SG3525
- 格式:pdf
- 大小:140.48 KB
- 文档页数:5
PWM控制芯片SG3525功能简介1.1 PWM控制芯片SG3525功能简介随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。
SG3525是用于驱动N沟道功率MOSFET。
其产品一推出就受到广泛好评。
SG3525系列PWM控制器分军品、工业品、民品三个等级。
下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。
SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。
1.1.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。
在闭环系统中,该引脚接反馈信号。
在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。
2.Noninv.input(引脚2):误差放大器同向输入端。
在闭环系统和开环系统中,该端接给定信号。
根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。
3.Sync(引脚3):振荡器外接同步信号输入端。
该端接外部同步脉冲信号可实现与外电路同步。
4.OSC.Output(引脚4):振荡器输出端。
5.CT(引脚5):振荡器定时电容接入端。
6.RT(引脚6):振荡器定时电阻接入端。
7.Discharge(引脚7):振荡器放电端。
该端与引脚5之间外接一只放电电阻,构成放电回路。
8.Soft-Start(引脚8):软启动电容接入端。
该端通常接一只5 的软启动电容。
3525总结nan’sirSG3525电压调节芯片SG3525具体的内部结构如图1所示。
其中,脚16为SG3525的基准电压源输出,精度可以达到(5.1±1%)V,采用了温度补偿,而且设有过流保护电路。
脚5,脚6,脚7内有一个双门限比较器,内电容充放电电路,加上外接的电阻电容电路共同构成SG3525的振荡器。
振荡器还设有外同步输入端(脚3)。
脚1及脚2分别为芯片内误差放大器的反相输入端、同相输入端。
该放大器是一个两级差分放大器,直流开环增益为70dB左右。
根据系统的动态、静态特性要求,在误差放大器的输出脚9和脚1之间一般要添加适当的反馈补偿网络。
图1 3525内部引脚和框图1. 下面分别阐述其各部分功能:a 基准电压源: 基准电压源是一个三端稳压电路,其输入电压V CC 可在(8~35)V 内变化,通常采用+15V ,其输出电压V ST =5.1V ,精度%1±,采用温度补偿,作为芯片内部电路的电源,也可为芯片外围电路提供标准电源,向外输出电流可达400mA ,没有过流保护电路。
b 振荡电路: 由一个双门限电压均从基准电源取得,其高门限电压V V H 9.3=低门限电压V V L 9.0=,内部横流源向C T 充电,其端压V C 线性上升,构成锯齿波的上升沿,当H C V V =时比较器动作,充电过程结束,上升时间t 1为:T T C R t 67.01=比较器动作时使放电电路接通,C T 放电,V C 下降并形成锯齿波的下降沿,当L C V V =时比较器动作,放电过程结束,完成一个工作循环,下降时间间t 2为:T D C R t 3.12=注意:此时间即为死区时间 锯齿波的基本周期T 为:()T D T C R R t t T 3.167.021+=+=因为T D R R <<⇒12t t <<由上可见锯齿波的上升沿远长于下降沿,因此上升沿作为工作沿,下降沿作为回扫沿。
pwm 芯片,pwm 控制芯片SG3525 介绍
脉冲宽度调制(PWM),是英文Pulse Width ModulaTIon 的缩写,简称脉宽调制,脉冲宽度调制是一种模拟控制方式,根据相应载荷的变化来调
制晶体管栅极或基极的偏置,实现开关稳压电源输出晶体管或晶体管导通时
间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,PWM 控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广
泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没
有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会
成为PWM 控制技术发展的主要方向之一。
