当前位置:文档之家› 重积分变量代换公式证明

重积分变量代换公式证明

重积分变量代换公式证明
重积分变量代换公式证明

(推荐)高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

(完整版)高中数学公式口诀大全

高中数学公式口诀大全 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp; 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。 五、《复数》 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

线性变换在多变量函数积分学中的应用

线性变换在多变量函数积分学中的应用 在多变量函数积分学中,合理进行变量代换,能起到化繁为简的作用,常用的变量代换,有球坐标,极坐标代换,或类似此类的代换。而事实上,线性代数为我们看问题提供了一个非常好的视角。线性变换用于多重积分,曲面,曲线积分中,往往更为灵活,并不是如球坐标等代换较易看出。下作讨论。 在O-XYZ 坐标系中,将一组基(X ,Y ,Z )乘一个矩阵M 3×3,转化为另一组基(U ,V ,W ),这时Jacob 行列式为 ) ,,() ,,(w v u z y x ??=detM 1-= M det 1 ,特别地,当M 为正交矩阵, 即进行正交变换,Jacob 行列式为1,在进行线性变换时,要合理选择M 。 1. 合理选择M ,化复杂区域为简单区域。 如计算由平行六面体 1111h z c y b x a ±=++2222h z c y b x a ±=++, 3333h z c y b x a ±=++围成的体积, 线性变换后,此空间不规则区域可化为标准长方体, 只需另u z c y b x a =++111,v z c by x a =++22,w z c y b x a =++333, 易确定-h1≤u ≤h1, -h2≤v ≤h2, -h3≤w ≤h3, ) ,,(),,(w v u z y x ??= 3 3 3 2221111c b a c b a c b a 。 于是V= ??? v dxdydz= ? ?? ---1 1 22 3 3 h h h h h h dv du 3 3 3 2221111c b a c b a c b a dw=。 3 3 3 2221113218c b a c b a c b a h h h 。 这样看问题,避免了为确定积分限而进行的复杂计算,而且x,y,z 地位等价,化为累次积分,往往计算量很大。 2. 合理选择M ,将复杂的空间曲线转化为某个平面上的规则曲线。 在曲线积分中,若易找出r(t),则计算简便,但若曲线由很一般的曲面交线给出,如果曲线在“倾斜”的平面上,线性变换可化到O-XYZ 平面上,便于研究。 如计算dl x l ? 2 ,l :球面2 222a z y x =++与 0=++z y x 交线。 分析此问题,由于x,y,z 对称,可考虑??? =++= l l l dl a dl z y x dl x ,3 1)(3122 222 本文不再讨论,事实上,观察知,l 是0=++z y x 平面上的圆,半径为,a 圆心在原点,考虑变换到O UVW -坐标系中,使此圆落在ouv 平面内,圆方程为 0,122==+w v u 。

探究定积分的定义,实现积分变量的替代

探究定积分的定义,实现积分变量的替代 山东省莱州市第一中学 赵 凯 学生为主体,教师为指导的新的教学理念逐步的被广大教师应用于教学实践中,提倡学生积极主动,勇于探索的学习这也是新的课程改革的要求。适时地提出问题,为学生创设探究思维的学习环境,是我们教育工作者面临的具有挑战性的任务。通过对定积分的教学使我有了更深的体会。 定积分的有关内容是课程改革后新增加的,定义的理解又是学习掌握着部分内容的基础。通过研究求曲边梯形的面积以及求变速直线运动路程,归纳出了定积分定义,得到: ? b a f dx x )(=∞ →n lim ∑ =-n i n a b 1 )(i f ξ。 借助定义求定积分,通过“四步曲”:分割,近似代替,求和,取极限显然比较麻烦,当然应用微积分基本定理是最好的方法。 如何把一个和式的极限转化成定积分的形式,是我们在教学过程中不得不向学生提出的问题,解决这个问题的关键就是对定积分定义的理解,引导学生对定义的再认识。 定义:如果函数)(x f 在区间[a , b]上连续,用分点 b a x x x x x n i i =

