防止谐振过电压的措施
- 格式:doc
- 大小:23.00 KB
- 文档页数:3
浅析电压互感器铁磁谐振过电压防范措施电压互感器(Voltage Transformer,简称VT)作为电力系统中常用的电测量装置,其主要功能是将高压侧电压降低到安全范围内,以便进行电能测量、保护和控制。
在某些特殊工况下,VT可能会出现铁磁谐振,导致过电压产生,进而对设备和系统安全产生威胁。
对于电压互感器的铁磁谐振过电压防范措施需要引起我们的高度重视。
铁磁谐振是指电力系统中电压互感器产生谐振的现象,主要由于电压互感器的铁心元件与电力系统谐振电容形成谐振回路,使得系统中的电压产生高频振荡,导致过电压的出现。
1.选择合适的电压互感器参数:需要根据电力系统的额定电压和频率,选择合适的电压互感器额定电压和变比。
正确选择电压互感器的参数,可以减小系统中的电流谐振,降低谐振幅值,从而减小谐振过电压的产生。
2.合理设计电压互感器的阻尼电阻:在电压互感器的次级绕组中加入适当的阻尼电阻,可以提高电压互感器的阻尼,降低谐振振荡的幅值,减小谐振过电压的可能性。
阻尼电阻的阻值大小需要根据实际情况进行优化设计。
3.增加铁芯的短路开关:为了在需要的时候能够快速地将电压互感器的铁芯短路,可以在电压互感器的铁芯上增加短路开关。
通过控制短路开关的状态,可以有效地控制铁芯的磁导率,避免谐振过电压的产生。
4.合理布置电力设备和线路:在设计电力系统时,需要合理布置电力设备和线路,减小电力系统中的电感耦合。
通过合理布置线路,降低电力系统中的电感耦合,可以减小谐振回路的形成概率,降低谐振过电压的可能性。
5.增加有源补偿装置:有源补偿装置可以根据电力系统中的谐振情况,实时监测并补偿电气系统中的电能,减小谐振过电压的产生。
通过增加有源补偿装置,可以有效地提高电力系统的稳定性和可靠性。
浅析电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常用的测量仪器,也是系统中的重要装置之一。
但是,在电力系统的运行中,电压互感器的使用也面临着很多问题,如铁磁谐振过电压。
铁磁谐振过电压是电压互感器在谐振情况下,长时间处于高电压状态下,容易造成设备损坏,甚至导致安全事故发生。
因此,需要采取有效措施,加强电压互感器的防范措施,以保障电力系统的安全稳定运行。
一、铁磁谐振过电压的成因及危害电压互感器中的铁芯是由硅钢片叠压而成,其导磁特性是非线性的。
一般情况下,电压互感器的负载比较小,电压互感器的电路谐振是极难发生的。
但是,如果出现负载开路(如断路器拆卸等操作),则使得电压互感器中的感应电流大幅度减小,电感值变大,当电容注入电流时,系统中的电容和电感共振,形成铁磁谐振。
当发生脉冲放电或过电流的冲击时,电感器内部的电压猛地升高,这就是铁磁谐振过电压的成因之一。
铁磁谐振过电压会造成设备局部击穿,损坏电容、电抗器等电力设备,对电力系统的可靠性和安全性造成严重威胁。
另外,如果频繁发生铁磁谐振过电压现象,还会造成电网负荷调节不稳定,导致电压波动,影响系统的稳定性。
二、电压互感器的防范措施1.调整电压互感器的谐振频率电压互感器的谐振频率是通过电容和电感器之间建立的谐振回路来实现的。
因此,在设计和安装过程中,可以调整电容和电感器之间的参数,以达到一定的谐振频率,减少铁磁谐振过电压的发生。
2.加装过电压保护装置过电压保护装置是电力系统中重要的防护装置之一,其作用是对电力系统中的过电压进行有效的控制。
在电压互感器的设计和安装过程中,可以增加过电压保护装置的投入,当电压互感器出现谐振时,过电压保护装置可以及时地将过电压抑制在一定范围内,从而保护电力系统的运行安全。
3.系统电容投入系统电容投入可以改善电网系统的功率因数和电压水平,同时还可以抑制铁磁谐振过电压的发生。
在电网系统的设计和运行中,可以根据需要增加系统电容的投入,减少电容和电感器之间的谐振,从而保护电力设备的运行安全。
电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。
在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。
这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。