集成脉宽调制器SG3525 是美国硅通用公司的第2 代产品,它是一种性能优良、功能齐全、通用性强的单片集成PWM 控制器。
SG3525 是电流控制型PWM 控制器,所谓电流控制型脉宽调制器是按照反馈电流调节脉
宽。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输
出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化
而变化。
由于结构上有电压环和电流环双环系统,因此,无论开关电源的电
压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控
制器。
SG3525 引脚描述。
PWM控制芯片SG3525原理及应用SG3525是一款经典的PWM控制芯片,具有广泛的应用领域。
本文将从原理和应用两个方面进行探讨,详细介绍SG3525的工作原理及在各个领域中的应用。
一、SG3525的工作原理SG3525是一款双路可调节PWM控制器芯片,由一对对称反馈比较器、三角波发生器、误差放大器、电压调节电路、电平移位电路和PWM输出级组成。
其工作原理如下:1.错误放大器:SG3525通过与输入信号进行比较,产生误差放大器输出的控制信号,以实现对输出波形的控制。
2.三角波发生器:通过内部电容和电阻的组合,生成一定幅值和频率的三角波信号,用于与错误放大器输出信号进行比较。
3.反馈比较器:SG3525具有一对对称的反馈比较器,将错误放大器输出信号与三角波信号进行比较,产生相应的控制信号。
4.电平移位电路:对反馈比较器的控制信号进行电平移位处理,以适应各种应用场景的控制要求。
5.PWM输出级:将经过电平移位的控制信号,经过输出级放大、滤波处理后,形成PWM信号。
二、SG3525的应用领域SG3525因其可靠性、稳定性以及功能强大而在电子领域应用广泛,以下是常见的应用领域及应用案例:1.开关电源:SG3525可以广泛应用于开关电源中,通过控制MOSFET等开关管的导通时间,实现对开关电源输出电压的稳定控制。
例如,SG3525可以用于UPS(不间断电源)的开关电源控制电路。
2.电动机驱动系统:SG3525可以用于电动机的速度和方向控制,通过控制PWM输出信号的占空比,实现电动机的转速和转向的控制。
例如,SG3525可以实现永磁直流电机的调速。
3.照明控制:SG3525可用于照明领域中的调光控制,通过控制PWM输出信号的占空比,实现对LED灯或者灯泡等照明设备的亮度调节。
4.变频调速系统:SG3525可以应用于交流电机的变频调速系统中,通过控制PWM输出信号的频率和占空比,实现对交流电机转速的精确控制。
SG3525工作原理与应用技巧SG3525是一款常用的双电源开关模式控制芯片,广泛应用于交流-直流转换器、逆变器、电动机驱动器等领域。
其工作原理基于PWM(脉宽调制)技术,能够提供稳定的输出电压和电流,有效控制电压波动和系统发热等问题。
本文将详细介绍SG3525的工作原理及应用技巧。
一、SG3525的工作原理1.输入信号:SG3525的输入信号是由控制电压(CV)和同步信号(SYN)组成的。
控制电压用于控制输出电压的大小,同步信号用来同步控制选通开关的开关频率。
2.内部参考信号:SG3525内部有一个基准电压源,用于产生参考信号。
参考信号与输入信号进行比较,得出一个比较结果。
3.错误放大器:SG3525内部还有一个错误放大器,用于放大比较结果。
如果比较结果是正的,则输出高电平;如果比较结果是负的,则输出低电平。
4.PWM发生器:SG3525内部还有一个PWM发生器,用于产生PWM信号。
PWM信号的占空比可由控制电压调节,从而控制输出电压的大小。
5.选通开关:PWM信号经过选通开关后,形成输出波形。
选通开关的频率可以由同步信号控制。
6.输出滤波:SG3525的输出经过输出滤波电路,可以得到稳定的输出电压和电流。
以上就是SG3525的基本工作原理,通过控制输入信号和内部参考信号的比较结果和PWM发生器的调节,可以得到所需的稳定输出。
二、SG3525的应用技巧1.控制电压调节:SG3525的控制电压可以通过外部电阻与电容调节。
电阻的值越大,输出电压越大;电阻与电容并联时,可以实现更精确的调节。
2.输出滤波:为了获得更稳定的输出电压和电流,可以在SG3525的输出端接入输出滤波电路,使用滤波电感和电容等元件进行滤波。
3.过流保护:在SG3525的输出电路中加入过流保护电路,可以实现对输出电流的保护。
一般可以使用电流变压器和比较电路等来实现。