(完整版)考研数学公式推导

积化和差 积化和差,指初等数学三角函数部分的一组恒等式。 公式 sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意此公式前的负号) cosαcosβ=[cos(α+β)+cos(α-β)]/2 sinαcosβ=[sin(α+β)+sin(α-β)]/2 cosαsinβ=[sin(α+β)-sin(α-β)]/2 证明 积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。 即只需要把等式右边用两角和差公式拆开就能证明: sinαsinβ=-1/2[cos(α+β)-cos(α-β)] =-1/2[(cosαcosβ-sinαsinβ)-(cosαcosβ+sinαsinβ)] =-1/2[-2sinαsinβ] 其他的3个式子也是相同的证明方法。 作用 积化和差公式可以将两个三角函数值的积化为另两个三角函数值的和乘以常数的形式,所以使用积化和差公式可以达到降次的效果。 在历史上,对数出现之前,积化和差公式被用来将乘除运算化为加减运算,运算需要利用三角函数表。 运算过程:将两个数通过乘、除10的方幂化为0到1之间的数,通过查表求出对应的反三角函数值,即将原式化为10^k*sinαsinβ的形式,套用积化和差后再次查表求三角函数的值,并最后利用加减算出结果。 对数出现后,积化和差公式的这个作用由更加便捷的对数取代。 和差化积 正弦、余弦的和差化积 指高中数学三角函数部分的一组恒等式 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β,

§3二重积分的变量代换

§3 二重积分的变量代换 也有一种情形,函数f 在D 上可积,但无论采用哪种积分次序都“算不出来”。 例:2 2() x y D I e dxdy -+= ??,D={}222(,)|x y x y a +≤ 分析:∵f(x,y)=22() x y e -+在D 上几乎处处连续,有界函数{} 222(,)|x y x y a +≤=?D 是零测度集,∴f ∈R (D ) 22 2222 () a a x x y a a x I dx e dy --+---=?? =22 2 2 22 a a x x y a a x e dx e dy ------?? or 22 2222 () a a x x y a a x I dy e dx --+---= ? ? =22 2 2 22 a a x y x a a x e dy e dx ------?? 计算不出来!f ∈R (D ),但化为二次积分后算不出来。说明我们的计算方法有问题。因此,我们有必要寻找 更有效的计算二重积分的方法。联想到定积分的计算方法,换元法、分部积分法、N-L 公式等,特别是换元法,是一种化难为易的有效方法。在二重积分中能否利用这种化难为易的思想呢?是可以的。这就是我们今天给大家要讲解的,二重积分的变量代换,利用这种方法,就可以解决上面的计算问题。在定积分中,换元积分法对简化定积分计算起着重要的作用。对于二重积分也有相应的换元公式,用于简化积分区域或被积函数。 1. 极坐标交换 先介绍极坐标变换:cos ,sin x r y r θθ== (0,02)r θπ≤<+∞≤≤。 设D 是2 R 中的有界闭区域,且D ?是2 R 中的零测度集;再设f 在D 上几乎处处连续的有界函数,根据上节内容可知:f ∈R (D )∴ (,)D f x y dxdy ??有意义的;它的值不因对区域D 的分割方式不同而变化。 在直角坐标系中,我们是以平行于x 轴和y 轴的两族直线来分划区域D 为一系列小矩形的,在极坐标系中,若用极坐标网分割,即用r=常数的一族同心圆以及θ=常数的一族过极点的射线来分划D (如左图示),得出若干个小块ij σ,这时小块的面积若极为ij σ?,(,i j i j x y σ∈)则Rieman 和为 1 1 (,)n m i j ij i j f x y σ ==?∑∑ , 注意到 ij σ?=221[()]2j j i j i r r r θθ+??-?=1(2)2j j j i r r r θ+???=21 2 j j i j i r r r θθ??+?? 易见,当i θ?,j r ?充分小时,ij σ可近似地看成一个矩形,边长分割为:j r ?和j i r θ?,即 ij σ?≈j j i r r θ??,若有Rieman 和 1 1 (,)n m i j ij i j f x y σ ==?∑∑中以 j j i r r θ??代替ij σ,并按极坐标交换:cos ,sin x r y r θθ== c o s ,s i n i j i j j i x r y r θθ==,1 1(,)n m i j ij i j f x y σ ==?∑∑≈ 1 1 (cos ,sin )n m j i j i j j i i j f r r r r θθθ==??∑∑。当分割的精度→ 0是,由上面分析知: 1 1 (,)n m i j ij i j f x y σ ==?∑∑→ (,)D f x y dxdy ??。