在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。
1、电压互感器引起铁磁谐振的发生原因分析在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。
在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。
C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。
但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。
由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。
当激磁电流过大时,铁芯饱和,则L值随之大大降低。
正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。
2、铁磁谐振的特点对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。
电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。
TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。
此外回路损耗也使谐振过电压受到阻尼和限制。
浅析电压互感器铁磁谐振过电压防范措施电压互感器是电力系统中常见的一种测量设备,其作用是将高压变电器的高电压变换为低电压用于测量和保护系统。
电压互感器在运行过程中会受到各种干扰和影响,其中铁磁谐振过电压是一个常见的问题。
本文将对电压互感器铁磁谐振过电压的原因进行分析,并提出相应的防范措施。
一、铁磁谐振过电压的原因1. 铁芯饱和电压互感器的铁芯在运行过程中,会受到系统电压的影哨,当系统电压过高时,铁芯可能会发生饱和现象。
当铁芯饱和时,会导致互感器的谐振频率发生变化,从而产生过电压。
2. 负载变化3. 保护动作在系统故障或过载状态下,保护设备会进行动作,引发短时过电压。
这种过电压也可能引起电压互感器的铁磁谐振现象。
1. 加强互感器绝缘为了防范铁磁谐振过电压的发生,首先要确保互感器的绝缘性能良好。
在选择互感器时,应选择具有较高击穿电压的绝缘材料,以提高互感器的绝缘强度。
2. 优化互感器设计在互感器的设计过程中,应该根据系统的电压和负载特性,优化互感器的结构和参数,以减少铁磁谐振过电压的可能性。
3. 使用补偿电容器在互感器的设计中,可以加入合适的补偿电容器来抵消铁磁谐振过电压。
补偿电容器的选择和布置是一个复杂的工程问题,需要根据实际系统情况进行综合考虑。
4. 定期检测为了确保电压互感器的正常运行,需要定期对其进行检测和维护。
通过定期检测,可以及时发现互感器存在的问题,并采取相应的措施进行修复。
5. 系统优化在系统设计和运行过程中,应该保持系统的稳定性,避免出现系统过载或短路等故障情况,以减少铁磁谐振过电压的发生。
电压互感器铁磁谐振过电压是一个常见的问题,但通过合理的设计和操作措施,可以有效地防范和解决这一问题,从而确保电力系统的安全稳定运行。
希望本文的分析和建议能够为电力系统工程技术人员在实际工作中提供一些参考和帮助。
电力系统谐振过电压产生的原因及防范措施摘要电力系统中,厂站因过电压引起故障甚多,特别是谐振过电压,对设备甚至系统安全稳定运行影响大。
分析原因,找出问题,提出防治措施很有必要。
关键词谐振过电压;PT;铁芯饱和;防范措施0 引言我国电力系统分为不同电压等级,35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。
过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。
1 谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
2 铁磁谐振为满足电网测量、保护需要,电力系统中配置大量电感电容元件,如:互感器、电抗器等电感元件;电容器、线路对地电容等电容元件。
