二重积分的变量代换资料.
- 格式:ppt
- 大小:2.37 MB
- 文档页数:48
二重积分的变量代换§4 二重积分的变量代换引言有一种情形,函数f 在D 上可积,但无论采用哪种积分次序都“算不出来”。
例如 22()xy DI e dxdy -+=??,D={}222(,)|x y x y a +≤分析:∵函数f(x,y)=22()xy e -+ 在有界区域D={}222(,)|x y x y a +≤处处连续,∴f ∈R (D )222222()aa x x y aa xI dx e dy --+---=??=222222aa x x y a a xedx e dy ------??或者 222222()aa x x y aa xI dy e dx --+---=??=222222aa x y x aa xedy e dx ------??计算不出来!f ∈R (D ),但化为二次积分后算不出来,因此,我们有必要寻找更有效的计算二重积分的方法. 联想到定积分的计算方法,换元法、分部积分法、N-L 公式等,特别是换元法,是一种化难为易的有效方法. 在二重积分中能否利用这种化难为易的思想呢?二重积分的变量代换,就是这种方法,。
在定积分中,换元积分法对简化定积分计算起着重要的作用. 对于二重积分也有相应的换元公式,用于简化积分区域或被积函数.1 定积分换元积分法公式的改写2 一元函数)(x f y =在0x 的导数的绝对值)(0x f '的几何意义3 函数行列式的几何意义设变换),( , ),(v u y y v u x x ==的Jacobi0),(),(≠??v u y x D '是在该变换的逆变换),( , ),(y x v v y x u u ==下XY 平面上的区域D 在UV 平面上的象. 由条件0),(),(≠??v u y x , 这里的逆变换是存在的.一般先引出变换),( , ),(y x v v y x u u ==,设函数),( , ),(y x v v y x u u ==在XOY 平面上的区域D 内有连续的偏导数 . 在此变换之下,XOY 平面上的区域D 变为UV 平面上的区域D ', 且设0),(),(≠??=v u y x J .由此求出变换),( , ),(v u y y v u x x ==,并且 1),(),(),(),(-=??y x v u v u y x .引理1( 补充) 设变换T :),( , ),(y x v v y x u u ==如上所述, 又设在XOY 平面上有一块包含点),(y x 的区域σ, 点),(y x 和σ都在D 内 . 通过变换),( , ),(y x v v y x u u ==将点),(y x 变换为UV 平面上一点),(v u , 将σ变换为UV 平面上包含点),(v u 的一块区域*σ.那么当σ无限地向点),(y x 收缩时 , 它们的面积之比||||*σσ的极限为||J , 即),(),(|||*|lim),(y x v u y x ??=→σσσ. 证明思路(参见刘玉琏教材下册9225定理3):(1) 在D 内取出一点),(y x A , 作一个矩形ABCD ( 边与坐标轴平行, 字母ABCD 依逆时针标记 ) . 设四个顶点的坐标为),(y x A , ) , ( , ) , ( , ) , (dy y x D dy y dx x C y dx x B ++++. 则其面积分为dxdy .(2) 变换 ),( , ),(y x v v y x u u ==把该矩形变为UV 平面上的一个曲边四边形D C B A '''',设四个顶点的坐标为),(11v u A ', ),(22v u B ', ),(33v u C ', ),(44v u D '.(3) 用Taylor 公式把曲边四边形D C B A ''''的四个顶点坐标用x 和y 表示出来: ),( , ),( :11y x v v y x u u A ==';, )(),(),() , ( :2dx dx y x u y x u y dx x u u B x ++=+=' ; )(),(),() , (2dx dx y x v y x v y dx x v v x ++=+=)()(),(),(),() , ( :3dy dx dy y x u dx y x u y x u dy y dx x u u C y x ++++=++=',.)()(),(),(),() , ( 3dy dx dy y x v dx y x v y x v dy y dx x v v y x ++++=++=;)(),(),() , ( :4dy dy y x u y x u dy y x u u D y ++=+=',)(),(),() , ( 4dy dy y x v y x v dy y x v vy ++=+=. (4) 略去)(dx 和)(dy , 得仿射变换. 