重积分的计算方法

重积分的计算方法 重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。着重介绍累次积分的计算与变量代换。一.二重积分的计算 1.常用方法 (1)化累次积分计算法 对于常用方法我们先看两个例子

对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下: 第一步:画出积分区域D的草图; 第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限; 第三步:计算累次积分。 需要强调一点的是,累次积分要选择适当的积分次序。积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。所以,适当选择积分次序是个很重要的工作。 选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。 (2)变量替换法 着重看下面的例子:

在计算定积分时,求积的困难在于被积函数的原函数不易求得。从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。 利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。 于积分区域的多样性。为此,针对不同的区域要讨论重积分的各种不同算法。 (3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)

高中数学必修3海伦公式的证明方法

高中数学必修3海伦公式的证明方法 海伦公式的证明⑴ 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c 的对角分别为A、B、C,则余弦定理为[1] cosC=(a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2,p-a=(-a+b+c)/2,p-b=(a-b+c)/2,p-c=(a+b- c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 海伦公式的证明⑵ 中国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角

形,要找出它来并非易事。所以他们想到了三角形的三条边。如果 这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来 求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜 求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方, 送到上面得到的那个。相减后余数被4除,所得的数作为“实”, 作1作为“隅”,开平方后即得面积。 所谓“实”、“隅”指的是,在方程px2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以 q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 当P=1时,△2=q, △=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2]^2} 因式分解得 △^2=1/4[4a^2c^2-(a^2+c^2-b^2)^2] =1/4[(c+a)^2-b^2][b^2-(c-a)^2] =1/4(c+a+b)(c+a-b)(b+c-a)(b-c+a) =1/4(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c) =1/4[2p(2p-2a)(2p-2b)(2p-2c)] =p(p-a)(p-b)(p-c) 由此可得: S△=√[p(p-a)(p-b)(p-c)] 其中p=1/2(a+b+c)

三角函数公式及证明(高中)

三角函数公式及相关的证明 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a -

cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa s in(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

初中几何证明题公式

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

高中数学常用公式与证明专题

1 高中数学常用公式与证明专题 本专题由北京大学教材研究所审定 依据《普通高中课程标准》编写 1.不等式的基本性质: (1)对称性:b a >?a b < (2)传递性:b a >,c b >?c a > (3)可加性:b a >?c b c a +>+ (4)加法:b a >,d c >?d b c a +>+ (5)保号性:b a >,0>c ?bc ac >;0>b a ,0>>d c ?bd ac > (7)乘方:0>>b a ?n n b a >(n ∈N*) (8)开方:0>>b a ?n n b a >(n ∈N*) 2.均值不等式定理: (1)四种形式: 整式形式:ab b a 22 2 ≥+, ab b a 222-≥+(a ,b ∈R ,当且仅当b a =时取“=”号) 2 )2 (b a ab +≤(a ,b ∈R ,当且仅当b a =时取“=”号) 根式形式:2a b +≥a ,b ∈R +,当且仅当b a =时取“=”号) 分式形式:2≥+b a a b (0>ab ),2-≤+b a a b (0x ,则21 ≥+x x ;若0

高中数学周期函数、公式的总结、推导、证明过程

周期公式 序号公式T理解或者公式特点例题1 自变量的和不是常数,两个自变量之差是 常数,两个函数值相加为常数。 2 即是上一个公 式的特例 2a 两个自变量之差是常数。两个函数值相加 为常数。 32a正负号,倒数,两个自变量之差是常数。 44a类似第3个公。 52a类似第3个公式。 6 例如: 整理后: 令x=x+1得到: 6a 两个函数值之和等于另一个函数值,且两 个作为加数的函数的自变量是 7 图像向左平移a个单位,和向左平移b个 单位重合。原来两个点x坐标差的距离就 是他们的周期。两个自变量之差是常数, 两个函数值相等。 8 函数f(x)的图像S有两个对称轴 x=a,x=b(a≠b) 2|a-b| 对称轴多和偶函数以及一个函数图像的自 对称这两个知识点相关 9 函数f(x)的图像S有两个对称中 心和(a≠b) 2|a-b| 对称中心多和奇函数以及一个函数图像的 自对称这两个知识点相关 10 函数f(x)的图像S有一个对称中 心和一条对称轴x=a,(a ≠b) 4|a-b| 知识点涉及奇函数、偶函数以及函数图像 的自对称