当进行设备操作或系统故障时,电感电容元件构成振荡回路,在一定条件下产生谐振,损坏设备影响系统。
2.1 原因分析图1某水厂单串接线图,采用接线,110kV系统中性点直接接地,变压器、PT等分相运行,变压器、PT高压绕组接成Y0,该厂多次发生铁磁谐振过电压。
原因:图1 某水电站单串接线图1)故障时产生谐振过电压。
当系统发生单相故障时,因整个电网系统中电感电容元件参数不匹配,两者共同作用,为谐振产生创造条件,最终导致铁磁谐振过电压发生;2)操作时产生谐振过电压。
110kV开关为双断口且并联均压电容,停送电操作时,先拉5012、5013,再拉50126,其他刀闸均接通。
110kV环网通过开关断口电容构成带电磁式PT空母线产生谐振。
2.2 等值电路图该厂输出线路发生单相接地故障,瞬时A相线路产生接地电流,因避雷器参数不匹配,构成谐振回路而产生谐振过电压。
图2 简化电路图如图2,L1是1B一次侧电感,L2是2B一次侧电感,Lm是PT一次侧电感,C0是空长线路对地电容,RL是电阻,k为故障点。
浅析电压互感器铁磁谐振过电压防范措施电压互感器在电力系统中起着非常重要的作用,它能够将高压电网中的电压变换成为低压信号,以便供给保护装置和测量仪表使用。
电压互感器本身也存在一些问题,其中之一就是铁磁谐振过电压的问题。
铁磁谐振过电压是指在电力系统中,由于电压互感器的谐振频率和系统中其他部件的自然频率相接近而导致的过电压问题。
这种过电压可能对电力系统的稳定性和设备的安全造成严重影响,因此需要采取措施来防范铁磁谐振过电压的发生。
要针对电压互感器的设计和选型进行合理规划。
设计时应考虑到电压互感器在实际运行中可能遇到的工频和谐振过电压,选择合适的铁心材料和绕组结构,以尽量减小谐振频率和增加谐振频率间隔,避免与系统的自然频率相近。
在选型时应根据系统的特点和运行环境,选择合适的电压互感器型号和参数,以确保其在系统中的稳定性和可靠性。
需要对电压互感器进行良好的安装和维护。
在安装时要遵循相关标准和规范,确保电压互感器与系统的连接良好,接地可靠,并且避免在安装位置附近存在铁磁材料,以减小谐振的可能性。
在日常维护中要定期对电压互感器进行检查和测试,发现问题及时处理,以保证其在运行中的性能和稳定性。
对于已经存在的铁磁谐振过电压问题,可以通过一些措施来进行防范和处理。
其中之一就是采取适当的补偿措施,例如在电压互感器绕组中添加电容器进行串联补偿,或者在电压互感器的外部添加谐振电抗器进行并联补偿,以改变谐振电路的参数,使谐振频率远离系统的自然频率,减小过电压的可能性。
还可以通过在系统中增加补偿电抗器或者调整系统参数,来改变系统的自然频率和阻尼,以减小谐振过电压的影响。
铁磁谐振过电压是电压互感器在实际运行中可能遇到的一个严重问题,需要系统设计、选型、安装和维护等方面都进行合理规划和措施,以保证电压互感器在系统中的稳定性和可靠性。
对于已经存在的谐振过电压问题,需要通过补偿措施和系统参数调整等方法进行防范和处理,以确保系统的安全稳定运行。
电网谐振过电压的限制方法电网谐振过电压是指电网中的谐振回路导致电网电压升高的现象。
这种现象可能导致电网设备损坏、引发过电压事故甚至导致电网崩溃。
为了保障电网的稳定运行和电力设备的安全运行,需要采取一系列措施限制电网谐振过电压。
1. 电网规划设计:在电网规划和设计阶段,需要充分考虑电网谐振过电压问题。
对电网谐振频率、谐振回路的参数等进行详细分析,采用合适的线路布置、变电站配置和无功补偿等方式来减小谐振影响。
通过电网的优化设计,能够有效降低电网谐振过电压的风险。
2. 无功补偿控制:电网谐振通常是由于无功补偿不足引起的,因此,加强无功补偿是限制电网谐振过电压的重要手段。
通过调节无功补偿设备的容量和运行方式,使电网保持合适的无功功率平衡,可以减小谐振回路的共振电流,避免出现过电压。
3. 谐振回路的分析与处理:谐振回路是电网谐振过电压的直接原因,因此,对谐振回路进行分析并采取处理措施是有效限制电网谐振过电压的重要方法。
可以通过增加电阻、变压器的绕组接地、中和电抗器的串联等方式改善谐振回路的特性,减小谐振幅值以及消除谐振回路,从而有效地减小电网谐振过电压的风险。
4. 过电压保护装置的设置:在电网中设置过电压保护装置是限制电网谐振过电压的一种有效手段。