4.温度保护:SG3525在高温环境下可能会出现过热的问题,为了保护芯片不受损坏,可以设置温度保护电路。
PWM控制芯片SG3525功能简介1.1 PWM控制芯片SG3525功能简介SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。
1.1.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。
在闭环系统中,该引脚接反馈信号。
在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。
2.Noninv.input(引脚2):误差放大器同向输入端。
在闭环系统和开环系统中,该端接给定信号。
根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。
3.Sync(引脚3):振荡器外接同步信号输入端。
该端接外部同步脉冲信号可实现与外电路同步。
4.OSC.Output(引脚4):振荡器输出端。
5.CT(引脚5):振荡器定时电容接入端。
6.RT(引脚6):振荡器定时电阻接入端。
7.Discharge(引脚7):振荡器放电端。
该端与引脚5之间外接一只放电电阻,构成放电回路。
8.Soft-Start(引脚8):软启动电容接入端。
该端通常接一只5 的软启动电容。
pensation(引脚9):PWM比较器补偿信号输入端。
在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。
10.Shutdown(引脚10):外部关断信号输入端。
该端接高电平时控制器输出被禁止。
该端可与保护电路相连,以实现故障保护。
11.Output A(引脚11):输出端A。
引脚11和引脚14是两路互补输出端。
PWM控制器SG3525的调频原理SG3525是一种常用的PWM(Pulse Width Modulation)控制器,它可以用于调节或控制电路中的电压或电流,广泛应用于各种电力电子和开关电源控制电路中。
调频是SG3525实现PWM的一个重要原理,通过调整脉宽的频率来控制输出信号的频率和幅度。
调频原理的基本思想是改变PWM脉冲的宽度,从而改变输出信号的频率。
SG3525通过内部的电压比较器和计数器来实现这个功能。
在SG3525中,通过外部电容和电阻构成一个RC网络,来控制频率的调节范围。
当RC电路充电到一定电压后,与内部锯齿波发生器的比较器进行比较,触发计数器进行计数。
当计数器的数值达到预设值时,计数器复位并产生一个PWM脉冲。
调频原理的详细步骤如下:1.根据需求设计RC网络:调频的范围决定了RC网络的取值范围,通过调节RC网络的电容和电阻值来控制频率调节的范围。
2.设置参考电压:SG3525内部有一个参考电压,通过调节这个参考电压来改变输出信号的幅度。
3.锯齿波发生器:SG3525内部有一个由电流源和比较器组成的锯齿波发生器,通过调节电流源的大小来改变锯齿波的斜率和频率。
4.锯齿波与RC网络比较器:SG3525内部的锯齿波与RC网络的比较器进行比较。
当锯齿波的幅度超过RC网络所设定的电压时,比较器将会触发。
5.计数器:当比较器触发后,计数器开始计数。
计数器的计数范围决定了PWM的脉冲宽度范围。
6.输出脉冲:当计数器的值达到预设的脉冲宽度时,计数器将会复位并产生一个PWM脉冲。
通过以上步骤,SG3525就可以实现PWM输出信号的调频功能。
通过调节RC网络的值、参考电压和锯齿波发生器的参数,可以改变PWM脉冲的频率和幅度,从而实现对电路中电压或电流的调节或控制。
调频原理能够使SG3525在不同应用中灵活地调节输入和输出波形的频率和幅度,从而适应不同的电力电子和开关电源控制需求。
而且,SG3525在实际应用中还可以通过外部反馈电路来实现更加精确的调频控制。
PWM 控制芯片SG3525功能简介 2007/04/1217:21您现在的位置是:主页>>>电子元器件资料>>>正文1.1 PWM 控制芯片SG3525功能简介随着电能变换技术的发展,功率MOSFET 在开关变换器中开始广泛使用,为此美国硅通用半导体公司(SiliconGeneral )推出SG3525。
SG3525是用于驱动N 沟道功率MOSFET 。
其产品一推出就受到广泛好评。
SG3525系列PWM 控制器分军品、工业品、民品三个等级。
下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。
SG3525是电流控制型PWM 控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。
