多重积分的变量替换
- 格式:ppt
- 大小:152.50 KB
- 文档页数:30
多重积分在高等数学中是一个重要的概念和计算技巧。
它涉及到对多元函数在多个变量上的积分,是对一元函数积分的扩展和推广。
在计算多重积分时,可以运用一些技巧来简化计算和提高效率。
首先,需要了解多重积分的概念和性质。
多重积分可以分为定积分和不定积分。
定积分是指在一定的范围内对给定的函数进行积分。
不定积分是指对给定的函数进行积分,但没有具体的范围和上下限。
对于定积分,可以利用变量代换来简化计算。
变量代换即将积分变量换成其他变量,使得原来的积分变得更容易求解。
常用的变量代换方法有直角坐标系与极坐标系的转换、直角坐标系与球坐标系的转换、直角坐标系与柱坐标系的转换等。
通过适当选择不同的坐标系,可以消去一些变量,从而简化积分的计算。
对于不定积分,可以通过分部积分法、换元积分法等技巧进行计算。
分部积分法适用于需要对一个函数的乘积进行积分的情况,可以将乘积的积分变成两个函数的积分相减。
换元积分法可以通过适当的变量代换将原来的不定积分转化为一个更容易求解的形式。
另外,多重积分中还可以使用对称性等性质来简化计算。
如果被积函数具有对称性,可以将积分区域进行适当的对称分割,从而减少多重积分的计算步骤。
此外,还可以利用积分的可加性性质,将多重积分拆解成多个单重积分的和。
在实际应用中,多重积分经常用于计算物体的体积、质量、重心等物理量。
在计算这些物理量时,可以根据物体的几何形状选择适当的坐标系,并利用多重积分技巧进行求解。
总之,高等数学中的多重积分是一个重要的概念和计算技巧。
在计算多重积分时,可以利用变量代换、分部积分法、换元积分法等技巧进行简化和提高效率。
通过合理选择坐标系和利用对称性等性质,可以进一步简化计算。
多重积分在物理和工程等领域中有广泛的应用,可以用来求解物体的体积、质量、重心等物理量。
重积分换元法与分部积分法在高等数学领域,积分是一个重要的概念,通过对函数在一定区间上的“面积”进行求解,可以对函数的变化趋势和性质进行分析。
在积分中,重积分换元法和分部积分法是两种常用的积分方法,它们在求解复杂积分问题时发挥着重要的作用。
重积分换元法重积分换元法,也称为多重积分的换元法,是处理多重积分中变量替换的方法。
在进行多重积分时,往往需要通过变量代换的方式简化积分问题。
重积分换元法的基本思想是通过合适的变量替换,将原来的多重积分转化为一个简单的积分形式,从而更容易求解。
对于二重积分而言,重积分换元法的一般步骤如下: 1. 确定变量替换的形式,通常选择与坐标轴吻合的变换; 2. 计算变换后的积分区域,并变换原积分的被积函数; 3. 对新的积分进行求解。
通过重积分换元法,可以简化积分的计算过程,降低积分的难度,提高计算的效率。
分部积分法分部积分法是求解不定积分中的一种常用技巧,也可以应用于定积分的简化。
在定积分中,分部积分法是将积分号作用在两个函数的乘积上,通过对积分的展开和化简,将原积分转化成两个函数之积的形式。
分部积分法的基本思想是通过对被积函数进行拆分,选择一个函数进行求导,一个函数进行求不定积分,最终通过不断的交换角色,逐步简化和求解原积分。
对于定积分而言,分部积分法的一般步骤如下: 1. 选择一个函数进行求导,一个函数进行不定积分; 2. 对两个函数进行交替操作,最终将原积分问题转化为更容易求解的形式。
通过分部积分法,可以有效解决复杂积分问题,提高积分的求解速度和准确性。
综上所述,重积分换元法和分部积分法是高等数学中常用的积分方法,它们在不同的积分问题中发挥着重要的作用。
通过灵活运用这两种积分方法,可以更好地解决数学问题,提升问题的求解效率和准确性。
.重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f( x,y),三元函数( fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域 D 的草图;第二步:按区域 D 和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来” ,而对另一种次序却“积不出来” 。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫ f(x,y)dxdy=∫∫ f(pcosθ,psin)θ)pdpdθ下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:重积分的变量替换公式;内容提要:重积分的变量替换公式; 极坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;球面坐标变换.