在该仿射变换之下, 矩形ABCD 变为平行四边形. 用该平行四边形的面积近似代替曲边四边形D C B A ''''的面积. 平行四边形的顶点坐标是上述D C B A '''',,,的顶点坐标表达式中略去)(dx 和)(dy 所剩的式子.该平行四边形的面积==±111332211v u v u v u ==++++++±1),(),(),(),(),(),(1),(),(),(),(1),(),(y x v dx y x v y x v y x u dx y x u y x u dxy x v y x v dxy x u y x u y x v y x u y x y x x xd x d y y x v u dy v dy u dx v dx u v u y y x x ),(),(001=±=. 注1 引理1即证明了换算公式 d u d v v u y x d x d y),(),(??=. 一、二重积分的一般变量变换公式引理2变换T :(,)x x u v =,(,)y y u v =(*). 通过(*)把?变为D ,在?上有关于x,y 的连续偏导数,并且变换(*)是一对一的,又设(,)0(,)x y J u v ?=≠?(在?内不为0),则区域D 的面积 dudv v u J dxdy D D==),()(μ (5)证明 P233定理21.13 设D 2R ?有界闭区域,()f R D ∈,变换T :(,)x x u v =,(,)y y u v =(*). 通过(*)把?变为D ,在?上有关于x,y 的连续偏导数,并且变换(*)是一对一的,又设(,)0(,)x y J u v ?=≠?(在?内不为0),则 d u d v v u J v u y v u x f d x d y v u J y x f D=),()),(),,((),(),(证明 P235例1+-Dyx yx dxdy e, 1 , 0 , 0 :=+==y x y x D .解 P235-236注2 当被积函数形如) ( ) , (1221222111b a b a c y b x a c y b x a f ≠++++, 积分区域为直线型时,可试用线性变换 222111 , c y b x a v c y b x a u ++=++=. 补例1Ddxdy y x 22, xy x y x y x y D 3 , 1 , 2 , 21 :====. 解设xy v x y u ==,. 则] 3 , 1 ; 2 , 21[) , (∈v u .x y xyxx yy x v u 21),(),(2=-=?? , ? u y x v u y x 212),(),(==??. 因此 ,'==?==D D u v u du dv v dudv u v 31221221313222ln 326ln 3212121. 注3 若区域D 是由两组“相似”曲线 ( 即每组中的两条曲线仅以一个参数不同的取值相区别 ) 围成的四线型区域 , 可引进适当的变换使其变成矩形区域 . 设区域D 由以下两组曲线围成 : 第一组: ) ( , 0),,( , 0),,(q p q y x F p y x F <==; 第二组: ) ( , 0),,( , 0),,(b a b y x G a y x G <==.可试用变换0),,( , 0),,(==v y x G u y x F . ] , ; , [) , (b a q p v u ∈. 从中解出),( , ),(v u y y v u x x ==. 在此变换之下, 区域D 变成UV 平面上的矩形区域] , [ ] , [b a q p ?.例 2 求由抛物线 ) 0 ( , 22n m nx y mx y <<== 和直线 x y x y βα== , ) 0 (βα<<所围平面区域D 的面积 .解 P236注4 在具体问题中,选择变换公式的依据有两条:(1)使变换的函数容易积分;(2)使得积分限容易安排.二、用极坐标变换计算二重积分1 极坐标变换下的二重积分变换公式极坐标变换是一种特殊的变量替换.极坐标变换T :cos ,sin x r y r θθ== (8)此时(,)(,)x y r θ??=cos sin sin cos ||r r r θθθθ-= 注5 在定理21.13中,假设J ≠0,但有时会遇到这种情形. 变换行列式在区域内个别点上等于0.或只在区域个别线段上等于0,而在其它点上非0,此时定理21.13结论能成立.定理21.14 设),(y x f 满足定理21.13的条件,在极坐标变换(8)下,有(,)Df x y dxdy ??='(cos ,sin )D f r r rdxdy θθ?? (9)证明 P2382 在什么情况下使用极坐标变换当积分区域是圆域或是圆域的部分或被积函数的形式为22()f x y +时,采用极坐标变换来计算往往简便得多.3二重积分在极坐标变换下如何化为二次积分来计算下面分情况讨论之情形1 若'D ={}1212(,)|()(),r r r r θθθθθθ≤≤≤≤,1()r θ,2()r θ为[1θ,2θ]上的连续函数,则称之为θ型区域(如P239图21-24).