1.1.1 SG3525引脚功能及特点简介 其原理图如图4.13下:I. Inv.input (引脚1):误差放大器反向输入端。
在闭环系统中,该引脚接反馈信号。
在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。
2. Noninv.input (引脚2):误差放大器同向输入端。
在闭环系统和开环系统中,该端接给定信号。
根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。
3.Sync (引脚3):振荡器外接同步信号输入端。
该端接外部同步脉冲信号可实现与外电路同步。
4.0SC.0utput (引脚4):振荡器输出端。
5. CT (引脚5):振荡器定时电容接入端。
6. RT (引脚6):振荡器定时电阻接入端。
7. Discharge (引脚7):振荡器放电端。
该端与引脚5之间外接一只放电电阻,构成放电回路。
PWM控制芯片SG3525工作原理及实际应用PWM(Pulse Width Modulation)控制芯片SG3525是一种常用的开关型电源控制集成电路,常用于开关电源和逆变电源等开关电源应用中。
SG3525通过控制脉冲宽度和频率,可以精确控制输出电压,并具有稳定性好、效率高等特点。
SG3525的工作原理如下:1.参考电压源:SG3525内部集成了一个2.5V的参考电压源,作为电压调整的基准。
2.误差放大器:SG3525内部的电压误差放大器将当前输出电压与设定的参考电压进行比较,并输出一个差分电压,用于控制频率和脉宽。
3.比较器:SG3525内部有两个比较器,其中一个与三角波发生器相连,用于比较三角波信号与误差放大器输出的差分电压,生成PWM波形;另一个比较器与控制脉冲相连,用于比较脉冲信号和三角波信号的相位差,以控制输出的相位。
4.输出级:SG3525内部具有一对输出级,通过开关管控制输出电流的大小及极性,从而控制输出电压值。
SG3525的实际应用非常广泛,以下是一些常见的实际应用:1.开关电源:SG3525可以用于设计和控制开关电源的输出电压。
通过控制脉冲宽度和频率,可以实现稳定且高效的输出电压调节,满足各种不同需求的开关电源设计。
2.逆变电源:SG3525也可以用于设计逆变电源,将直流电压转化为交流电压。
通过调整脉冲宽度和频率,可以实现高效的逆变电路控制,适用于需要交流电源的应用,如电机驱动和电源适配器等。
3.灯光控制:SG3525可以用于灯光控制领域,通过控制脉冲宽度来调整灯光的亮度。
可以实现调光控制、灯光闪烁效果等,适用于舞台灯光、汽车前大灯等灯光控制应用。
4.电机控制:SG3525可以用于电机控制,通过控制脉冲宽度和频率来控制电机的转速。
可以实现电机驱动控制、步进电机控制等应用。
5.电池充放电控制:SG3525可以用于设计电池充放电系统,通过控制充放电脉冲的宽度和频率,实现电池充放电过程的控制和保护。
SG3525工作原理SG3525采用了双电源结构,即提供+Vcc和-Vcc两种电源电压,其输入引脚包括错误输入、电源输入和外部调节。
在正常工作时,控制器通过提供脉冲宽度调制信号来控制开关管的导通时间。
这样,通过调整导通时间,可以实现输出电压的调节。
1. 在电源输入引脚上提供+Vcc和-Vcc两个电压。
这两个电压之间的差异将用于产生误差放大器的比较电压。
2.将参考电压输入到误差放大器中,参考电压一般为2.5V。
误差放大器会测量输出电压与参考电压之间的差异,并将误差信号放大后输入到比较器中。
3.将振荡电阻和振荡电容分别连接在振荡器引脚上。
根据振荡电阻和振荡电容的数值,振荡器会产生一定频率的方波信号。
4.将振荡器的方波信号通过一个开关逻辑电路,然后与误差放大器输出的误差信号进行比较。
比较器根据输入信号的长短,决定是否导通开关管。
5.如果输出电压高于参考电压,误差放大器会产生一个较大的误差信号。
比较器检测到这个信号后,会导通开关管一段时间,使开关管通电。
开关管导通时,负载电流通过电感和二极管流向负载。
6.如果输出电压低于参考电压,误差放大器会产生一个较小的误差信号。
比较器检测到这个信号后,会关闭开关管一段时间,切断负载电流。
通过不断地调节开关管的导通时间,可以实现对输出电压的精确调节。
SG3525的输出电压可以通过调整外部元件的数值来进行更精确的控制,例如调整电感的数值可以改变输出电压的变化速度。
总结起来,SG3525的工作原理是通过误差放大器测量输出电压与参考电压之间的误差,并将误差信号放大后输入到比较器中。