过电压保护装置可以监测电网的电压波形,一旦发现电压异常上升,及时采取措施,包括切断或限制电网供电,以保护电力设备的安全运行。
5. 特殊设备的应用:在一些需要高度稳定电压的场合,可以采用特殊设备来限制电网谐振过电压。
例如,在电网的关键节点使用电压调节器、谐振抑制器等设备,能够控制电压的波动和提供稳定的电源,从而有效限制谐振过电压。
6. 故障监测与维护:及时发现和处理电网中的故障对于限制电网谐振过电压至关重要。
建立完善的电网监测系统,定期对电网进行故障检测和维护,可以及时发现电网中存在的问题并采取相应的补救措施,避免电网谐振过电压的发生。
总之,电网谐振过电压可能对电网和电力设备带来严重影响,为了限制谐振过电压的发生和发展,需要从电网规划设计、无功补偿控制、谐振回路处理、过电压保护装置设置、特殊设备应用以及故障监测与维护等方面综合考虑,采取一系列措施加以限制和防范。
220kV变电站铁磁谐振过电压事故分析及防止措施摘要:文章结合某220kV变电站刀闸操作过程中出现的110kV母线设备铁磁谐振案例,对系统中因操作产生的铁磁谐振过电压情况进行分析,并提出预防措施和对策。
关键词:铁磁谐振过电压分析措施电力系统中具有一系列电气元件,组成极为复杂的电感电容的串联震荡回路,串联谐振现象会在电网的某一部分造成过电压,破坏电气设备绝缘,危机设备的安全运行。
对于小容量非线性电感元件(例如电压互感器)谐振过电压使它产生的大电流,在严重情况下,造成电感线圈及其保护熔丝烧毁甚至压变及高压设备爆炸,谐振过电压持续时间较长并可能稳定存在,因此了解谐振发生的原因及防止措施是十分必要的。
1 谐振基本概念1.1 串联谐振的定义谐振时XL=Xc,电路此时的工作状态叫谐振又由于谐振发生在RLC串联回路中又叫串联谐振(图1)。
1.2 为何串联谐振又叫电压谐振谐振电路中的电流I=U/Z=U/R(谐振时回路中的总电阻Z=R)谐振时各元件的电压:UR=I×R=R×U/R=U(说明谐振时电阻上的电压等于电源电压)UL=jωoLI=jωoL×U/R=j(ωoL/R)×U=jQU,Q:品质因数,Q=XL/R(说明谐振时电感上的电压等于Q倍电源电压) UC=j(1/ωoC)×I=j1/ωoC)×U/R=j(1/ωoCR)×U=jQU,Q:品质因数,Q=XC/R=1/ωoCR(说明谐振时电容上的电压等于Q倍电源电压) 从上述表达式中可以看出:Q=UC/U=UL/U。
一般在串联谐振时Q>1,在大电流接地系统中电源电压U很高,而在电感和电容上的电压是电源电压的Q倍。
在无线电中可以加以利用,使微弱的信号输入串联谐振回路中,电容两端可获得高电压。
但是在电力系统中由于电源电压本身就很高,如在串联谐振下工作则会严重损坏设备。
这是绝对不允许的,所以说在大电流接地系统中发生串联铁磁谐振也叫电压谐振。
电网谐振过电压的限制方法范文电网谐振过电压是指在电力系统运行过程中,由于谐振条件的满足导致的电压过高现象。
谐振是指系统中的电感元件和电容元件之间发生共振现象,导致系统中电压和电流的不稳定。
谐振过电压的产生是一个复杂的动态过程,它与电力系统的结构、设备参数以及系统运行状态等因素都有关系。
电网谐振过电压会影响电力系统的正常运行,甚至会对电力设备造成严重的损坏。
因此,控制电网谐振过电压对于保障电力系统的安全稳定运行具有重要意义。
要限制电网谐振过电压,首先需要了解它的产生机理。
电网谐振过电压的产生主要是由于电势能的互相输送过程中能量的积累和释放引起的。
具体来说,当发生谐振时,谐振电感元件和电容元件之间会产生大量的电磁能量传输。
这些电磁能量会导致电网中电压的不稳定,进而引发谐振过电压的产生。
因此,限制电网谐振过电压的关键是控制电磁能量在电力系统中的积累和释放过程。
为了限制电网谐振过电压,可以采取以下措施:1. 提升调频速度:调频是指电力系统中发电机的频率调整过程。
提升调频速度可以缩短系统电压的调整时间,减小谐振过电压的产生。
具体来说,可以通过增加调度控制中调频控制的灵敏度、优化调频控制策略等方式来提升调频速度。
2. 优化发电机参数:发电机是电力系统中的重要设备,其参数设置影响着系统的稳定性和灵敏度。
通过优化发电机的参数设置,可以减小谐振过电压的产生。
具体来说,可以调整发电机的电容参数、电感参数等来改变发电机的谐振特性,从而减小谐振过电压的幅值。