这时,类似于上节的x-y-型区域的取法,可将之化为下面形式:'(cos ,sin )D f r r rdrd θθθ??=2211()()(cos ,sin )r r d f r r rd r θθθθθθθ??(10)两种特例(1)若极点O 是积分区域的内点,则变换T 后的区域为'D ={}(,)|0(),02r r r θθθπ≤≤≤≤ 此处r =()r θ是'D 的边界曲线(如P239图21-26),此时有'(cos ,sin )D f r r rdrd θθθ??=2()(cos ,sin )r d f r r rdr πθθθθ??(12)(2)若积分区域的边界曲线r =()r θ通过极点O 时(如P239图21-27),应先求出极径,即使()r θ=0的两个角度1θ,2θ,此时有'(cos ,sin )D f r r rdrd θθθ??=21()(cos ,sin )r d f r r rdr θθθθθθ??(13)情形2 若'D ={}1212(,)|()(),r r r r r r θθθθ≤≤≤≤,其中1()r θ,2()r θ∈C[1r ,2r ] (r-型区域,如P239图21-25),此时有'(cos ,sin )D f r r rdrd θθθ??=2211()()(cos ,sin )r r r r dr f r r rd θθθθθ??(11)例3221DdxdyI x y =--??,D 为圆域122≤+y x解 P240例4 求球体2222R z y x ≤++被圆柱面Rx y x =+22所割下立体的体积(称为维维安尼(Viviani )体).解 P240例5 22()xy DI e dxdy -+=??,D={}222(,)|x y x y a +≤广义极坐标变换: θθsin , cos br y ar x ==,abr r y x =??),(),(θ.补例6 求椭球体2222221x y z a b c++≤的体积补例2应用二重积分求广义积分?+∞-02dx e x .补例3有一个形状为旋转抛物面22z x y =+的容器内,已经盛38cm π,的溶液,现又倒进3120cm π的溶液,问液面比原来的液面升高多少cm ?作业P242:1(1)、(2),2(2)、(4),3(1)、(2),4,5(2),6(1)、(2).附录:极坐标系下的二重积分的公式1 用定积分定义推导极坐标系下的二重积分的公式极坐标变换:cos ,sin x r y r θθ== (0,02)r θπ≤<+∞≤≤。
§4 二重积分的变量交换在二重积分中,变量交换是一种常见的操作方法。
它通过交换自变量和因变量的顺序来改变被积函数的表达式,从而可以使积分更容易进行或更加简洁。
一、变量交换的基本概念在二重积分中,变量交换指的是将积分区域中自变量和因变量的顺序进行交换,同时改变积分区域的形状,即将原来在 $xOy$ 平面上的区域变成在 $yOx$ 平面上的区域,并维持面积不变。
就积分意义而言,变量交换不改变积分的结果。
具体来说,设被积函数为 $f(x,y)$,积分区域为 $D$,其在 $xOy$ 平面上的投影为$\mathcal{D}$。
若令 $u=y,v=x$,则变量交换后的积分区域为 $D'$,在 $uOv$ 平面上的投影为 $\mathcal{D}'$,其面积为原先积分区域面积的倒数。
被积函数也相应地变为$f(v,u)$。
则可得变量交换后的二重积分为:$$\iint\limits_Df(x,y)dxdy=\iint\limits_{D'}f(v,u)dudv$$二、变量交换的条件和方法变量交换不是所有情况下都可以进行的,需要满足特定的条件才能进行。
根据积分区域的类型和被积函数的性质,有以下几种情况。
1. 镜面对称性若被积函数 $f(x,y)$ 关于某条直线 $L$ 对称,且积分区域 $D$ 也关于同一直线$L$ 对称,则可以采用镜面对称的方法进行变量交换。
具体来说,可以在积分区域$D$ 上作镜面对称的区域 $D'$,使得 $D$ 和 $D'$ 的交集恰好为 $L$,且在 $D'$ 中的积分限与 $D$ 相同。
则可得变量交换的式子:2. 极坐标变换若积分区域 $D$ 在极坐标下是简单区域,且被积函数 $f(x,y)$ 在极坐标下具有简单的表达式,则可以采用极坐标变换的方法进行变量交换。
