重积分变量代换公式证明
- 格式:pdf
- 大小:259.22 KB
- 文档页数:5
数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:重积分的变量替换公式;内容提要:重积分的变量替换公式; 极坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;球面坐标变换.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).一般的变量替换现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).断言:ϕ(∂A)为零测集,从而∂ϕ(A)亦然,于是ϕ(A)可求体积.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).为了研究ϕ(A)的体积,我们将ϕ线性化并做误差估计.引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .证明.在Bδ(x)中考虑函数F(y)=ϕ(y)−ϕ(x)−Jϕ(x)(y−x),则F(x)=0,JF(y)=Jϕ(y)−Jϕ(x).根据拟微分中值定理,存在ξ=x+θ(x −x)(0<θ<1),使得F(x ) = F(x )−F(x) ≤ Jϕ(ξ)−Jϕ(x) x −x ,由Jϕ在K上的一致连续性即可完成证明.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.证明.考虑仿射变换L(y)=[Jϕ(x)]−1(y−ϕ(x))+x,则L◦ϕ(x )=[Jϕ(x)]−1F(x )+x ,于是当x ,x ∈Bη(x)时L◦ϕ(x )−L◦ϕ(x ) ≤[1+ [Jϕ(x)]−1 ε] x −x .由B⊂Bη(x)可得ν(L◦ϕ(B))≤[1+ [Jϕ(x)]−1 ε]nν(B).再由仿射变化的体积变化公式即可完成证明.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.证明.不妨设A为矩形,且f非负.任给A的分割π={A ij},我们有ϕ(A)f=ijϕ(A ij)f≤ij[supϕ(A ij)f]ν(ϕ(A ij))证明(续).当分割充分细时,由之前的引理可得ϕ(A)f≤ijsupA ij[f◦ϕ]|det Jϕ(ξij)|ν(A ij)+O(ε),由Riemann和与积分之间的关系可得ϕ(A)f≤Af◦ϕ|det Jϕ|+O(ε),令ε→0可得ϕ(A)f≤Af◦ϕ|det Jϕ|.根据反函数定理,ϕ:D→ϕ(D)可逆.如果对ϕ−1重复上述论证就可得到另一边的不等式.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.解.积分区域是一个曲边的四边形,为了简化,我们令y 2/x =u ,xy =v ,则(u ,v )关于(x ,y )的Jacobi 行列式为∂(u ,v )∂(x ,y )= −y 2/x 22y /x y x =−3y 2/x =−3u ,因此(x ,y )关于(u ,v )的Jacobi 行列式为−(3u )−1.在这个变换下,积分区域变为矩形[p ,q ]×[a ,b ],因此I =q p d u b a v −(3u )−1 d v =16(b 2−a 2)ln q p.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.尽管如此,由于此变换在(0,+∞)×(0,2π)上是一一的且非退化,因此将前面的证明略作改动即知,积分的变量替换公式对这个变换仍然成立.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.解.作所谓的广义极坐标变换x=ar cosθ,y=br sinθ,r∈[0,1],θ∈[0,2π],其Jacobi行列式为∂(x,y)∂(r,θ)=a cosθ−ar sinθb sinθbr cosθ=abr,因此所求面积为10d r2πabr dθ=πab.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π].我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.球面坐标和伸缩变换结合起来称为广义球面坐标变换.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.在一般的欧氏空间R n中也有类似的(广义)球面坐标变换.。
