重积分的变量代换
- 格式:pdf
- 大小:374.99 KB
- 文档页数:41
重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:重积分的变量替换公式;内容提要:重积分的变量替换公式; 极坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;球面坐标变换.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).一般的变量替换现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).断言:ϕ(∂A)为零测集,从而∂ϕ(A)亦然,于是ϕ(A)可求体积.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).为了研究ϕ(A)的体积,我们将ϕ线性化并做误差估计.引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .证明.在Bδ(x)中考虑函数F(y)=ϕ(y)−ϕ(x)−Jϕ(x)(y−x),则F(x)=0,JF(y)=Jϕ(y)−Jϕ(x).根据拟微分中值定理,存在ξ=x+θ(x −x)(0<θ<1),使得F(x ) = F(x )−F(x) ≤ Jϕ(ξ)−Jϕ(x) x −x ,由Jϕ在K上的一致连续性即可完成证明.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.证明.考虑仿射变换L(y)=[Jϕ(x)]−1(y−ϕ(x))+x,则L◦ϕ(x )=[Jϕ(x)]−1F(x )+x ,于是当x ,x ∈Bη(x)时L◦ϕ(x )−L◦ϕ(x ) ≤[1+ [Jϕ(x)]−1 ε] x −x .由B⊂Bη(x)可得ν(L◦ϕ(B))≤[1+ [Jϕ(x)]−1 ε]nν(B).再由仿射变化的体积变化公式即可完成证明.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.证明.不妨设A为矩形,且f非负.任给A的分割π={A ij},我们有ϕ(A)f=ijϕ(A ij)f≤ij[supϕ(A ij)f]ν(ϕ(A ij))证明(续).当分割充分细时,由之前的引理可得ϕ(A)f≤ijsupA ij[f◦ϕ]|det Jϕ(ξij)|ν(A ij)+O(ε),由Riemann和与积分之间的关系可得ϕ(A)f≤Af◦ϕ|det Jϕ|+O(ε),令ε→0可得ϕ(A)f≤Af◦ϕ|det Jϕ|.根据反函数定理,ϕ:D→ϕ(D)可逆.如果对ϕ−1重复上述论证就可得到另一边的不等式.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.解.积分区域是一个曲边的四边形,为了简化,我们令y 2/x =u ,xy =v ,则(u ,v )关于(x ,y )的Jacobi 行列式为∂(u ,v )∂(x ,y )= −y 2/x 22y /x y x =−3y 2/x =−3u ,因此(x ,y )关于(u ,v )的Jacobi 行列式为−(3u )−1.在这个变换下,积分区域变为矩形[p ,q ]×[a ,b ],因此I =q p d u b a v −(3u )−1 d v =16(b 2−a 2)ln q p.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.尽管如此,由于此变换在(0,+∞)×(0,2π)上是一一的且非退化,因此将前面的证明略作改动即知,积分的变量替换公式对这个变换仍然成立.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.解.作所谓的广义极坐标变换x=ar cosθ,y=br sinθ,r∈[0,1],θ∈[0,2π],其Jacobi行列式为∂(x,y)∂(r,θ)=a cosθ−ar sinθb sinθbr cosθ=abr,因此所求面积为10d r2πabr dθ=πab.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π].我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.球面坐标和伸缩变换结合起来称为广义球面坐标变换.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.在一般的欧氏空间R n中也有类似的(广义)球面坐标变换.。
N 重积分的变量代换Shining Chen † Jun 3rd ,2019数学难还是物理难?这个问题因人而异,没有统一答案。
不过有一点可以肯定,就是数学系不懂物理依然可以work well ,因为数学play with itself ;物理系不懂数学会怎样?不能说一定死翘翘(毕竟有Faraday 大神),但可以肯定的是,此人只能搬砖(做实验),而看不了图纸(理论物理)。
当然,物理系不需要像数学系那样精通数学——不必严格证明,只要计算出结果就行了(可能存在的麻烦是,某一类数学问题该如何求解,数学系以前也没研究过,这就需要物理系自己搞定了)。
在高能物理中,相空间积分可以用Mandelstam 不变量表达。
但为了讨论CP 破坏,需要引入一个T-odd 变量[1],该变量并非Lorentz 不变量。
于是,就涉及变量代换问题——将对Mandelstam 不变量的积分改写为对T-odd 变量的积分。
对于四体衰变而言,相空间是12维的,不过由于动能量守恒及质壳条件,最终只有五个变量是独立的。
所以,本文需要解决五重积分的变量代换问题。
因为数学书上只讨论了一、二、三重积分的变量代换,所以N 重积分的变量代换只好由物理系小白班门弄斧喽。
希望可以抛砖引玉。
1 变量代换的一般原理 ................................................................................................................... 1 2 积分次序交换技术 ....................................................................................................................... 5 3 注意事项....................................................................................................................................... 9 参考文献.. (10)1 变量代换的一般原理对于一重积分,有()()1()()[()]bg b u g x ag a dxf x dx fg u du du=-−−−→⎰⎰【例1】/2sin 22201cos cos 4x r r d r d r ππθθθθθπ=−−−−→==⎰⎰⎰对于二重积分,有()11()(,)(,)[(),()](,)xyuvu g x v h x D D x y f x y dxdy f g u h v dudv u v =--=∂−−−→∂⎰⎰⎰⎰其中(,)(,)xx x y uvyy u v uv∂∂∂∂∂=∂∂∂∂∂为Jacobi 行列式[2]。
重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。