具体来说,可以设极坐标变换为 $x=r\cos\theta,y=r\sin\theta$,则有:3. 三角函数变换其中,$\frac{\partial(x,y)}{\partial(u,v)}$ 是雅可比矩阵的行列式,并满足:$$\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{\partialx}{\partial u} &\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} &\frac{\partial y}{\partial v}\end{vmatrix}$$4. 其他变换对于一些较为特殊的积分区域和被积函数,也可以采用其他的变换方式进行变量交换。
第二十一章 重积分 4二重积分的变量变换一、二重积分的变量变换公式定积分的变量变换:设f(x) 在[a,b]上连续,x=φ(t)当t 从α变到β时,严格单调地从a 变到b ,且φ(t)连续可导,则⎰b a dx x f )(=⎰'βαϕϕdt t t f )())((. 当α<β(即φ’(t)>0)时,记X=[a,b], Y=[α,β],则X=φ(Y), Y=φ-1(X),则 上面的公式可以写成⎰X dx x f )(=⎰-')(1)())((X dt t t f ϕϕϕ.当α>β(即φ’(t)<0)时,又可改写成⎰X dx x f )(=-⎰-')(1)())((X dt t t f ϕϕϕ,即当φ(t)严格单调且连续可微时,有⎰X dx x f )(=⎰-')(1)())((X dt t t f ϕϕϕ.引理:设变换T :x=x(u,v), y=y(u,v)将uv 平面上由按段光滑封闭曲线所围的闭区域△一对一地映成xy 平面上的闭区域D ,函数x(u,v), y(u,v)在△内分别具有一阶连续偏导数且它们的函数行列式 J(u,v)=),(),(v u y x ∂∂≠0, (u,v)∈△,则区域D 的面积μ(D)=⎰⎰∆dudv v u J ),(. 证:当y(u,v)在△内具有二阶连续偏导数时, (后面章节证明只具有一阶连续导数的情况)∵T 为一对一变换, 且J(u,v)≠0, ∴T 把△的内点变成D 的内点, △的按段光滑边界曲线L △变换到D 时,其边界曲线L D 也按段光滑. 设曲线L △的参数方程为u=u(t), v=v(t) (α≤t ≤β), 由L △光滑知, u ’(t), v ’(t)在[α,β]上至多除去有限个第一类间断点外,在其他点上连续. ∵L D =T(L △), ∴x=x(t)=x(u(t),v(t)), y=y(t)=y(u(t),v(t)) (α≤t ≤β). 若规定t 从α变到β时,对应于L D 的正向,则根据格林公式,取P(x,y)=0, Q(x,y)=x, 有 μ(D)=⎰DL xdy =⎰'βαdt t y t x )()( =⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂βαdt t v v y t u u y t v t u x )()())(),((, 又在uv 平面上,⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂L dv v y du u y v u x ),(=⎰⎥⎦⎤⎢⎣⎡'∂∂+'∂∂±βαdt t v v y t u u y t v t u x )()())(),((, 其中t 从α变到β时,对应于L △的方向决定了上式的符号性质. ∴μ(D)=⎰∆⎥⎦⎤⎢⎣⎡∂∂+∂∂±L dv v y du uy v u x ),(=⎰∆∂∂+∂∂±L dv v y v u x du u y v u x ),(),(. 令P(u,v)=x(u,v)u y ∂∂, Q(u,v)=x(u,v)vy∂∂, 在uv 平面上应用格林公式,得 μ(D)=⎰⎰∆⎪⎭⎫⎝⎛∂∂-∂∂±dudv v P u Q , 又y(u,v)具有二阶连续偏导数,即有 u v y v u y ∂∂∂=∂∂∂22,∴v P u Q ∂∂-∂∂=J(u,v). ∴μ(D)=⎰⎰∆±dudv v u J ),(. 又μ(D)非负,而J(u,v)在△上不为零且连续,即其函数值在△上不变号, ∴μ(D)=⎰⎰∆dudv v u J ),(.定理21.13:设f(x,y)在有界闭域D 上可积,变换T :x=x(u,v), y=y(u,v)将uv 平面由按段光滑封闭曲线所围成的闭区域△一对一地映成xy 平面上的闭区域D ,函数x(u,v), y(u,v)在△内分别具有一阶连续偏导数且它们的函数行列式J(u,v)=),(),(v u y x ∂∂≠0, (u,v)∈△,则 ⎰⎰Ddxdy y x f ),(=⎰⎰∆dudv v u J v u y v u x f ),()),(),,((.证:用曲线网把△分成n 个小区域△i ,在变换T 作用下,区域D 也相应地被分成n 个小区域D i . 记△i 及D i 的面积为μ(△i )及μ(D i ) (i=1,2,…,n).