014测定水中的总汞,可以保证实验结果的准确度和灵敏度。
关键词:原子荧光法;水;汞作者简介:杨帆(1988-),女(汉),助理工程师,研究生,研究方向:水产品质量安全检测,Email:779290780@汞的存在形式大致可以分为两种:无机物形态和有机物形态。
无机物形态的汞主要包括单质汞(Hg0)、一价汞盐(Hg2+2)和二价汞盐(Hg2+)。
有机物形态的汞形成的化合物可以用通式表示:R-Hg-R’和R-Hg+X-。
R和R’是有机基团,其中一个碳原子与汞以共价键方式结合。
非极性的二烃基汞和二羟基汞类化合物易挥发,自然界存在的可能性相对较小,甲基汞类化合物(CH3Hg+)比较稳定。
不同形态的汞对人体的危害性研究表明,甲基汞的毒性最强。
甲基汞的摄入主要与食用含有甲基汞的鱼类及海鲜等水产品有关,育龄期妇女吃这些含甲基汞的食物有极大的风险,可能会影响胎儿的正常发育。
水产品中的汞含量超标往往与其生活的水体息息相关。
当汞以金属态或者是以无机化合物形态被释放到水体中时,水中的微生物能够促使其转化为甲基汞形态,这是由于甲基汞是亲油性的,在动物体内比无机物形态的汞可以更容易累积。
这些甲基汞再由食物链进入水产品中,最终进入人体,易累积于大脑、肝脏和肾脏,诱发一系列病症。
因此,对水中总汞的检测显得尤为重要。
本文采用《水质汞、砷、硒、铋和锑的测定》(HJ694-2014)原子荧光法测定水中的总汞,取得了较理想的结果。
原子荧光光谱法同时测定环境水样中砷和汞原子荧光光谱法是一种常用的分析方法,可以同时测定环境水样中砷和汞的含量。
本文将详细介绍该分析方法的原理、操作步骤和应用。
一、原理原子荧光光谱法是基于原子能级的跃迁和荧光发射原理的一种分析方法。
通过将水样中的砷和汞原子化,激发原子使其跃迁到高能级,然后放出荧光信号,根据荧光信号的强度来确定砷和汞的含量。
二、操作步骤1. 样品处理:将待测水样进行预处理,首先将水样进行过滤,去除悬浮物和杂质。
然后根据需要,可以进行进一步的处理,如pH调整、酸化、还原等。
2. 仪器准备:根据实验需要,选择合适的原子荧光光谱仪。
检查仪器的状态,保持仪器的干燥、清洁和良好的工作条件。
根据样品的特点和要求,选择合适的测量模式、光源和检测器。
3. 校准曲线:根据待测样品的浓度范围,选择合适的标准品溶液,分别配制多个浓度的标准品溶液。
然后使用原子荧光光谱仪进行测量,绘制砷和汞的标准曲线。
4. 测量:将经过处理的样品注入仪器中,按照设定的测量参数进行测量。
同时测量标准样品并根据标准曲线计算样品中砷和汞的浓度。
5. 数据处理:根据仪器测量得到的荧光信号强度,通过标准曲线计算出砷和汞的浓度。
根据所得数据进行分析和判断。
三、应用原子荧光光谱法广泛应用于环境监测、食品安全、化工生产等领域。
具体应用包括但不限于以下几个方面:1. 环境水样监测:可用于监测地下水、河水、湖水、海水等环境水样中砷和汞的含量。
通过分析水质中的微量砷和汞元素,及时发现和预警水质污染问题。
2. 土壤监测:可用于土壤中砷和汞的含量监测。
通过对土壤样品进行处理和分析,了解土壤中砷和汞的含量分布情况,评估土壤污染状况。
3. 食品安全监测:可用于食品中砷和汞的残留物检测。
通过对食品样品进行处理和测量,了解食品中砷和汞的含量是否超标,保障食品安全。
4. 化工生产过程中的监测:可用于监测化工生产过程中废水、废气中的砷和汞元素。
通过对生产废水和废气样品进行分析,了解化工过程中砷和汞的排放情况,指导和改善生产过程。
原子荧光测砷汞国标
原子荧光测砷汞国标,是指国家制定的关于水中砷、汞元素测定
的标准方法。
此方法采用了原子荧光光谱法,将水中砷、汞元素浓度
快速、准确地测定出来。