以上基本是高中阶段遇到的各种周期公式及其变形的总结。 解周期问题,两种方法:1.列举多个数据,找寻规律和周期;2.通过抽象函数直接得到周期。 1.已知f(X)是R上不恒为零的偶函数,且对任意实数x 都有,则 解:令x=0,f(0)=0; 令,; 令,; 令,; ∴ 2.定义在R上的函数f(x)满足,则f(2009)= 解:整理, 得到 令x=x+1得到, 由公式6知道周期为6,即,x>0 f(2009)=。

由公式 得 3.已知函数f(x)满足,,则f(2010)= 思路:消元和赋值。 令,则, 根据公式6知道,f(x+6)=f(x), ∴。 令y=0,则, ∵ x 不恒为零,∴ ∴。 下面两页是周期函数公式的周期推导证明过程,并总结了推导周期过程的一般思路。因为word 输入数学公式太过麻烦,所以手写了出来,以图片的形式奉上。

高中数学公式以及推论证明汇总

高中数学公式以及推论证明汇总 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差,高中数学证明公式。 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

高等数学中常见的变量替换

目 录 引言………………………………………………………………(1) 一 极限运算中变量替换的应用………………………………………(1) (一) 对于 0(或 ∞ ∞)型极限 (2) (二)对于∞-∞型极限…………………………………………………(2) (三) 隐函数中不易或不可能化为显函数形式,极限x y n +∞ →lim 的求法 (3) (四) 求数列的极限………………………………………………………(4) 二 不定积分运算中常用的变量替换 …………………………………(6) (一) 三角函数代换……………………………………………………(6) (二) 倒数代换…………………………………………………………(7) (三) 指数代换…………………………………………………………(8) (四) 不定积分? dx y f )(的计算,其中y 是由方程0),(=y x F 所确定的x 的函 数.................................................................................(8) 三 定积分运算中常用的变量替换.......................................(9) (一) 被积函数或其主要部分为复合函数的积分的微分法...............(9) (二) 被积函数或其主要部分为复合函数的定积分的计算...............(10) (三) 由三角有理式与其他初等函数通过四则运算或有限次复合而成的被积函数定积分的计算。...................................................(11) (四) 定积分等式的证明中所作的变量替换..............................(12) 四 解微分方程中变量替换的应用技巧.................................(14) (一) 在求解可分离变量方程中变量替换的应用........................(14) (二) 求解齐次方程 中变量替换的应用 (15)

初中数学定义定理公理公式证明汇编

初中数学定义、定理、公理、公式 直线、线段、射线 七上p128 1. 过两点有且只有一条直线. (简:两点决定一条直线) 七上p132 2.两点之间线段最短 七上p142 3.同角或等角的补角相等. 同角或等角的余角相等. 七下p4 4. 过一点有且只有一条直线和已知直线垂直七下p6 5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短) 平行线的判断 七下p13 1.平行公理经过直线外一点,有且只有一条直线与这条直线平行. 七下p13 2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行) 七下p14 3.同位角相等,两直线平行. 七下p14 4.内错角相等,两直线平行. 七下p15 5.同旁内角互补,两直线平行. 平行线的性质 七下p20 1.两直线平行,同位角相等. 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补. 三角形三边的关系 七下p64 1.三角形两边的和大于第三边、三角形两边的差小于第三边. 三角形角的关系 七下p73 1. 三角形内角和定理三角形三个内角的和等于180°. 2.直角三角形的两个锐角互余. 已知:Rt ABC ,∠C=90° 求证:∠A+∠B=90° 证明:∵∠C=90°,∠A+∠B+∠C=180°∴∠A+∠B=90° 七下p75 3.三角形的一个外角等于和它不相邻的两个内角的和. 4. 三角形的一个外角大于任何一个和它不相邻的内角. 全等三角形的性质、判定 八上p3 1.全等三角形的对应边、对应角相等. 八上p9 2.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等. 八上p11 3.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等. 八上p12 4.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等. 八上p7 5. 边边边公理(SSS)有三边对应相等的两个三角形全等. 八上p14 6.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等. 角的平分线的性质、判定 八上p20 性质:在角的平分线上的点到这个角的两边的距离相等. 八上p21 判定:到一个角的两边的距离相同的点,在这个角的平分线上. 等腰三角形的性质 八上p50 1.等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角). 2.推论 1 等腰三角形顶角的平分线平分底边