由引理及二重积分中值定理,有μ(D i )=⎰⎰∆idudv v u J ),(=|J(u i ,v i )|μ(△i ),其中(u i ,v i )∈△i (i=1,2,…,n). 令ξi =x(u i ,v i ), ηi =y(u i ,v i ), 则 (ξi ,ηi )∈D i (i=1,2,…,n). 作二重积分⎰⎰Ddxdy y x f ),(的积分和,则得△上f(x(u,v),y(u,v))|J(u,v)|的积分和,即σ=)(),(1i ni i i D f μηξ∑==)(),()),(),,((1i ni i i i i i i v u J v u y v u x f ∆∑=μ. 由变换T 连续知,当区域△的分割T △:{△1,△2,…,△n }的细度∆T →0时, 区域D 相应的分割T D :{D 1,D 2,…,D n }的细度D T →0. ∴⎰⎰Ddxdy y x f ),(=⎰⎰∆dudv v u J v u y v u x f ),()),(),,((.例1:求⎰⎰+-Dyx y x dxdy e,其中D 是由x=0, y=0, x+y=1所围区域.解:令u=x-y, v=x+y, 则得变换T :x=21(u+v), y=21(v-u), 且J(u,v)=),(),(v u y x ∂∂=v y uyv x ux∂∂∂∂∂∂∂∂=21212121- =21>0. 在变换T 的作用下,得 区域D={(x,y)|x ≥0, y ≥0, x+y ≤1}的原象△={(u,v)|-v ≤u ≤v, 0≤v ≤1}, ∴⎰⎰+-Dyx y x dxdy e=⎰⎰∆⋅dudv e vu21=⎰⎰-v v v udu e dv 1021=⎰--101)(21vdv e e =)(411--e e .例2:求抛物线y 2=mx, y 2=nx 和直线y=ax, y=bx 所围区域D 的面积μ(D) (0<m<n, 0<a<b). 解:D={(x,y)|2b m ≤x ≤2a n ,ax ≤y ≤bx,nx ≤y 2≤mx}.作变换x=2v u , y=v u ,把D 对应到uv 平面上的△=[m,n]×[a,b]且J(u,v)=232121vu vv uv--=4v u >0. ∴μ(D)=⎰⎰Ddxdy =⎰⎰∆dudv v u4=⎰⎰n m b a du v u dv 4=⎰-b a dv v m n 42221 =3333226))((b a a b m n --.二、用极坐标计算二重积分定理21.14:设f(x,y)满足定理21.13的条件,且有极坐标变换 T :⎩⎨⎧==θθsin cos r y r x , 0≤r<+∞, 0≤θ≤2π, 则J(r,θ)=θθθθcos sin sin cos r r -=r>0.xy 平面上的有界闭域D 与r θ平面上区域△对应,则成立⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.证:若D 为圆域{(x,y)|x 2+y 2≤R 2}, 则△为r θ平面上的区域[0,R]×[0,2π]. 设D ε为在圆环{(x,y)|0<ε2≤x 2+y 2≤R 2}中除去圆心角为ε的扇形所得 区域BB ’A ’A(如图1),则在变换T 下,D ε对应r θ平面上的矩形区域 △ε=[ε,R] ×[0,2π-ε](如图2). T 在D ε与△ε之间为一一变换,且J(r,θ)>0. 由定理21.13,有⎰⎰εD dxdy y x f ),(=⎰⎰∆εθθθrdrd r r f )sin ,cos (.∵f(x,y)在有界闭域D 上有界,令ε→0即得⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.若D 是一般的有界闭区域,则取足够大的R>0,使D 包含在圆域D R ={(x,y)|x 2+y 2≤R 2}内, 并在D R 上定义函数: F(x,y)=⎩⎨⎧∉∈D y x ,Dy x ,y x f ),(0),(),( ,F 在D R 内至多在有限条按段光滑曲线上间断, ∴⎰⎰RD dxdy y x F ),(=⎰⎰∆Rrdrd r r F θθθ)sin ,cos (, 其中△R 为r θ平面上的矩形区域[0,R] ×[0,2π]. 由F 的定义即得:⎰⎰Ddxdy y x f ),(=⎰⎰∆θθθrdrd r r f )sin ,cos (.二重积分在极坐标下化为累次积分.1、若原点O ∉D ,且xy 平面上射线θ=常数与D 的边界至多交于两点(如图1),则△必可表示为r 1(θ)≤r ≤r 2(θ), α≤θ≤β, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)()(21)sin ,cos (θθβαθθθr r rdr r r f d .