振荡器产生一定频率的方波信号,与误差放大器输出的信号进行比较,控制开关管的导通时间,从而实现对输出电压的精确调节。
这使得SG3525成为一款非常重要的开关电源控制芯片。
sg3525 原理
SG3525是一款功能丰富的PWM控制集成电路,其主要应用于直流-交流逆变器、开关电源和电动机驱动等领域。
该芯片采用了双极、TTL和CMOS技术,可实现高效率、高精度的PWM输出。
SG3525芯片的工作原理如下:
1. 频率调节:SG3525芯片内置一个可调节的RC振荡电路,通过在外部接入电容和电阻来调整振荡频率。
频率的调节范围通常在100Hz到1MHz之间。
2. 正弦波生成:通过对振荡电路进行比例、反相运算,可以实现产生正弦波形的电压。
这是通过将正弦波信号与三角波信号进行比较得到的。
3. 参考电压:SG3525芯片内有一个可调的参考电压,用于与三角波信号进行比较。
通过调整参考电压,可以改变输出PWM脉冲的占空比。
4. 错误放大器:SG3525芯片内置了一个错误放大器,用于检测输出电压的偏差。
当输出电压偏离设定值时,错误放大器将产生一个误差信号,以调整三角波的振幅。
5. 比较器:SG3525芯片内置了两个比较器,用于比较三角波和参考电压的大小。
比较器的输出信号经过滤波器后,通过驱动电路控制输出端的开关管,从而控制电路的输出功率。
6. 步进电压:SG3525芯片内有一个步进电压,用于调整
PWM脉冲的占空比。
通过调整步进电压的大小,可以实现对
输出电压的精确调节。
总的来说,SG3525芯片根据输出电压的反馈信息,利用比较
器来调整PWM脉冲的占空比,从而控制开关电路的开关状态,实现对输出电压的稳定调节。
通过调节芯片内部的可调参数,可以实现不同频率、不同占空比的PWM输出。
SG3525脉宽调制型控制器是美国通用电气公司的产品,作为SG3524的改进型,更适合于运用MOS管作为开关器件的DC/DC变换器,它是采用双级型工艺制作的新型模拟数字混合集成电路,性能优异,所需外围器件较少。
它的主要特点是:输出级采用推挽输出,双通道输出,占空比0-50%可调.每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。
可直接驱动功率MOS管,工作频率高达400KHz,具有欠压锁定、过压保护和软启动等功能。
该电路由基准电压源、震荡器、误差放大器、PWM比较器与锁存器、分相器、欠压锁定输出驱动级,软启动及关断电路等组成,可正常工作的温度范围是0-700C。
基准电压为5.1 V士1%,工作电压范围很宽,为8V到35V.SG3525采用16端双列直插DIP封装,引脚图及各端子功能介绍如下:图形如图GROUND(接地端):该芯片上的所有电压都是相对于GROUND而言,即是功率地也是信号地。
在实验电路中,由于接入误差放大器反向输入端的反馈电压也是相对与12脚而言,所以主回路和控制回路的接地端应相连。
+VIN(芯片电源端):直流电源从15脚引入分为两路:一路作为内部逻辑和模拟电路的工作电压;另一路送到基准电压稳压器的输入端,产生5.1士1%V的内部基准电压。
如果该脚电压低于门限电压(Turn-off: 8V),该芯片内部电路锁定,停止工作‘基准源及必要电路除外)使之消耗的电流降至很小(约2mA)e另外,该脚电压最大不能超过35V.使用中应该用电容直接旁路到GROUND端。
VC(推挽输出电路电压输入端):作为推挽输出级的电压源,提高输出级输出功率。
可以和15脚共用一个电源,也可用更高电压的电源。
电压范围是1. 8V-3. 4VINV. INPUT(反相输入端):误差放大器的反相输入端,该误差放大器的增益标称值为80db,其大小由反馈或输出负载来决定,输出负载可以是纯电阻,也可以是电阻性元件和电容元件的组合。
SG3525脉宽调制型控制器是美国通用电气公司的产品,作为SG3524的改进型,更适合于运用MOS管作为开关器件的DC/DC变换器,它是采用双级型工艺制作的新型模拟数字混合集成电路,性能优异,所需外围器件较少。
它的主要特点是:输出级采用推挽输出,双通道输出,占空比0-50%可调.每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。
可直接驱动功率MOS管,工作频率高达400KHz,具有欠压锁定、过压保护和软启动等功能。
该电路由基准电压源、震荡器、误差放大器、PWM比较器与锁存器、分相器、欠压锁定输出驱动级,软启动及关断电路等组成,可正常工作的温度范围是0-700C。
基准电压为5.1 V士1%,工作电压范围很宽,为8V~35V.GND(接地端)12脚:该芯片上的所有电压都是相对于GROUND而言,即是功率地也是信号地。