积分变量变换的应用

积分变量变换的应用 嘉应大学 数学学院083班 廖礼敏 专业:数学与应用数学 学号:2080111322 中文摘要:首先总结了已有的不定积分和定积分的换元积分法的应用, 并对所获得的结果进行了应用。 关键词:不定积分;定积分;换元积分法; 正文: 一、不定积分换元积分法:求解不定积分,能应用直接积分法的函数不多, 因此,有必要进一步研究不定积分的求解方法。 1、换元积分法的基本思想 应用换元积分法进行积分是常见的积分方法。其实,换元积分法就是复合函数微分法的逆运算。 回顾复合函数的微分手法,是将复合函数[()]f x ?的复合变量替换为简单变量()x u ?=,然后应用简单函数的微分方法得()'()df u f u du =, 应用替换法,同样可以将复合函数的积分转化为简单函数的积分: [()]() () ()f x d x x u f u du ???=?? 于是,得到复合函数的积分法,称为换元积分法。 换元积分法通常分两类:第一类换元法和第二类换元法。 第一类换元法是将复杂变量替换为简单变量:()x u ?=,从而将复合函数的积分转化为简单函数的积分; 第二类换元法是将简单变量替换为复杂变量:()x u ?=,从而将复杂的被积函数转化为可积分的函数。 下面分别进行分析。 一、第一类换元法 1、第一类换元法的积分思路 第一类换元法并非一种独立存在的积分方法,它建立在直接积分法的基础

上,依赖直接积分法去最终完成积分。或者说,它以换元法为主要手段,以直接积分法为解决积分的最终方法。 换言之,第一类换元法的积分思路,就是将含复合函数的积分转换为简单函数的积分,从而应用直接积分法解决问题。 2、第一类换元法的基本公式 定理1 设()f u 具有原函数,()u x ?=可导,则有换元公式 [()]() () ()f x d x x u f u du ???=?? 或为 [()]'() () () f x x d x x u f u d u ?? ?=?? 公式的要点: ①可以应用第一换元积分法的积分式必须具有结构: [()]()f x d x ??? 或 [()] '()f x x d x ??? ②换元时必须对两个位置的复合变量进行一致替换:一个是复合函数 [()]f x ?的第一中间变量()x ?,一个是微分函数()d x ?中的待微分函数()x ?。 ③换元后得到的积分式()f u du ?必须是简单函数的积分,如果仍含有复合函数,那么换元失败或复合变量认定错误。 3、第一类换元积分法的步骤分解 第一类换元法的基本公式在具体运用时,有许多技巧性手法,一下子不容易掌握,但万变不离其宗,根本的是掌握好基本公式的上述三个要点。 为准确理解和掌握第一类换元法的基本公式,下面进行分解说明。 第一类换元法的积分过程分为五个步骤:特征判断,凑微分,变量代换,直接积分,变量回代。 下面分别对五个步骤进行详细的分解分析。 第一步骤:特征判断——检查被积函数是否适合应用第一换元法 第一换元法要求被积函数具有结构特征: [()]()f x d x ??? 或 [()] '()f x x d x ??? 亦即被积式可分解为具有乘积关系的两个部分: ①复合函数[()]f x ?;

相关主题
文本预览
相关文档 最新文档