同理,若xy 平面上的圆r=常数与D 的边界至多交于两点(如图2),则△必可表示为θ1(r)≤θ≤θ2(r),r 1≤r ≤r 2, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)()(2121)sin ,cos (r r r r d r r f rdr θθθθθ.(2)若原点为D 的内点(如图3),D 的边界的极坐标方程为r=r(θ),则 △必可表示为0≤r ≤r(θ),0≤θ≤2π, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)(020)sin ,cos (θπθθθr rdr r r f d .(3)若原点O 在D 的边界上(如图4),则 △可表示为0≤r ≤r(θ),α≤θ≤β, 于是有⎰⎰Ddxdy y x f ),(=⎰⎰)(0)sin ,cos (θβαθθθr rdr r r f d .例3:计算I=⎰⎰--Dy x d 221σ, 其中D 为圆域x 2+y 2≤1.解:∵原点是D 的内点, ∴⎰⎰--Dy x d 221σ=⎰⎰--1222220sin cos 1dr r r rd θθθπ=⎰πθ20d =2π.例4:求球体x 2+y 2+z 2≤R 2被圆柱面x 2+y 2=Rx 所割下部分的体积(称为维维安尼体)解:由对称性,求出第一卦限内的部分体积,就能得到所求立体体积. 第一卦限内底为D={(x,y)|y ≥0, x 2+y 2≤Rx}, 曲顶方程:z=222y x R --. ∴V=4⎰⎰--Dd y x R σ222=4⎰⎰-θπθcos 02220R drr R r d=⎰-2033)sin 1(34πθθd R =)322(343-πR .例5:计算I=⎰⎰+-Dy x d eσ)(22,其中D 为圆域x 2+y 2≤R 2.解:I=⎰⎰+-Dy x d e σ)(22=⎰⎰-Rr dr re d 0202πθ=⎰--πθ20)1(212d e R =)1(2R e --π.注:与极坐标类似的,可作以下广义极坐标变换: T :⎩⎨⎧==θθsin cos br y ar x , 0≤r<+∞, 0≤θ≤2π,则J(r,θ)=θθθθcos sin sin cos br b ar a -=abr>0.例6:求椭球体222222cz b y a x ++≤1的体积.解:第一卦限部分是以z=c 22221by a x --为曲顶,D={(x,y)|0≤y ≤b 221ax -, 0≤x ≤a}为底的曲顶柱体,由对称性得:V=8c ⎰⎰--Dd by a x σ22221=8c ⎰⎰-102201abrdr r d πθ=38abc ⎰20πθd =34πabc.注:当a=b=c=R 时,得到球体的体积公式:34πR 3.习题1、对⎰⎰Dd y x f σ),(进行极坐标变换并写出变换后不同顺序的累次积分:(1)当D 为由不等式a 2≤x 2+y 2≤b 2, y ≥0所确定的区域; (2)D={(x,y)|x 2+y 2≤y, x ≥0}; (3)D={(x,y)|0≤x ≤1, 0<x+y ≤1}.解:(1)当D 为由不等式a 2≤x 2+y 2≤b 2, y ≥0所确定的区域时,⎰⎰Dd y x f σ),(=⎰⎰b adr r r rf d )sin ,cos (0θθθπ=⎰⎰πθθθ0)sin ,cos (d r r rf dr b a.(2)当D={(x,y)|x 2+y 2≤y, x ≥0}时,⎰⎰Dd y x f σ),(=⎰⎰θπθθθsin 20)sin ,cos (adr r r rf d =⎰⎰2arcsin 1)sin ,cos (πθθθrd r r rf dr .(3)当D={(x,y)|0≤x ≤1, 0<x+y ≤1}时,⎰⎰Dd y x f σ),(=⎰⎰-θπθθθsec 004)cos ,cos (dr r r rf d +⎰⎰+θθπθθθsin cos 1020)cos ,cos (drr r rf d=⎰⎰-24220)sin ,cos (ππθθθd r r rf dr +⎰⎰--rd r r rf dr 21arccos44122)sin ,cos (ππθθθ+⎰⎰+221arccos4122)sin ,cos (ππθθθrd r r rf dr +⎰⎰--r d r r rf dr 1arccos421)sin ,cos (πθθθ.2、用极坐标计算下列二重积分:(1)⎰⎰+Dd y x σ22sin , 其中D={(x,y)|π2≤x 2+y 2≤4π2};(2)⎰⎰+Dd y x σ)(, 其中D={(x,y)|x 2+y 2≤x+y};(3)⎰⎰Dd xy σ, 其中D 为圆域x 2+y 2≤a 2;(4)⎰⎰+'Dd y x f σ)(22, 其中D 为圆域x 2+y 2≤R 2.解:(1)当D={(x,y)|π2≤x 2+y 2≤4π2}时,⎰⎰+Dd y x σ22sin =⎰⎰πππθ220sin rdr r d =⎰-πθπ203d =-6π2.