在实验电路中,由于接入误差放大器反向输入端(1脚)的反馈电压也是相对与12脚而言,所以主回路和控制回路的接地端应相连。
所以SG3525必须与控制回路共地。
15脚引入分为两路:一路作为内部逻辑和模拟电路的工作电压;另一路送到基准电压稳压器的输入端,产生5.1士1%V的内部基准电压。
如果该脚电压低于门限电压(Turn-off: 8V),该芯片内部电路锁定,停止工作(基准源及必要电路除外)使之消耗的电流降至很小(约2mA)e另外,该脚电压最大不能超过35V.使用中应该用电容直接旁路到GND端。
V C(推挽输出电路电压输入端)13脚:作为推挽输出级的电压源,提高输出级输出功率。
可以和15脚共用一个电源,也可用更高电压的电源。
电压范围是1 8V~34V。
INPUT(反相输入端)1脚:误差放大器的反相输入端,该误差放大器的增益标称值为80db,其大小由反馈或输出负载来决定,输出负载可以是纯电阻,也可以是电阻性元件和电容元件的组合。
该误差放大器共模输入电压范围是1. 5V-5. 2V。
SG3525工作原理以及输出电路驱动电路一、SG3525的工作原理SG3525是一款高性能PWM控制器,通过它可以实现可编程的脉宽调制信号。
它的特点是具有广泛的工作电压范围和频率范围。
该芯片采用双斩波控制方式,即通过一个三角波和一个幅度可调的直流偏置电压来控制输出脉冲的宽度。
SG3525的内部结构包括一个误差放大器、一个比较器、一个SR锁存器和一个产生三角波的发生器。
误差放大器用于比较输入信号和反馈信号的差值,以生成一个误差信号。
比较器用于将误差信号与三角波进行比较,从而产生一个PWM信号。
SR锁存器用于控制PWM信号的频率和占空比。
发生器产生一个频率可调的三角波。
工作原理如下:1.输入信号经过误差放大器与反馈信号进行比较,产生一个误差信号。
2.误差信号与三角波进行比较,产生一个PWM信号。
3.PWM信号经过SR锁存器进行锁存,从而实现设定的频率和占空比。
4.经过输出级后,PWM信号会经过滤波器,然后输出到负载上。
二、SG3525的输出电路设计输出级通常使用功率MOSFET或IGBT来实现,可以根据需要选择不同类型的晶体管,以满足不同负载的需求。
输出级的驱动电路需要提供足够的电流和电压来驱动晶体管,以确保输出信号的准确性和稳定性。
滤波器通常采用LC结构或LCL结构,用于去除PWM信号中的高频噪声。
LC结构由电感和电容组成,主要用于简单的应用中。
LCL结构除了电感和电容外,还包括一个滤波电阻,可以更好地抑制高频噪声。
三、SG3525的驱动电路设计驱动电路还可以包括反馈电路,用于检测输出信号的准确性和稳定性。
反馈电路通常由采样电阻和比较器等组成,用于检测输出信号与设定值之间的差异,并反馈给误差放大器进行校正。
驱动电路还需要考虑电流和电压的保护功能,以防止过流和过压等异常情况对电路和负载造成损害。
这可以通过使用保险丝、限流电阻、过压保护电路等来实现。
总之,SG3525工作原理是通过误差放大器、比较器、SR锁存器和发生器等组成的内部结构实现的。
SG3525工作原理SG3525是一种集成电路,用于设计和控制开关模式电源。
它能够产生高频脉冲信号,使之通过开关模式控制电源中的MOSFET或IGBT,从而提供所需电压和电流。
SG3525的工作原理基于嵌入在IC内部的可编程控制逻辑电路,下面将详细介绍其工作原理。
首先,SG3525通过电压反馈端(VFB)检测反馈信号,该信号通常由输出电压经过分压后输入到IC中。
比较器会将反馈信号与可编程控制逻辑电路内部的参考电压进行比较,得出一个控制信号来控制开关模式电源的输出电压。
然后,误差放大器负责放大比较器输出的控制信号。
误差放大器根据比较器输出的控制信号来调整参考电压的大小,以使输出电压稳定在设定值。
通常,误差放大器还会根据负载情况调整控制信号的幅度,以提供更加稳定的输出。
最后,压摆振荡器负责产生高频脉冲信号。
压摆振荡器内部包含一个电压控制电容(VCO)和一个三角波发生器。
电压控制电容根据控制信号的幅度和频率来调整电阻的大小,从而影响高频脉冲的频率和占空比。
三角波发生器则产生类似三角波形状的电压信号,用于与电压控制电容进行比较,从而产生一个PWM(脉宽调制)信号。
这个PWM信号将驱动MOSFET 或IGBT来开关电源,以提供所需的输出电压和电流。
需要注意的是,SG3525还具有保护功能,以防止过压、过流和过温等问题。
当检测到这些问题时,SG3525会发出相应的保护信号,使电源系统停止工作,以保护电路和设备的安全。