3. 配置谐振抑制器:谐振抑制器是一种能够消除电网谐振过电压的装置。
它通过改变电力系统中的电感元件和电容元件之间的谐振条件,从而减小谐振过电压的幅值。
谐振抑制器可以配置在发电机、变电站等关键位置,以提高电力系统对谐振过电压的抵抗能力。
4. 加强系统调节和保护:系统调节和保护是电力系统的重要组成部分,对于限制电网谐振过电压具有重要意义。
通过加强系统调节和保护措施,可以及时探测和响应电网谐振过电压的产生,并采取相应的措施进行限制。
防止6KV厂用系统谐振过电压技术措施批准:审定:审核:编写:运行部电气专业时间:二〇一〇年一月十九日一、谐振过电压产生条件、特点和危害在中性点不接地电力系统中,由于电磁式电压互感器(TV)激磁特性的非线性,当电压发生波动使网络中电抗接近容抗时,便产生谐振过电压。
特别是遇有激磁特性不好(易饱和)的TV 及系统发生单相对地闪络或接地时,更容易引发谐振过电压。
轻者令到TV的熔断器熔断、匝间短路或爆炸;重者则发生避雷器爆炸、母线短路、厂用电失电等严重威胁电力系统和电气设备运行安全的事故。
二、防止铁磁谐振过电压的措施为防止出现铁磁谐振过电压,应从设备、技术及操作上采取综合措施。
这些措施实施的目的,在于避免形成铁磁谐振的条件。
一般从以下几个方面考虑:①选择合理的运行方式及操作方式;②改变X L、X C的比值,躲开谐振区;③选择特性优良的PT;④保证断路器三相同期动作等等。
(1)从设备上防止铁磁谐振采取的措施。
1)尽量采用电容式电压互感器(CVT),从根本上消除产生铁磁谐振的条件。
铁磁谐振回路都是“L-C”回路,采用CVT后,去掉了L,从而使谐振回路不复存在,铁磁谐振过电压也就不会发生。
2)使用电磁式电压互感器时,应优先选用伏安特性高、铁芯不易饱合、励磁感抗高的产品,淘汰、更换劣质的电磁式PT。
小电流接地系统,将PT一次中性点直接接地改为经单相PT或消谐电阻接地(例如我厂发电机出口15.75KV系统,经中性点PT接地);对于无绝缘监视任务的PT,一次中性点不接地。
3)在PT开口三角形绕组上并联消谐管或装设阻尼电阻R。
一般R≤0.4X L(X L为电压互感器在线电压下的励磁感抗)。
4)尽量保证断路器三相同期。
在不需要重合闸作用的断路器上采用三相联动操作机构。
(2)从技术上防止铁磁谐振采取的措施。
1)降低X CE/X L的比值。
同一系统中,减少PT的接地点数,可以提高X L的综合值,X CE/X L也将随之降低,可以减少或避免铁磁谐振发生。
电网谐振过电压的限制方法1.增加电容器的谐振电抗:通过增加电容器的谐振电抗,可以有效地限制谐振过电压的产生。
这可以通过在电容器和电网之间串联电感元件实现,例如串联电感线圈或串联电抗器。
2.控制谐振频率:降低谐振频率可以有效地减少过电压的发生。
这可以通过改变电容器的额定值或选择合适的电感器来实现。
此外,还可以采用带有可调节参数的电容器,以便在需要时通过调节参数来改变谐振频率。
3.准确选择电容器:选择合适的电容器是限制电网谐振过电压的重要因素之一、在选择电容器时,要考虑其额定电压和频率响应特性。
电容器的额定电压应大于电网中可能出现的最高电压值,并且它的频率响应特性应与电网频率相匹配。
4.控制电容器接线:电容器的接线方式也会影响电网谐振过电压的发生。
例如,星形接线比三角形接线方式更有利于减少过电压现象的发生。
5.定期检测和维护:定期检测和维护电容器和相关设备是限制电网谐振过电压的关键措施之一、这可以通过定期检查接线连接、检测电容器的电压和频率响应特性以及及时更换老化的电容器来实现。
6.使用过电压保护装置:安装过电压保护装置是保护电网设备的有效方式。
这些装置可以在电网谐振过电压超过设定值时自动切断电源,以保护电网设备免受损坏。
7.采用阻尼器:为了防止电网谐振过电压的产生,可以在电容器和电网之间并联阻尼电阻。
这种方法可以通过在路线中添加电阻、采用特殊设计的电抗器或使用阻尼装置来实现。
8.谱隔离:谱隔离是一种有效的限制电网谐振过电压的方法。
通过控制电容器的电流谱,可以减少谐振电流的泄漏。
这可以通过滤波器和降低高次谐波电流来实现。