(2)当D={(x,y)|x 2+y 2≤x+y}时,应用极坐标变换后积分区域为: D ’={(r,θ)|-45π≤θ≤-4π, r ≤cos θ+sin θ},即有 ⎰⎰+Dd y x σ)(=⎰⎰+--+θθππθθθsin cos 02445)sin (cos dr r d =⎰--+4454)sin (cos 31ππθθθd =2π.(3)当D 为圆域x 2+y 2≤a 2时,根据D 的对称性,有⎰⎰Dd xy σ=4⎰⎰adr r d 032sin cos θθθπ=θθπd a ⎰2042sin 2=24a .(4)当D 为圆域x 2+y 2≤R 2时,有⎰⎰+'Dd y x f σ)(22=⎰⎰'πθ2020)(d r f r dr R =π⎰'Rdr r f 022)(=π[f(R 2)-f(0)].3、在下列积分中引入新变量u,v 后,试将它化为累次积分. (1)⎰⎰--xx dy y x f dx 2120),(, 若u=x+y, v=x-y ;(2)⎰⎰D d y x f σ),(, 其中D={(x,y)|x +y ≤a }, 若x=ucos 4v, y=usin 4v ;(3)⎰⎰Dd y x f σ),(, 其中D={(x,y)|x+y ≤a, x ≥0, y ≥0}, 若x+y=u, y=uv.解:(1)若u=x+y, v=x-y ,则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 又变换后的区域D ’={(u,v)|1≤u ≤2, -u ≤v ≤4-u}, 如图:∴⎰⎰--xx dy y x f dx 2120),(=⎰⎰---+uu dv vu v u f du 421)2,2(21=⎢⎣⎡-+⎰⎰---212)2,2(21v du v u v u f dv+⎰⎰-+-2121)2,2(du v u v u f dv +⎥⎦⎤-+⎰⎰-v du v u v u f dv 4132)2,2(. (2)若x=ucos 4v, y=usin 4v, 则u=(x +y )2, v=arctan 41⎪⎭⎫⎝⎛x y ,∴变换后的区域D ’={(u,v)|0≤u ≤a, 0≤v ≤2π},又J(u,v)=vv u v v v u v cos sin 4sin sin cos 4cos 3434-=4usin 3vcos 3v>0,∴⎰⎰Dd y x f σ),(=⎰⎰2044330)sin ,cos (cos sin 4πdvv u v u vf v u du a=⎰⎰adu v u v u vf v u dv 0443320)sin ,cos (cos sin 4π. (3)若x+y=u, y=uv, 即x=u(1-v),则u=x+y, v=yx y +, ∴变换后的区域D ’={(u,v)|0≤u ≤a, 0≤v ≤1}, 又J(u,v)=uvu v --1=u ,∴⎰⎰Dd y x f σ),(=⎰⎰-100),(dv uv uv u uf du a=⎰⎰-adu uv uv u uf dv 010),(.4、试作适当变换,计算下列积分.(1)⎰⎰-+Dd y x y x σ)sin()(, D={(x,y)|0≤x+y ≤π, 0≤x-y ≤π};(2)⎰⎰+Dyx y d eσ, 其中D={(x,y)|x+y ≤1, x ≥0, y ≥0}.解:(1)令u=x+y, v=x-y ,则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 又变换后的区域D ’={(u,v)|0≤u ≤π, 0≤v ≤π},∴⎰⎰-+Dd y x y x σ)sin()(=⎰⎰ππ00sin 21vdv u du =⎰π0udu =22π.(2)令u=x+y, v=y ,则x=u-v, y=v, J(u,v)=111-= 1>0.又变换后的区域D ’={(u,v)|0≤u ≤1, 0≤v ≤u}, ∴⎰⎰+Dyx yd eσ=⎰⎰uuv dv e du 010=⎰-1)1(du e u =21-e .5、求由下列曲面所围立体V 的体积:(1)V 是由z=x 2+y 2和z=x+y 所围的立体;(2)V 是由曲面z 2=42x +92y 和2z=42x +92y 所围的立体.解:(1)由z=x 2+y 2和z=x+y 得x 2+y 2=x+y ,∴积分区域D :221⎪⎭⎫ ⎝⎛-x +221⎪⎭⎫⎝⎛-y ≤21.作变换T :x=21+rcos θ, y=21+rsin θ,得V=()[]⎰⎰+-+Dd y x y x σ22)(=⎰⎰⎪⎭⎫ ⎝⎛-22022021rdr r d πθ=⎰πθ20161d =8π. (2)由z 2=2z, 得z 1=0, z 2=2. 