总之,SG3525通过比较器比较、误差放大器放大和PWM调制这三个主要阶段,在可编程控制逻辑电路的控制下,产生高频脉冲信号,从而实现对开关模式电源的精确控制和调节。
其工作原理相对简单,但具有较高的可靠性和灵活性,广泛应用于开关电源设计中。
PWM控制芯片SG3525功能简介1.1 PWM控制芯片SG3525功能简介随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。
SG3525是用于驱动N沟道功率MOSFET。
其产品一推出就受到广泛好评。
SG3525系列PWM控制器分军品、工业品、民品三个等级。
下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。
SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。
1.1.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。
在闭环系统中,该引脚接反馈信号。
在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。
2.Noninv.input(引脚2):误差放大器同向输入端。
在闭环系统和开环系统中,该端接给定信号。
根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。
3.Sync(引脚3):振荡器外接同步信号输入端。
该端接外部同步脉冲信号可实现与外电路同步。
4.OSC.Output(引脚4):振荡器输出端。
5.CT(引脚5):振荡器定时电容接入端。
6.RT(引脚6):振荡器定时电阻接入端。
7.Discharge(引脚7):振荡器放电端。
该端与引脚5之间外接一只放电电阻,构成放电回路。
8.Soft-Start(引脚8):软启动电容接入端。
该端通常接一只5 的软启动电容。
pensation(引脚9):PWM比较器补偿信号输入端。
在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。
10.Shutdown(引脚10):外部关断信号输入端。
该端接高电平时控制器输出被禁止。
该端可与保护电路相连,以实现故障保护。
11.Output A(引脚11):输出端A。
引脚11和引脚14是两路互补输出端。
12.Ground(引脚12):信号地。
13.Vc(引脚13):输出级偏置电压接入端。
14.Output B(引脚14):输出端B。
引脚14和引脚11是两路互补输出端。
15.Vcc(引脚15):偏置电源接入端。
16.Vref(引脚16):基准电源输出端。
该端可输出一温度稳定性极好的基准电压。
特点如下:(1)工作电压范围宽:8—35V。
(2)5.1(1 1.0%)V微调基准电源。
(3)振荡器工作频率范围宽:100Hz¬—400KHz.(4)具有振荡器外部同步功能。
(5)死区时间可调。
(6)内置软启动电路。
(7)具有输入欠电压锁定功能。
(8)具有PWM琐存功能,禁止多脉冲。
(9)逐个脉冲关断。
(10)双路输出(灌电流/拉电流): mA(峰值)。
1.1.2 SG3525的工作原理SG3525内置了5.1V精密基准电源,微调至 1.0%,在误差放大器共模输入电压范围内,无须外接分压电组。
SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。
在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区时间的调节功能。
由于SG3525内部集成了软启动电路,因此只需要一个外接定时电容。
SG3525的软启动接入端(引脚8)上通常接一个5 的软启动电容。
上电过程中,由于电容两端的电压不能突变,因此与软启动电容接入端相连的PWM比较器反向输入端处于低电平,PWM比较器输出高电平。
此时,PWM琐存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。
只有软启动电容充电至其上的电压使引脚8处于高电平时,SG3525才开始工作。
由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。
当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比较器输出为正的时间变长,PWM琐存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。