下面,我们将对这个国标的背景、实施流程、意义三个方面进行详细解析。
背景:砷和汞是常见的水污染物质,它们对人体和生态环境都有
极大的危害,因此,在污染防治中,对于水中砷和汞元素的测定显得
尤为重要。
不同地区、不同企业的水环境质量均不相同,因此有必要
制定水中砷汞的国家标准方法。
实施流程:
第一步:取样。
依据标准方法,取得水样,处理样品,制备出适
宜于原子荧光光谱法测定的水样。
第二步:仪器准备。
采用一定技术,将样品装入原子荧光光谱仪
的样品池中。
在原子荧光光谱仪中,样品经过多次加温、激发、荧光
等过程,得到一系列激发波长和荧光线,从中筛选出特定的波长。
第三步:测定。
在特定的荧光波长下,用光谱仪检测样品的荧光值,依据样品荧光值和标准曲线,求得样品中砷、汞元素的浓度,进
而计算出水样的污染程度。
意义:水环境质量是人类生存和发展的重要基础。
制定水中砷汞
国家标准方法,有利于保护水体、规范环保行为,避免水体污染给生
态环境和人们的健康带来严重威胁。
同时,该标准方法还是政府监管
的基础,保障水体污染检测的标准化和规范化。
总之,原子荧光测砷汞国标的制定和实施,是保护生态环境、保
障公众健康和加强环保监管的重要手段。
相关部门和企业不仅需要认
真贯彻国家标准方法,还应不断提高水环境治理技术,为水环境的健
康发展贡献力量。
原子荧光光谱法同时测定环境水样中砷和汞
原子荧光光谱法是一种常用的分析方法,可以同时测定环境水样中砷和汞含量。
该方
法采用原子荧光光谱仪,能够对样品中的砷和汞进行快速、准确的分析。
原子荧光光谱法的基本原理是利用原子荧光光谱技术对样品中的特定元素进行分析。
在该方法中,首先将水样中的砷和汞经过必要的预处理步骤,将其转化为可通过光谱仪进
行测定的形式。
然后将样品进样到原子荧光光谱仪中,通过激发样品中的砷和汞原子,并
测量其产生的荧光信号强度来确定其含量。
原子荧光光谱法具有以下优点:
1. 高灵敏度:原子荧光光谱仪对原子进行激发和检测,能够实现非常低的检测限,
可以检测到低至纳克级的元素含量。
2. 高选择性:原子荧光光谱仪能够在不同波长范围内对元素进行激发和检测,从而
实现对多个元素的同时测定,并且能够排除样品基质的干扰。
3. 快速分析:原子荧光光谱法具有快速分析的特点,一次测定可以在几分钟内完成,大大提高了分析效率。
4. 宽线性范围:原子荧光光谱仪可以用于分析不同浓度范围的样品,具有宽线性范围,能够适应不同水样中砷和汞含量的测定需求。
需要注意的是,在进行原子荧光光谱测定时,应注意样品的选取和预处理步骤的控制,以确保实验结果的准确性和可靠性。
还需要对仪器进行定期的校准和维护,以保证仪器的
正常运行和测量结果的准确性。
原子荧光光谱法是一种可靠、高效的方法,适用于环境水样中砷和汞等元素的测定。
该方法具有高灵敏度、高选择性、快速分析和宽线性范围等优点,可为环境监测和食品安
全等领域提供重要的分析手段和数据支持。
原子荧光光谱法同时测定环境水样中砷和汞一、砷和汞的危害1. 砷的危害砷是一种具有强烈毒性的元素,其在环境水样中的超标含量会对水质与生态环境产生严重影响。
长期饮用高砷水可引发慢性砷中毒,甚至导致癌症和心血管等疾病。
2. 汞的危害汞也是一种有毒重金属,在环境水样中的超标含量会对人体健康和生态环境造成严重危害。
汞中毒可导致神经系统、心血管、免疫系统等多个系统受损,甚至危及生命。
二、原子荧光光谱法的原理原子荧光光谱法是一种基于原子的分析技术,其原理是将样品原子或离子激发至高能级,再返回至基态时,会发射出与其电子结构有关的特定波长的光。
通过测量这些光的强度和波长,可以确定样品中各种元素的含量。
原子荧光光谱法具有高灵敏度、高选择性、低检出限和广泛的线性范围等优点,适用于多种样品的分析。