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).一般的变量替换现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).断言:ϕ(∂A)为零测集,从而∂ϕ(A)亦然,于是ϕ(A)可求体积.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).为了研究ϕ(A)的体积,我们将ϕ线性化并做误差估计.引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .证明.在Bδ(x)中考虑函数F(y)=ϕ(y)−ϕ(x)−Jϕ(x)(y−x),则F(x)=0,JF(y)=Jϕ(y)−Jϕ(x).根据拟微分中值定理,存在ξ=x+θ(x −x)(0<θ<1),使得F(x ) = F(x )−F(x) ≤ Jϕ(ξ)−Jϕ(x) x −x ,由Jϕ在K上的一致连续性即可完成证明.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.证明.考虑仿射变换L(y)=[Jϕ(x)]−1(y−ϕ(x))+x,则L◦ϕ(x )=[Jϕ(x)]−1F(x )+x ,于是当x ,x ∈Bη(x)时L◦ϕ(x )−L◦ϕ(x ) ≤[1+ [Jϕ(x)]−1 ε] x −x .由B⊂Bη(x)可得ν(L◦ϕ(B))≤[1+ [Jϕ(x)]−1 ε]nν(B).再由仿射变化的体积变化公式即可完成证明.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.证明.不妨设A为矩形,且f非负.任给A的分割π={A ij},我们有ϕ(A)f=ijϕ(A ij)f≤ij[supϕ(A ij)f]ν(ϕ(A ij))证明(续).当分割充分细时,由之前的引理可得ϕ(A)f≤ijsupA ij[f◦ϕ]|det Jϕ(ξij)|ν(A ij)+O(ε),由Riemann和与积分之间的关系可得ϕ(A)f≤Af◦ϕ|det Jϕ|+O(ε),令ε→0可得ϕ(A)f≤Af◦ϕ|det Jϕ|.根据反函数定理,ϕ:D→ϕ(D)可逆.如果对ϕ−1重复上述论证就可得到另一边的不等式.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.解.积分区域是一个曲边的四边形,为了简化,我们令y 2/x =u ,xy =v ,则(u ,v )关于(x ,y )的Jacobi 行列式为∂(u ,v )∂(x ,y )= −y 2/x 22y /x y x =−3y 2/x =−3u ,因此(x ,y )关于(u ,v )的Jacobi 行列式为−(3u )−1.在这个变换下,积分区域变为矩形[p ,q ]×[a ,b ],因此I =q p d u b a v −(3u )−1 d v =16(b 2−a 2)ln q p.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.尽管如此,由于此变换在(0,+∞)×(0,2π)上是一一的且非退化,因此将前面的证明略作改动即知,积分的变量替换公式对这个变换仍然成立.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.解.作所谓的广义极坐标变换x=ar cosθ,y=br sinθ,r∈[0,1],θ∈[0,2π],其Jacobi行列式为∂(x,y)∂(r,θ)=a cosθ−ar sinθb sinθbr cosθ=abr,因此所求面积为10d r2πabr dθ=πab.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π].我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.球面坐标和伸缩变换结合起来称为广义球面坐标变换.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.在一般的欧氏空间R n中也有类似的(广义)球面坐标变换.。