数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:重积分的变量替换公式;内容提要:重积分的变量替换公式; 极坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;球面坐标变换.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).一般的变量替换现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).断言:ϕ(∂A)为零测集,从而∂ϕ(A)亦然,于是ϕ(A)可求体积.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).为了研究ϕ(A)的体积,我们将ϕ线性化并做误差估计.引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .证明.在Bδ(x)中考虑函数F(y)=ϕ(y)−ϕ(x)−Jϕ(x)(y−x),则F(x)=0,JF(y)=Jϕ(y)−Jϕ(x).根据拟微分中值定理,存在ξ=x+θ(x −x)(0<θ<1),使得F(x ) = F(x )−F(x) ≤ Jϕ(ξ)−Jϕ(x) x −x ,由Jϕ在K上的一致连续性即可完成证明.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.证明.考虑仿射变换L(y)=[Jϕ(x)]−1(y−ϕ(x))+x,则L◦ϕ(x )=[Jϕ(x)]−1F(x )+x ,于是当x ,x ∈Bη(x)时L◦ϕ(x )−L◦ϕ(x ) ≤[1+ [Jϕ(x)]−1 ε] x −x .由B⊂Bη(x)可得ν(L◦ϕ(B))≤[1+ [Jϕ(x)]−1 ε]nν(B).再由仿射变化的体积变化公式即可完成证明.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.证明.不妨设A为矩形,且f非负.任给A的分割π={A ij},我们有ϕ(A)f=ijϕ(A ij)f≤ij[supϕ(A ij)f]ν(ϕ(A ij))证明(续).当分割充分细时,由之前的引理可得ϕ(A)f≤ijsupA ij[f◦ϕ]|det Jϕ(ξij)|ν(A ij)+O(ε),由Riemann和与积分之间的关系可得ϕ(A)f≤Af◦ϕ|det Jϕ|+O(ε),令ε→0可得ϕ(A)f≤Af◦ϕ|det Jϕ|.根据反函数定理,ϕ:D→ϕ(D)可逆.如果对ϕ−1重复上述论证就可得到另一边的不等式.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.解.积分区域是一个曲边的四边形,为了简化,我们令y 2/x =u ,xy =v ,则(u ,v )关于(x ,y )的Jacobi 行列式为∂(u ,v )∂(x ,y )= −y 2/x 22y /x y x =−3y 2/x =−3u ,因此(x ,y )关于(u ,v )的Jacobi 行列式为−(3u )−1.在这个变换下,积分区域变为矩形[p ,q ]×[a ,b ],因此I =q p d u b a v −(3u )−1 d v =16(b 2−a 2)ln q p.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.尽管如此,由于此变换在(0,+∞)×(0,2π)上是一一的且非退化,因此将前面的证明略作改动即知,积分的变量替换公式对这个变换仍然成立.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.解.作所谓的广义极坐标变换x=ar cosθ,y=br sinθ,r∈[0,1],θ∈[0,2π],其Jacobi行列式为∂(x,y)∂(r,θ)=a cosθ−ar sinθb sinθbr cosθ=abr,因此所求面积为10d r2πabr dθ=πab.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π].我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.球面坐标和伸缩变换结合起来称为广义球面坐标变换.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.在一般的欧氏空间R n中也有类似的(广义)球面坐标变换.。
10多元函数积分中的三个公式计算及运用在高等数学中,多元函数积分是一个重要的概念,它在应用数学、物理学等领域中都有着广泛的应用。
为了更好地理解和应用多元函数积分,李正元考研高数基础讲义中介绍了十个多元函数积分的基本公式,其中有三个是重要且常用的公式,它们分别是重积分的线性性、变量代换公式和极坐标系下的积分公式。
首先是重积分的线性性。
重积分的线性性是指如果f(x,y)和g(x,y)是定义在闭区域D上的可积函数,c1和c2是常数,那么c1f(x,y)+c2g(x,y)也是定义在D上的可积函数,并且有以下成立的公式:∫∫D [c1f(x, y) + c2g(x, y)]dxdy = c1∫∫D f(x, y)dxdy +c2∫∫D g(x, y)dxdy这个公式的运用非常广泛,在对多元函数进行积分时经常会用到。
其次是变量代换公式。
在计算多元函数积分时,有时可以通过进行变量代换来简化计算。