三、原子荧光光谱法测定砷和汞的方法原子荧光光谱法在测定砷和汞时,通常采用常规原子荧光光谱法和低温原子荧光光谱法两种方法。
1. 常规原子荧光光谱法常规原子荧光光谱法是将待测溶液喷入高温火焰区或电热炉等高温场所,使溶液中的元素被激发至高能级后再发射特征光谱,通过光电倍增管等探测器测量光谱信号的强度。
该方法简便易行,适用于各种原子元素的测定,并且具有高选择性和高分辨率等优点。
2. 低温原子荧光光谱法低温原子荧光光谱法是将待测溶液进入气态原子发生器或冷雾发生器,然后利用各种低温气流将原子或离子冷却至较低温度,再激发发射光谱。
该方法适用于分析有机物质和高盐度水样等复杂水样,对于汞等易挥发元素的测定效果更佳。
四、原子荧光光谱法同时测定砷和汞的优势原子荧光光谱法在同时测定砷和汞时,具有以下优势:1. 高灵敏度:原子荧光光谱法对砷和汞的测定有很高的灵敏度,能够检测到极低浓度的砷和汞。
2. 高选择性:原子荧光光谱法对砷和汞的测定具有很高的选择性,能够有效地区分不同元素之间的干扰。
4. 快速分析:原子荧光光谱法测定砷和汞的方法简便、快速,能够满足大批量水样的快速分析需求。
原子荧光光谱法同时测定环境水样中砷和汞原子荧光光谱法(Atomic Fluorescence Spectrometry, AFS)是一种常用的分析方法,可以用于同时测定环境水样中的砷和汞。
砷和汞是常见的环境污染物,对人体健康造成严重威胁。
监测环境水样中的砷和汞含量具有重要意义。
原子荧光光谱法是一种高灵敏度、高选择性的分析方法,可以同时测定环境水样中的微量砷和汞。
原子荧光光谱法的基本原理是利用原子在激发态下吸收能量并返回基态时发射特定波长的荧光。
在测定砷和汞时,首先将水样中的砷和汞化合物转化为易挥发的含砷和汞气体。
然后,通过原子荧光光谱仪,通过激光或电源将样品中的砷和汞原子激发至激发态,之后返回基态时会发出特定的荧光。
荧光的强度与砷和汞的浓度成正比,通过测定荧光强度即可得到砷和汞的含量。
原子荧光光谱法可以同时测定砷和汞的原因是这两种元素具有不同的激发能级和荧光波长。
砷的激发能级在245.1纳米附近,而汞的激发能级在253.7纳米附近。
通过调节仪器的参数,可以分别选择不同的激发波长,使得砷和汞的荧光可以被分别测定。
在实际操作中,测定环境水样中砷和汞的步骤如下:1. 采集水样:选择合适的采样点位,使用专用采样瓶采集环境水样,并避免样品污染。
2. 前处理:根据样品的不同性质,对水样进行必要的前处理,例如酸化、滤过等。
3. 仪器调试:根据样品的特性和测定要求,调节原子荧光光谱仪的参数,包括激发波长、荧光扫描范围等。
4. 标准曲线绘制:使用标准溶液配制一系列不同浓度的砷和汞溶液,分别测定其荧光强度,并绘制砷和汞的标准曲线。
5. 测定样品:将前处理后的水样放入原子荧光光谱仪中,测定样品的荧光强度。
根据标准曲线,可以计算样品中砷和汞的浓度。
6. 质量控制:测定过程中需要进行质控,包括测定空白试样、加标回收实验等,以确保测定结果的准确性和可靠性。
原子荧光光谱法具有灵敏度高、选择性好、快速方便等优点,已广泛应用于环境水样中砷和汞的测定。
原子荧光光谱法测定水中总汞的试验报告通过使用原子荧光光谱法测定水中总汞含量,探究其在水环境中的污染情况,为环境保护提供科学依据。
试验原理:
原子荧光光谱法是一种广泛应用于水质分析中的检测方法。
该方法利用分子中汞原子在特定波长下的吸收和激发来检测汞含量。
具体来说,样品中的汞原子被激发后会产生荧光,荧光强度与汞含量成正比。
通过测量荧光强度,可以计算出样品中汞的含量。
试验步骤:
1. 准备样品:取一定量的水样品,加入适量的酸,将其转移到