反之亦然。
外接关断信号对输出级和软启动电路都起作用。
当Shutdown(引脚10)上的信号为高电平时,PWM 琐存器将立即动作,禁止SG3525的输出,同时,软启动电容将开始放电。
如果该高电平持续,软启动电容将充分放电,直到关断信号结束,才重新进入软启动过程。
注意,Shutdown引脚不能悬空,应通过接地电阻可靠接地,以防止外部干扰信号耦合而影响SG3525的正常工作。
欠电压锁定功能同样作用于输出级和软启动电路。
如果输入电压过低,在SG3525的输出被关断同时,软启动电容将开始放电。
此外,SG3525还具有以下功能,即无论因为什么原因造成PWM脉冲中止,输出都将被中止,直到下一个时钟信号到来,PWM琐存器才被复位。
1.1.3 SG3524与SG3524主要区别作为SG3524的增强版本,SG3525在以下方面进行了改进。
1增加欠电压锁定电路。
当SG3525输入电压低于8V时,控制器内部电路锁定,除基准电源和一些必要电路之外的所有电路停止工作,此时控制器消耗的电流极小。
2增加了软启动电路。
引脚8为软启动控制端,该端可外接软启动电容。
软启动电容由SG3525内部50 的恒流源进行充电。
3提高了基准电源的精度。
SG3525中基准电源的精度提高了1%,而SG3524中基准电源的精度只有8%。
4去除了限流比较器。
SG3525去除了SG3524中的限流比较器,改由外部关断信号输入端(引脚10)来实现限流功能,同时还具有逐个脉冲关断和直流输出电流限幅功能。
实际使用中,一般在引脚10上接电流检测信号,如果过电流检测信号维持时间较长,软启动电容将被放电。
5 PWM比较器的反向输入端增加至两个。
在SG3524中,误差放大器输出端、限流比较器输出端和外部关断信号输入电路共用PWM比较器的反向输入端。
在SG3525中对此进行了改进,使误差放大器输出端和外部关断信号输入电路分别送至PWM比较器的一个反向输入端。
这样做的好处在于,避免了误差放大器和外部关断信号输入电路之间相互影响,有利于误差放大器和补偿网络工作精度提高。
6增加了PWM琐存器。
为了使关断电路更可靠的工作,SG3525在其内部增加了PWM琐存器。
PWM比较器输出信号首先送至PWM琐存器,琐存器由关断电路置位,由振荡器输出时间脉冲复位。
当关断电路工作时,即使过电流信号立即消失,琐存器也可以维持一个周期的关断控制,直到下一周期时钟信号使琐存器复位为止。
同时,由于PWM琐存器对PWM比较器的置位信号进行琐存,误差放大器上的噪声信号、振铃及其他信号在此过程中都被消除了。
只有在下一个时钟周期才能重新复位,可靠性大大提高。
7 振荡器增加了同步端和放电端。
SG3524中的振荡器只有CT和RT两个引脚,其充电和放电回路是相同的。
在SG3525中的振荡器除了CT和RT两个引脚外,又增加了一个同步端(引脚3)和一个放电端(引脚7)。
RT的阻值决定了内部恒流源对CT充电电流的大小,而CT的放电则由引脚5和引脚7之间的外接电阻决定。
将充电回路和放电回路分开,有利于通过引脚5和引脚7之间的外接电阻来调节死区时间。
这样SG3525的震荡频率由下式进行计算:FOSC= (4-11)同步端(引脚3)主要用于多只SG3525之间的外部同步,同步脉冲的频率应比震荡频率FOSC略低一些。
8改进了输出级的结构。
SG3525对SG3524输出级进行了改进,以适应功率MOS-FET的需要,其末级采用了推挽式电路,关断速度更快。
SG3525的输出级采用图腾柱式结构,其灌电流/拉电流能力超过200mA。
在单端变换器应用中,SG3525的两个输出端应接地,如图4.14当输出晶体管开通时,R1上会有电流流过,R1上的压降将使VT1导通。
因此VT1是在SG3525内部的输出晶体管导通时间内导通的,因此其开关频率等于SG3525内部振荡器的频率。
当采用推挽式输出时,应采用如下结构,如图4.15VT1和VT2分别由SG3525的输出端A和输出端B输出的正向驱动电流驱动。
电阻R2和R3是限流电阻,是为了防止注入VT1和VT2的正向基极电流超出控制器所允许的输出电流。
C1和C2是加速电容,起到加速VT1和VT2导通的作用。
由于SG3525的输出驱动电路是低阻抗的,而功率MOSFET的输入阻抗很高,因此输出端A和输出端B与VT1和VT2栅极之间无须串接限流电阻和加速电容,就可以直接推动功率MOSFET,如图4.16。
另外,SG3525还能够直接驱动半桥变换器中的小功率变压器。
如果变压器一次绕组的两端分别直接接到SG3525的两个输出端上,则在死区时间内可以实现变压器的自动复位,如图4.17。