数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:重积分的变量替换公式;内容提要:重积分的变量替换公式; 极坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;球面坐标变换.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).一般的变量替换现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).断言:ϕ(∂A)为零测集,从而∂ϕ(A)亦然,于是ϕ(A)可求体积.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).为了研究ϕ(A)的体积,我们将ϕ线性化并做误差估计.引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .证明.在Bδ(x)中考虑函数F(y)=ϕ(y)−ϕ(x)−Jϕ(x)(y−x),则F(x)=0,JF(y)=Jϕ(y)−Jϕ(x).根据拟微分中值定理,存在ξ=x+θ(x −x)(0<θ<1),使得F(x ) = F(x )−F(x) ≤ Jϕ(ξ)−Jϕ(x) x −x ,由Jϕ在K上的一致连续性即可完成证明.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.证明.考虑仿射变换L(y)=[Jϕ(x)]−1(y−ϕ(x))+x,则L◦ϕ(x )=[Jϕ(x)]−1F(x )+x ,于是当x ,x ∈Bη(x)时L◦ϕ(x )−L◦ϕ(x ) ≤[1+ [Jϕ(x)]−1 ε] x −x .由B⊂Bη(x)可得ν(L◦ϕ(B))≤[1+ [Jϕ(x)]−1 ε]nν(B).再由仿射变化的体积变化公式即可完成证明.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.证明.不妨设A为矩形,且f非负.任给A的分割π={A ij},我们有ϕ(A)f=ijϕ(A ij)f≤ij[supϕ(A ij)f]ν(ϕ(A ij))证明(续).当分割充分细时,由之前的引理可得ϕ(A)f≤ijsupA ij[f◦ϕ]|det Jϕ(ξij)|ν(A ij)+O(ε),由Riemann和与积分之间的关系可得ϕ(A)f≤Af◦ϕ|det Jϕ|+O(ε),令ε→0可得ϕ(A)f≤Af◦ϕ|det Jϕ|.根据反函数定理,ϕ:D→ϕ(D)可逆.如果对ϕ−1重复上述论证就可得到另一边的不等式.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.解.积分区域是一个曲边的四边形,为了简化,我们令y 2/x =u ,xy =v ,则(u ,v )关于(x ,y )的Jacobi 行列式为∂(u ,v )∂(x ,y )= −y 2/x 22y /x y x =−3y 2/x =−3u ,因此(x ,y )关于(u ,v )的Jacobi 行列式为−(3u )−1.在这个变换下,积分区域变为矩形[p ,q ]×[a ,b ],因此I =q p d u b a v −(3u )−1 d v =16(b 2−a 2)ln q p.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.尽管如此,由于此变换在(0,+∞)×(0,2π)上是一一的且非退化,因此将前面的证明略作改动即知,积分的变量替换公式对这个变换仍然成立.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.解.作所谓的广义极坐标变换x=ar cosθ,y=br sinθ,r∈[0,1],θ∈[0,2π],其Jacobi行列式为∂(x,y)∂(r,θ)=a cosθ−ar sinθb sinθbr cosθ=abr,因此所求面积为10d r2πabr dθ=πab.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π].我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.球面坐标和伸缩变换结合起来称为广义球面坐标变换.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.在一般的欧氏空间R n中也有类似的(广义)球面坐标变换.。
N 重积分的变量代换Shining Chen † Jun 3rd ,2019数学难还是物理难?这个问题因人而异,没有统一答案。
不过有一点可以肯定,就是数学系不懂物理依然可以work well ,因为数学play with itself ;物理系不懂数学会怎样?不能说一定死翘翘(毕竟有Faraday 大神),但可以肯定的是,此人只能搬砖(做实验),而看不了图纸(理论物理)。
当然,物理系不需要像数学系那样精通数学——不必严格证明,只要计算出结果就行了(可能存在的麻烦是,某一类数学问题该如何求解,数学系以前也没研究过,这就需要物理系自己搞定了)。
在高能物理中,相空间积分可以用Mandelstam 不变量表达。