干燥的量瓶中。
2. 安装仪器:打开原子荧光光谱仪,将样品注入样品池中,并
进行基线调整。
3. 开始检测:根据设备要求,设置激发波长和测量波长,启动
检测。
4. 记录结果:根据荧光强度读数,计算出样品中汞的含量,并
记录下来。
试验结果:
在本次试验中,我们测量了3个不同来源的水样品中的总汞含量。
结果如下所示:
样品编号t汞含量(μg/L)
样品1t0.23
样品2t0.32
样品3t0.18
结论:
通过本次试验,我们发现水环境中存在一定量的汞污染。
这些汞可能来自于工业废水、农业化肥和医疗废弃物等不同来源。
为了保护水环境,我们需要采取有效措施,减少这些汞的排放。
同时,我们也需要加强汞污染物的监测和检测,以便及时发现和控制汞污染的扩散。
原子荧光法测定水质中汞的方法分析摘要:在水质中测定泵含量的试验方法中,通过优化仪器、技术的准备条件,选择适宜的实验标准以及还原剂,可以让实验的过程更为简便,得到的结果数值更为准确。
研究采用的方法是原子荧光法,即试验中采用酸性介质消解水中汞的原理,将水质中含有的汞分解为原子态,在通过原子荧光法来进行测定。
在实验得出的结果中,可以发现实验方法中的线性范围控制在0–1.0μg/L,相关系数r为0.998,实验方法得出的检出限为0.0004μg/L,RSD值为1.38%–1.49%,回收率为98.0%–104%。
原子荧光法测定水质中的汞含量,可以更达到更优秀的实验效果,提升实验结果的科学性以及精准性。
测定水质中的汞含量,有利于提升在水资源使用过程中的安全性。
文章根据分析的实验结果,提出原子荧光测定中需要注意的技术性问题,通过对这些技术性问题的良好把握,才能得出准确性更高的实验结果。
关键词:原子荧光法;水质测定;水质汞水质中的汞由于其中的无机汞盐以及无机汞盐中含有大量的毒素,会对人体以及水生的动植物造成严重的安全危害。
汞通常在天然的地下水中的含量极少,在地表水中的含量较高。
地表水中的汞是由化学工厂、造纸厂、金属冶炼等工厂的生产产生的工业废水,被水生动植物吸收后,会经过食物链被人体吸收[1]。
在我国指定的《生活饮用水卫生标准》中明确规定,水质中的汞含量低于0.001mg/L的饮用水才是合格的,人体饮用水的上限汞值,即为0.111mg/L。
因此,测定水质中的汞物质含量,对于保护我国居民的生命健康具有重要的意义,需要对此进行细致的研究过程分析。
一、水质中汞含量测定的相关概述当前发展阶段中,常用的水质汞含量测定方法,包括但不限于原子荧光法、双硫分光光度法、冷原子吸收法等方法。
其中,原子荧光法是最为常用的测定方法。
原子荧光法测定水质中的汞,是借助了原子的吸收与发射光谱的先进技术,从而在技术水平上取得了领先优势。
原子荧光测定水质中的汞含量可以在简便的操作流程下,的带更为准确的数据结果。
Vol.53,No.06. 2019·41·DOI:10.3969/j.issn.2095-1205.2019.06.23原子荧光光度法测定水中汞含量试验宋云(贵州省贵才监测有限公司贵州贵阳550000)摘要原子荧光光度法是常用于水中汞含量测定方法,该方法操作便捷、结果准确,因而受到推崇,但该方法的测定条件变化较多,不同的测定条件会导致测定结果误差,所以应当通过分析了解原子荧光光度法的最优水汞含量测定条件。
文章出于这一目的,将对原子荧光光度法的基本原理进行阐述,后进行测定实验,根据测定结果了解不同测定条件对测定结果的影响,由此选出最佳测定条件。
关键词原子荧光光度法;汞含量;测定中图分类号:X832文献标识码:C文章编号:2095-1205(2019)06-41-02汞是一种对水体有污染影响的物质,在现代工业发展背景下,对我国水体的纯净度造成了巨大影响,所以在水体净化工作中,需要通过相关方法测定水中汞含量,根据结果判断是否需要进行净化,由此说明该项工作的重要性。