总之,限制电网谐振过电压是确保电网设备和电力系统正常运行的重要措施之一、通过增加电容器的谐振电抗、控制谐振频率、准确选择电容器、控制电容器接线、定期检测和维护、使用过电压保护装置、采用阻尼器以及谱隔离等方法,可以有效地减少谐振过电压的产生,提高电网的稳定性和可靠性。
电压互感器谐振过电压分析及预防措施电压互感器是电力系统中常用的测量和保护装置,它将高电压侧的电压降低到低电压侧进行测量或传递。
然而,当电压互感器遭受到电力系统中的谐振过电压时,会引起互感器的谐振现象,从而影响电力系统的稳定性和互感器的工作性能。
本文将从谐振过电压的原因和机理、谐振过电压的预防措施等方面进行详细分析。
首先,谐振过电压的原因和机理主要有以下几点:1.系统谐振:当系统中存在谐振的无功电容或电感元件时,谐振过电压现象容易发生。
例如,当系统中存在高频电容器、线路电容或电抗器等无功元件时,谐振过电压现象可能因其与互感器的谐振频率接近而发生。
2.外部故障:外部故障引起的短路或开路等异常情况,会导致电力系统中电流的突然变化,从而引起电压互感器的谐振过电压。
例如,当发生系统短路时,系统中的电流突然增大,产生过大的谐振电压。
3.负荷电压突变:系统中负荷突然增加或减少,使得负荷电流突变,导致电力系统中的电压突变。
当这种电压突变与互感器的谐振频率接近时,会引起互感器的谐振。
为了预防电压互感器谐振过电压的发生,可以采取以下预防措施:1.减小互感器与系统的谐振频率接近:通过调整互感器的参数或改变系统中的无功元件,使得互感器的谐振频率与系统频率之间存在较大差异,从而减小谐振过电压的发生概率。
2.安装绕组电阻:在互感器的一次侧或二次侧绕组中,安装适当的绕组电阻,可以减小谐振过电压的幅值和持续时间。
绕组电阻可以提供额外的阻尼,抑制谐振现象的发生。
3.加大互感器的绝缘能力:选用具有较高绝缘强度的互感器,可以提高其抗击谐振过电压能力。
合理选择互感器的额定电压和绝缘等级,避免绝缘击穿。
4.加强对系统的监测和维护:定期对电力系统进行检测和维护,及时处理系统中的故障和隐患,防止电压互感器谐振过电压的发生。
综上所述,电压互感器谐振过电压是影响电力系统稳定性和互感器工作性能的一个重要问题。
了解谐振过电压的原因和机理,采取相应的预防措施,可以有效减小谐振过电压的发生概率,确保电力系统的正常运行和互感器的可靠工作。
防止电网发生谐振过电压防止中性点不接地电网发生谐振过电压的措有:(1)对中性点绝缘系统,当断线电源侧永久接地时,为使过电压不超过一定值,要求线路正序电容与接于线路上变压器励磁电抗之比不小于25。
(2)对电磁式电压互感器的开口三角形接线绕组中加装电阻,使R≤0.4XT,XT为互感器在线电压下单相换算至辅助绕组的励磁电抗。
(3)选择消弧线圈位置时,尽量避免电网中一部分失去消弧线圈的可能性。
(4)采取临时倒闸措施,如投入事先规定的某些线路或设备。
当用母线向空母线充电时发生谐振,应立即拉开母联断路器使母线停电,从而消除谐振。
送电时,防止谐振发生的办法是:采用线路和母线一起充电的方式或者对母线充电前退出电压互感器,充电正常后再投入电压互感器。
当变压器向接有电压互感器的空载母线合闸充电时,在可能条件下,应将变压器中性点接地或经消弧线圈接地。
其目的是防止由于电磁场和电场参数的偶合,即避免在回路中,使感抗等于容抗,发生串联谐振,从而使谐振过电压引起电气设备损坏。
谐振过电压的多种控制措施和方法电力系统铁磁谐振一直影响着电气设备和电网的安全运行,特别是对中性点不直接接地系统,铁磁谐振所占的比例较大,因此对此类铁磁谐振问题研究得较多。
本文针对电力系统谐振消除方法进行探讨和分析,并提出一些意见,为相关工作者提供参考。
引言电力系统中过电压现象较为普遍。
引起电网过电压的原因主要有谐振过电压、操作过电压、雷电过电压以及系统运行方式突变,负荷剧烈波动引起系统过电压等。
其中,谐振过电压出现频繁,其危害很大。
过电压一旦发生,往往造成系统电气设备的损坏和大面积停电事故发生。
据多年来电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数是由于谐振现象引起的。
日常工作中发现,在刮风、阴雨等特殊天气时,变电站35kV及以下系统发生间歇性接地的频率较高,当接地使得系统参数满足谐振条件时便会发生谐振。
同时产生谐振过电压。