但为了讨论CP 破坏,需要引入一个T-odd 变量[1],该变量并非Lorentz 不变量。
于是,就涉及变量代换问题——将对Mandelstam 不变量的积分改写为对T-odd 变量的积分。
对于四体衰变而言,相空间是12维的,不过由于动能量守恒及质壳条件,最终只有五个变量是独立的。
所以,本文需要解决五重积分的变量代换问题。
因为数学书上只讨论了一、二、三重积分的变量代换,所以N 重积分的变量代换只好由物理系小白班门弄斧喽。
希望可以抛砖引玉。
1 变量代换的一般原理 ................................................................................................................... 1 2 积分次序交换技术 ....................................................................................................................... 5 3 注意事项....................................................................................................................................... 9 参考文献.. (10)1 变量代换的一般原理对于一重积分,有()()1()()[()]bg b u g x ag a dxf x dx fg u du du=-−−−→⎰⎰【例1】/2sin 22201cos cos 4x r r d r d r ππθθθθθπ=−−−−→==⎰⎰⎰对于二重积分,有()11()(,)(,)[(),()](,)xyuvu g x v h x D D x y f x y dxdy f g u h v dudv u v =--=∂−−−→∂⎰⎰⎰⎰其中(,)(,)xx x y uvyy u v uv∂∂∂∂∂=∂∂∂∂∂为Jacobi 行列式[2]。
多重变限积分求导
摘要:
一、多重变限积分概念
1.多重变限积分的定义
2.多重变限积分的性质
二、多重变限积分求导方法
1.直接求导法
2.变量替换法
3.分部积分法
三、多重变限积分求导的应用
1.物理中的应用
2.工程中的应用
3.经济学中的应用
正文:
多重变限积分求导是微积分中的一个重要概念,它涉及到对多个变量进行积分求导的操作。
多重变限积分的定义是指,当一个函数需要对多个变量进行积分时,我们可以将其看作是对这些变量分别进行积分,然后将结果相乘。
例如,设f(x, y) = x^2 * y,则对x 和y 分别积分,得到多重变限积分:∫∫f(x, y) dx dy。
多重变限积分具有很多性质,比如线性性质、可加性质、可交换性质等。
这些性质为我们求解多重变限积分问题提供了很多便利。
在求导多重变限积分时,有多种方法可以使用。
直接求导法是最直接的方法,它利用微积分基本定理进行求导。
变量替换法是另一种常用的方法,通过引入中间变量,将多重变限积分转化为单变量积分求导。
分部积分法则是将多重变限积分分解为两个或多个积分求导的组合。
多重变限积分求导在各个领域都有广泛的应用。
在物理学中,它可以用来求解质点沿曲线路径的位移、速度和加速度等问题。
在工程中,它可以用来分析复杂结构的应力和应变分布。
在经济学中,它可以用来描述投资、消费等经济行为对经济增长的影响。
总的来说,多重变限积分求导是微积分中的一个重要概念,它具有丰富的性质和广泛的应用。
三重积分的变量替换三重积分是微积分中的重要概念之一,它广泛应用于物理学、工程学和数学分析等领域。
在处理复杂的立体形状和物理现象时,三重积分可以帮助我们计算体积、质量、质心以及物理场的密度等。
在进行三重积分计算时,我们可以通过变量替换的方法简化问题的求解过程。
变量替换的目的是将原来的积分区域变换为另一个更简单的区域,使得积分计算变得更加容易。
常见的三种变量替换方法分别是柱坐标变换、球坐标变换和柱坐标变换。
接下来,我将详细介绍这三种方法,并举例说明如何使用它们进行三重积分计算。
首先是柱坐标变换。
当我们处理具有旋转对称性的问题时,柱坐标变换是一个有用的工具。
它将直角坐标系中的(x, y, z)坐标转换为柱坐标系统中的(r, θ, z)坐标。
其中,r代表极径,θ代表极角,z代表高度。
变换关系如下:x = rcosθy = rsinθz = z在柱坐标下,积分区域一般由极角θ、极径r和高度z来确定。
利用柱坐标变换可简化三重积分的计算。
例如,我们要计算半径为1的球体的体积,可以使用柱坐标变换将球体的方程转换为积分区域为r、θ、z的柱坐标区域。