所得立体V 在xoy 平面上的投影为42x +92y ≤4,立体顶面为z=9422y x +, 底面为z=⎪⎪⎭⎫ ⎝⎛+942122y x , 作变换x=2rcos θ, y=3rsin θ,则J(r,θ)=θθθθcos 3sin 3sin 2cos 2r r -=6r>0.∴V=⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+D d y x y x σ9421942222=⎰⎰⎪⎪⎭⎫⎝⎛-2022026rdr r r d πθ=4⎰πθ20d =8π.6、求由下列曲线所围的平面图形面积: (1)x+y=a, x+y=b, y=αx, y=βx (0<a<b, 0<α<β);(2)22222⎪⎪⎭⎫ ⎝⎛+b y a x =x 2+y 2; (3)(x 2+y 2)2=2a 2(x 2-y 2) (x 2+y 2≥a 2). 解:(1)令u=x+y, v=xy, 则x=v u +1, y=vuv +1, 变换后的区域D ’={(u,v)|a ≤u ≤b, α≤v ≤β},又J(r,θ)=22)1(1)1(11v u vv v uv+++-+=2)1(v u +>0. ∴曲线所围的平面图形面积 S D =⎰⎰Dd σ=⎰⎰+ba du v u dv 2)1(βα=⎰+-βαdv v a b 222)1(12=)1)(1(2))((22βααβ++--a b .(2)令x=arcos θ, y=brcos θ,则方程变换为r 4=a 2r 2cos 2θ+b 2r 2sin 2θ, 即 r=θθ2222sin cos b a +,又J=abr>0,∴曲线所围的平面图形面积 S D =⎰⎰+θθπθ2222sin cos 020b a rdr d ab =⎰+πθθθ202222)sin cos (2d b a ab =2)(22πb a ab +. (3)x=rcos θ, y=rcos θ,则方程变换为r 4=2a 2r 2cos2θ, 即r=θ2cos 2a . 当cos2θ=21, 即θ=±6π时,r=a. 由图形的对称性可知 S D =4⎰⎰θπθ2cos 260a a rdr d =2a2⎰-60)12cos 2(πθθd =(3-3π)a 2.7、设f(x,y)为连续函数,且f(x,y)=f(y,x). 证明:⎰⎰xdy y x f dx 010),(=⎰⎰--xdy y x f dx 010)1,1(.证:作变换:x=1-u, y=1-v, 则J(u,v)=101--=1>0, 又f(x,y)=f(y,x),∴⎰⎰xdy y x f dx 010),(=⎰⎰--vdu v u f dv 010)1,1(=⎰⎰--vdu u v f dv 010)1,1(=⎰⎰--xdy y x f dx 010)1,1(.8、试作适当变换,把下列二重积分化为单重积分: (1)⎰⎰+D d y x f σ)(22, D 为圆域x 2+y 2≤1;(2)⎰⎰+Dd y x f σ)(22, D={(x,y)||y|≤|x|, |x|≤1};(3)⎰⎰+Dd y x f σ)(, D={(x,y)||x|+|y|≤1};(4)⎰⎰Dd xy f σ)(, 其中D={(x,y)|x ≤y ≤4x, 1≤xy ≤2}.解:(1)作极坐标变换得:⎰⎰+D d y x f σ)(22=⎰⎰1020)(rdr r f d πθ=2π⎰10)(rdr r f .(2)如图,根据区域D 和被积函数的对称性知, 积分值是第一象限部分D 1上积分的4倍. D 1={(x,y)|y ≤x ≤1, y ≥0},作极坐标变换得:⎰⎰+1)(22D d y x f σ=⎰⎰4010)(πθrd r f dr +⎰⎰41arccos21)(πθrrd r f dr=⎰1)(4rdr r f π+⎰⎪⎭⎫ ⎝⎛-21)(1arccos 4rdr r f r π=⎰20)(4rdr r f π-⎰21)(1arccos dr r f r r . ∴⎰⎰+Dd y x f σ)(22=π⎰20)(rdr r f -4⎰21)(1arccos dr r f rr .(3)令u=x+y, v=x-y, 则x=2v u +, y=2vu -, J(u,v)=21212121-=-21<0. 原积分区域变换为:D ’={(u,v)|-1≤u ≤1, -1≤v ≤1}. ∴⎰⎰+Dd y x f σ)(=⎰⎰--1111)(21dv u f du =⎰-11)(du u f . (4)令u=xy, v=x y, 则x=v u , y=uv , J(u,v)=vuuv v uv vu 212121121-=v 21>0.原积分区域变换为:D ’={(u,v)|1≤u ≤2, 1≤v ≤4}. ∴⎰⎰Dd xy f σ)(=⎰⎰41211)(21dv vu f du =ln2⎰21)(du u f .。