在该项工作当中,原子荧光光度法十分常见,因为其可以有效保障测定结果的准确性,只要确保该方法的测定条件最优即可,因此文章认为有必要对原子荧光光度法进行分析,了解其最优测定条件,为水体净化工作提供参考。
1 原子荧光光度法原理在原理上,因为不同元素原子内部的电子跃迁过程会存在频率上的差异,所以只要掌握某电子跃迁的特点,通过实验得到其光辐射表现,就可以得到某种元素的含量,这一特征在汞元素上也是一样。
从实验角度上,原子荧光光度法的原理在于:先配置试液并加入原子荧光测定仪器,后通过具有酸性条件的硼氢化钾进行还原作用,可以得到砷化氢、汞原子,其中砷化氢通过氩氢火焰中会生成基态原子,将基态原子与和汞原子放在砷、汞元素灯下,通过光线照射即可得到原子荧光,荧光强度与试液中的元素含量在指定范围内是正比关系,所以可以进行测定,其测定结果十分准确[1]。
原子荧光光谱法测定环境水中砷和汞摘要:本文介绍了利用氢化物发生-原子荧光分析技术来测定环境水中砷、汞含量的技术,同时对实验的各种条件进行了研究。
实验通过一系列条件,找到实验合理有效的水样处理方法,实验所用的试剂浓度以及仪器测定的条件等。
并在精确度、准确度、线性范围、回收率、最低检出限等方面与以前传统的方法进行比较。
结果表明:原子荧光光谱法比传统方法优越,可以同时测定环境水中的砷和汞,并且操作简单,具有很好的实用性和可行性。
关键词:原子荧光光谱法;环境水样;汞;砷Abstract: This paper describes the use of hydride generation - atomic fluorescence analysis to determination of arsenic in environmental water, the mercury content of the technical conditions of the experiment were studied. Experiment through a series of conditions to find the experimental rational and effective water sample processing, reagent concentration used in the experiment, as well as the determination of instrument conditions. Precision, accuracy, linear range, recovery, limit of detection compared with traditional methods. The results showed that: atomic fluorescence spectrometry is superior than the traditional method of simultaneous determination of environmental water arsenic and mercury, and simple to operate, has good practicability and feasibility.Key words: atomic fluorescence spectrometry; environmental water samples; mercury; arsenic原子荧光光谱法是指原子在吸收辐射光后,由稳定态转为激发态,从而将多余的能量以荧光形式放出。