设有从平面区域D到平面区域D'的可导函数变换x=x(u,v),y=y(u,v),且这个变换是一一对应,那么就有以下变量代换公式:∫∫D' f(x(u, v), y(u, v)),J(u, v),dudv = ∫∫D f(x,y)dxdy其中J(u,v)是变换的雅可比行列式,即J(u,v)=∂(x,y)/∂(u,v)=∂x/∂u*∂y/∂v-∂x/∂v*∂y/∂u。
这个公式在计算复杂的多元函数积分时非常有用,通过适当的变量代换可以将积分区域转化成更简单的形式,从而简化计算过程。
最后是极坐标系下的积分公式。
当积分区域是一个闭圆盘或圆环时,可以使用极坐标系来进行积分计算。
假设f(r,θ)是定义在圆盘或圆环内的连续函数,那么有以下公式成立:∫∫D f(r, θ)rdrdθ = ∫(θ=a to b) ∫(r=0 to R) f(r,θ)rdrdθ其中D表示积分区域,a和b是角度的取值范围,R是极坐标下的积分区域的半径。
重积分的积分方法和积分公式重积分是高等数学中的重要概念,也是应用数学和物理学中使用最广泛的数学工具之一。
重积分包括二重积分和三重积分两种形式,其积分方法和积分公式对于求解各种物理量的大小、均值、中心、惯性矩等、数学物理问题的衍生、傅里叶级数的变换等都有着非常重要的应用价值。
1.二重积分的积分方法在二维空间内,设有一函数$f(x,y)$,在有界区域$D$上有定义,那么$f(x,y)$在$D$上的二重积分可以通过将$D$分成若干个无穷小的小矩形,然后对每个小矩形求面积乘上$f(x,y)$在矩形内的均值得出,公式如下:$\iint_Df(x,y)dxdy=\lim_{\Delta x, \Delta y \to 0} \sum_{i=1}^nf(x_i, y_i) \Delta x_i \Delta y_i$这里,$\Delta x$和$\Delta y$表示$x$和$y$在区域$D$上的最小划分,$n$表示小矩形的个数,而$f(x_i,y_i)$则为小矩形中心点$(x_i,y_i)$处的函数值。
不同的小矩形划分方式会影响到二重积分的精确度,一种常用的划分方式是网格划分方法,即将区域D分成若干格子,然后在每个格子中取其中心点作为较准确的位置来求积分。
2.二重积分的积分公式(1) Fubini定理:对于在矩形域$D$上的二重积分,其积分范围可以交换。
$\iint_Df(x,y)dxdy=\int_{a}^{b}dx\int_{c}^{d}f(x,y)dy=\int_{c}^ {d}dy\int_{a}^{b}f(x,y)dx$(2) 极坐标变换:若对于$f(x,y)$在极坐标下的表示为$f(r,\theta)$,则对于圆域$D$有以下公式成立。
$\iint_Df(x,y)dxdy=\int_{0}^{2\pi}d\theta\int_{0}^{R(\theta)}f(r\c os\theta,r\sin\theta)rdr$其中,$R(\theta)$表示圆$D$在极坐标系下,相对于$\theta$的极径取值范围。
重积分换元法证明重积分是高等数学中最重要的概念之一,它是多元函数在平面或空间内的积分。
在实际研究中,处理二元和三元函数的重积分占据着很大的比重,这些重积分的求解过程往往非常复杂,需要借助各种积分技巧和方法来简化计算。
其中,通过换元法对重积分进行简化和计算是一种常用的方法,下面我们将介绍重积分换元法的证明过程。
重积分换元法的基本思路是将原坐标系中的积分变量通过一定的变量替换映射到新的坐标系中,从而实现计算繁琐的重积分变得简便的目的。
其中,最常用的换元法就是极坐标系和柱坐标系的换元法。
下面,我们将以极坐标系的重积分为例,给出其换元法的证明过程。
设在平面上存在一小区域 $D$,用极坐标系 $(r,\theta)$ 表示点 $(x,y)$,其坐标变换公式为$$x=r\cos\theta,\quad y=r\sin\theta$$设 $f(x,y)$ 在区域 $D$ 上连续且非负,且 $D$ 的面积为 $S(D)$,则函数$f(x,y)$ 在 $D$ 上的重积分可表示为$$\iint_D{f(x,y)dxdy}$$通过极坐标系的表示,可以得到$$\begin{cases}x=r\cos\theta\\ y=r\sin\theta\end{cases}\Rightarrow\begin{cases}r=\sqrt{x^2+y^2}\\ \theta=\arctan\dfrac{y}{x}\end{cases}$$利用反函数求导法则,可以得到$$dx\,dy=\left|\frac{\partial(x,y)}{\partial(r,\theta)}\right|dr\,d\theta=r\,dr\,d\theta$$将 $x,y, dx\,dy$ 的表达式带入原式,可得其中 $D'$ 为在极坐标系下对应区域,面积为 $S(D')$。
因此,原式的计算问题就被转化为了极坐标系下对应的积分问题,通过改变变量之后,原积分变为一个带有 $r$ 和 $\theta$ 的二元函数的积分,其中 $r$ 代表径向的长度,$\theta$ 代表角度坐标的位置。
重积分与变量代换重积分是微积分中的一个重要概念,用于计算曲线、曲面和立体的面积、体积等物理量。
而变量代换则是在计算重积分时常常使用的一种技巧,它能够简化积分计算的过程,提高计算效率。
本文将介绍重积分的基本概念和性质,并详细说明变量代换的原理和应用。