然后,通过设置合适的积分边界条件,我们可以将三重积分转化为三个单变量积分的乘积。
接下来是球坐标变换。
球坐标变换适用于处理具有球对称性的问题。
它将直角坐标系中的(x, y, z)坐标转换为球坐标系统中的(r, θ, φ)坐标。
其中,r代表距离原点的距离,θ代表极角,φ代表方位角。
变换关系如下:x = rsinθcosφy = rsinθsinφz = rcosθ与柱坐标变换类似,利用球坐标变换可以简化三重积分的计算。
例如,我们要计算球体内的质量,可以使用球坐标变换将球体的方程转换为积分区域为r、θ、φ的球坐标区域。
然后,通过设置合适的积分边界条件,我们可以将三重积分转化为三个单变量积分的乘积。
最后是柱坐标变换。
当我们处理具有平面对称性的问题时,柱坐标变换是一个实用的方法。
三重积分计算中的一些技巧在三重积分的计算中,有一些技巧可以帮助我们简化计算过程,提高效率。
接下来,我将介绍一些常用的三重积分计算技巧。
1.先进行变量代换:在求解三重积分时,通过适当的变量代换可以简化被积函数的形式。
常见的变量代换方法包括球坐标系、柱坐标系和抛物坐标系等。
2.交换积分次序:当被积函数在不同变量的积分中存在其中一种对称性时,可以考虑交换积分次序。
例如,当被积函数在一些变量的积分中只依赖于另外两个变量时,可以将该变量的积分放在最后进行计算,从而简化计算。
3.利用对称性:当被积函数具有其中一种对称性时,可以通过利用对称性简化计算。
例如,当被积函数关于一个坐标轴对称时,可以将整个积分区域对称折叠,从而减少积分区域的计算量。
4.利用奇偶性:当被积函数具有奇偶性时,可以利用奇偶性简化计算。
例如,当被积函数为奇函数时,可以将积分区域关于原点对称分成两个部分,只计算一个部分的积分再乘以2,从而简化计算。
5.使用对称性的特殊点:在一些情况下,利用对称性的特殊点可以简化计算。
例如,当被积函数在其中一点处取得极值时,可以将该点作为积分区域的对称中心,从而简化计算。
6.利用积分的性质:在进行具体计算时,可以利用积分的性质简化计算。
例如,利用积分线性性质,将被积函数拆分成多个部分进行计算,再将计算结果加和即可。
7.重心坐标法:在一些特殊情况下,可以通过引入重心坐标法简化计算。
重心坐标法是一种利用面积、体积比例关系的坐标变换方法,通过引入重心坐标,可以将多重积分转化为更简单的单重积分计算。
8.利用积分的几何意义:在进行三重积分的计算时,可以利用积分的几何意义进行估算。
通过将积分区域分成若干个小区域,在每个小区域上进行近似计算,最后将计算结果进行求和,可以得到对原积分的估计值。
总而言之,三重积分的计算过程需要我们熟练掌握数学知识,并结合具体问题运用相应的技巧。
以上介绍的仅仅是一些常用的技巧,实际计算过程中还需要根据具体情况进行灵活运用。
重积分与变量代换重积分是微积分中的一个重要概念,用于计算曲线、曲面和立体的面积、体积等物理量。
而变量代换则是在计算重积分时常常使用的一种技巧,它能够简化积分计算的过程,提高计算效率。
本文将介绍重积分的基本概念和性质,并详细说明变量代换的原理和应用。
一、重积分的基本概念和性质重积分是微积分中一种对多变量函数进行积分的方法,主要用于计算曲线、曲面和立体的面积、体积等物理量。
在数学上,重积分可以分为二重积分和三重积分两种形式。
二重积分用于计算二维平面上的曲线和曲面的面积。
若函数 f(x, y)在一个闭区间上连续,那么这个闭区间可以分割成无数个小区域,将每个小区域的面积相加,就可以得到整个闭区间的面积,即二重积分。
二重积分的符号表示为∬f(x, y)dxdy。
三重积分则用于计算三维空间中立体的体积。
若函数 f(x, y, z) 在一个闭区域上连续,那么这个闭区域可以分割成无数个小立方体,将每个小立方体的体积相加,就可以得到整个闭区域的体积,即三重积分。
三重积分的符号表示为∭f(x, y, z)dxdydz。
重积分具有以下性质:1. 线性性质:对于任意常数 a 和 b,有∬(af(x, y) + bg(x, y))dxdy =a∬f(x, y)dxdy + b∬g(x, y)dxdy。
2. 区域可加性:若闭区域 D 可以分割成互不相交的两个子区域 D1 和 D2,那么∬f(x, y)dxdy = ∬f(x, y)dxdy + ∬f(x, y)dxdy。
3. 反序性质:对于面积可积的函数 f(x, y),有∬f(x, y)dxdy = ∬f(x, y)dydx。
4. 极坐标系下的重积分:对于函数f(r, θ) 在极坐标系下,有∬f(r, θ)rdrdθ。
二、变量代换的原理和应用变量代换是在计算重积分时常常使用的一种技巧,它利用一组新的变量代替原有的变量,以简化积分计算的步骤。
变量代换的原理可以用微积分中的链式法则来解释。