谐振会给电力系统造成破坏性的后果:谐振使电网中的元件产生大量附加的谐波损耗,降低发电、输电及用电设备的效率,影响各种电气设备的正常工作;导致继电保护和自动装置误动作,并会使电气测量仪表计量不准确;会对邻近的通信系统产生干扰,产生噪声,降低通信质量,甚至使通信系统无法正常工作。
电网谐振过电压的限制方法电力供电系统或者说在电力供电电网上,过电压现象十分普遍。
如果没有防范措施,随时都可能发生,也随时都可以发现。
引起电网过电压的原因很多。
主要可分为谐振过电压、操作过电压和雷电过电压;其中谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。
多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。
由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。
为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以避免形成严重的串联谐振回路;或采取适当的防止谐振的措施。
在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。
目前,我国35kV及以下配电网,仍大部分采用中性点不接地方式运行,一部分采用老式的消弧(消谐)线圈接地。
从电网的运行实践证明,中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、TV高压中性点增设电阻或单只TV等,但始终没有从根本上得到解决,TV烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。
而采用老式消弧线圈接地方式的系统由于结构的限制,只能运行在过补偿状态,不能处在全补偿状态,所以脱谐度整定的比较大,约在20%~30%,对弧光过电压无抑制效果。
10kV母线谐振过电压事故分析及预防措施摘要:随着我国综合国力的增强,社会经济不断发展和进步,人们的工作和日常生活已离不开电能,与此同时人们对供电质量的要求也更加严格。
母线谐振过电压事故在电力系统运行工作过程中时有发生,对社会经济以及人们的工作生活造成严重的影响。
本文通过分析探索10kV母线谐振过电压事故的发生及其预防措施,为将来我国电力系统的正常工作运行和发展提供科学有效的方案。
关键词:母线;谐振过电压;事故分析;预防措施近年来,随着我国社会的不断发展,电力行业也随之不断进行发展和改革,当前,10kV电网广泛应用在人们的工作和日常生活中,作为电力系统中重要的连接部分,母线有很多功能特点,例如对电能的分配、汇集和传送等等。
但在电路运行过程中,10kV母线谐振过电压事故,以及各种内在和外在因素等都会影响电力系统的正常运行过程。
所以,应该高度重视电力系统在运行过程中出现的事故,并对其进行有效的分析、解决和预防,来提高10kV母线对我国电力行业发展的积极影响,并且为电力系统的正常运行提供保障。
一、母线谐振过电压事故分析2019年3月23日11时58分,在我院科研楼发生了第16GP母线上电压互感器(PT)铁磁谐振烧毁的事件,现场高压室内烟雾弥漫,且伴有剌鼻气味,导致消防烟感报警及停电事件,我们打开PT柜进行检查,发现熔断器C相已完全炸裂、A相从熔断器中间断裂、B相相对较为完整,但三相熔断器卡口上端均有烧蚀迹象;三只电压互感器中,A相和C相互感器下端均有液体流出,B相互感器无液体流出。
图略。
后经查综保装置后台系统和18GP进线柜综保装置,发现11时50分后台装置报母线PT及避雷器柜3GP的TV异常、发出预告总信号(总告警信号),8分钟后电源进线柜18GP报线路过流,母线I段动作,动作电流值为A相55.822A、B相80.053A、C相92.303A。
我们又到上级输变电站查看,综保装置无故障跳闸信息,也没有故障报警信息。
电工电气 (20 7 No.2)10kV母线谐振过电压事故分析及预防措施志哲(广东电网有限责任公司东莞洪梅供电分局,广东 东莞 523160)0 引言随着我国社会经济的快速发展,社会对电能的需求日益增加,对电力系统的供电质量也提出了更高的要求。