一、重积分的基本概念和性质重积分是微积分中一种对多变量函数进行积分的方法,主要用于计算曲线、曲面和立体的面积、体积等物理量。
在数学上,重积分可以分为二重积分和三重积分两种形式。
二重积分用于计算二维平面上的曲线和曲面的面积。
若函数 f(x, y)在一个闭区间上连续,那么这个闭区间可以分割成无数个小区域,将每个小区域的面积相加,就可以得到整个闭区间的面积,即二重积分。
二重积分的符号表示为∬f(x, y)dxdy。
三重积分则用于计算三维空间中立体的体积。
若函数 f(x, y, z) 在一个闭区域上连续,那么这个闭区域可以分割成无数个小立方体,将每个小立方体的体积相加,就可以得到整个闭区域的体积,即三重积分。
三重积分的符号表示为∭f(x, y, z)dxdydz。
重积分具有以下性质:1. 线性性质:对于任意常数 a 和 b,有∬(af(x, y) + bg(x, y))dxdy =a∬f(x, y)dxdy + b∬g(x, y)dxdy。
2. 区域可加性:若闭区域 D 可以分割成互不相交的两个子区域 D1 和 D2,那么∬f(x, y)dxdy = ∬f(x, y)dxdy + ∬f(x, y)dxdy。
3. 反序性质:对于面积可积的函数 f(x, y),有∬f(x, y)dxdy = ∬f(x, y)dydx。
4. 极坐标系下的重积分:对于函数f(r, θ) 在极坐标系下,有∬f(r, θ)rdrdθ。
二、变量代换的原理和应用变量代换是在计算重积分时常常使用的一种技巧,它利用一组新的变量代替原有的变量,以简化积分计算的步骤。
变量代换的原理可以用微积分中的链式法则来解释。
本节将给出在具有一阶连续偏导数的条件下, 重积分变量变换公式(定理21.13)的一般证明.==(,),(,)x x u v y y u v §9 重积分变量变换公式的证明*返回证明重积分变量变换公式的的关键是下面的引理.那么成立关系式ìü1A ¢D ¢C ¢P ¢O ¢2x ¢2A ¢2)(x T Q =2145-图C ¢¢P2A ¢¢1A 1A ¢¢CD2A D ¢¢G ¢其中(,,,)(,,,),P A C A T P A C A ¢¢¢¢=的边界¢D微分中值定理, 存在点使得(,),x x D ¢¢¢Î¶¢¢其中从而由的定义可得()h wm其中k 是与h 及在中的位置无关的常数(这是因¢D ¢D 界,因此和在上也上也有界有界).¢D =(1,2)i a i ()h w 现在来证明引理的结论, 即(1)式成立. 为此为此先证明先证明下面的包含关系:.(6)W D D ¢¢Ì 事实上, 设Z 为中的任意一点. 我们从平行四边形D 在有界闭域上具有一阶连¢¢=12(,)(1,2)i x x i j ¢D 为续偏导数,于是它们与它们的一阶于是它们与它们的一阶偏导数在偏导数在¢D 上有的中心出发,作一射线经过且延伸到无穷. 由¢¢D ¢¢Y Z 于函数与在上有界, 所以是¢¢112(,)x x j ¢¢212(,)x x j ¢D D 一有界区域, 并且它的边界是按段光滑的封闭曲G 线. 因此所作的射线必与相交于某一点.又由G 0Z (4) 式知道从而,W G Ì0.Z W W D ¢¢ÎÌ 因此包含整个线段所以¢¢ W D 0,Y Z ¢¢.Z W D ¢¢Î 这就证明了包含关系(6) 成立.设表示平行四边形中垂直于边的高.下i H ¢¢D ¢¢i PA面分两种情形证明(1)式成立.((),)((),()).T Y Y T Y T Y r r l *¢¢¢¢¢=£¢¢(,)x x h h 其中常数C不依赖于点与的选取, 即与£+=+28()48()()a h W a h h W l m w m() m D所有的¢¢¢Î(,)x x D 一致地成立.¢¢12(,)J x x ¢¢12(,)x x 表示在变换T 之下,面积微元在点的局部伸缩率.下面给出在¢¢==12(,)(1,2)i i x x x i j 具有一阶连续偏导数的一般条件下, 二重积分变量变换公式的证明. 证由于T 是一对一变换, 因而在所设条件下¢D 的按段光滑的边界曲线变换到D 时,其边界曲线也是按段光滑的. 在¢¢12x x 平面上作平行于坐标轴的方格¢D 12x x 网,它是的一个分割. 由变换T ,相应地得到平由(10)式看到, 与一元函数的导数相仿, 函数行列式内的方格D i在上的一个上界. 将它们按下标逐项相加, 得到1122121212((,),(,)|(,)|d d .D f x x x x J x x x x j j ¢¢¢¢¢¢¢¢¢=òò由(11)式中e 的任意性, 上面两式右边部分相等上面两式右边部分相等,,即得如下变换式成立:注值得注意的是,本节中所有的证明在n 维空间中112212120lim ((,),(,))|(,)|()i i i i i i i h if x x x x J x x j j m D ®¢¢¢¢¢¢¢å1122121212((,),(,)|(,)|d d .D f x x x x J x x x x j j ¢¢¢¢¢¢¢¢¢=òò1212(,)d d Df x x x x òò维立方体、、平行多面体来代替这里的正方只要用n维立方体。