在电力系统运行过程中,由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发事故的原因之一。
对于谐振过电压事故的发生,若不采取措施进行预防,将会造成电气设备的大量损坏和大面积的停电事故。
1 事故概述某110kV变电站是在原35kV变电站的基础上通过升压改造并具有无人值班特性的变电站。
按变电站设计要求,该站共有110kV出线4回;35kV 出线6回;10kV出线16回。
该变电站2015年投运以来,10kV系统多次发生谐振过电压现象。
最严重的一次造成10kV电压互感器严重烧损,引起母线三相短路故障,导致该段母线退出运行10h。
该站的站内电气一次接线如图1所示。
2 事故经过时间:2014年8月18日15点14分,电力系统中的监控装置持续3次发出告警动作并报告复位信息,以说明Ⅰ母消谐装置存在问题,因此值班人员重点监视了10kV的电压运行情况,并发现三相电压变化有异常现象。
首先是A相的电压突然降低,而其他两相电压升高,运行一段时间后,B相的电压变得最低,其他两相电压升高,具体的数值变化如表1所示。
15时38分,该站1号主变1B过流后备保护出现动作,10kV电压的母联断路器Ⅰ段的进线开关处发生事故跳闸。
变电站维修人员马上赶到事故现场,发现10kV高压室、中央控制室完全被浓烟笼住,将其通风10min后,维修人员进入到高压室内部检查电气设备,其中Ⅰ母1YH间隔被完全烧毁,高压柜的释压顶盖掉落,后柜门出现严重的变形,101与100开关处于分位,Ⅱ母电压互感装置C相保险丝熔断,A相和B相正常,10kVⅠ母全部失压。
试论电网谐振过电压防治方法摘要:在电力系统的运行过程中,过电压是一种很常见的现象,如果不能找到科学有效的防治方法,随时都可能发生事故。
诱发电网过电压的原因有很多,主要的有操作过电压,雷电过电压,以及谐振过电压。
一旦发生了过电压,往往造成的是电气设备损或和大面积停电等严重事故。
本文针对谐振过电压的原理、产生原因、特点、危害性等方面做了简单的介绍,并对如何防治谐振过电压做了一些简单的介绍。
关键词:电网,谐振过电压,原因,特点,危害,防治办法一、谐振过电压产生的原理所谓谐振,是指振荡系统中的一种周期性或准周期性的运行状态。
在交流电路中通常含有电感和电容元件,并且均含有一系列自振频率,而且电源中也往往含有一系列不同的谐波,在一定条件下,当电路中呈现电压和电流同相时,电路为电阻性,这就是谐振。
而当电路自振频率与谐波道德频率接近时,这部分电路就会出现谐振现象。
二、电网谐振过电压产生的原因目前,我国大部分的中压配电网仍然采用中性点不接地的运行方式,其余则大多利用老式消弧线圈进行接地。
在中性点不接地系统中,一方面,电压互感器的铁芯饱和能够引发铁磁谐振过电压,虽然采取了一些措施,却无法从根本上解决问题;另一方面,对于中性点不接地的运行方式,其主要特点是在发生单相接地故障之后,系统仍然能够维持运行两个小时左右,而不是立即切断电源。
随着中低压电网的不断扩大,电网对地电容电流将随之大幅增加,单相接地时接地电弧不能自动熄灭而产生电弧过电压,一般会达到相电压的三至五倍,甚至更高,这将直接导致某些绝缘相对薄弱的点被击穿,极易发展成相间短路,进而造成设备损坏和停电事故。
而采用老式消弧线圈接地的电力系统则由于其自身结构限制,不允许在欠补偿或全补偿的状态下运行,所以,脱谐度通常整定的比较大,大约在百分之二十至三十之间,而对弧光过电压没有任何限制的效果。
由于需要手动对分接头进行调节,因而无法随着电网对地电容电流的变化,而及时、准确地找到最佳的工作位置。
防止谐振过电压的措施
电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。
谐振过电压分为以下几种:
1、线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。
2、铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。
3、参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd~Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。
限制谐振过电压的主要措施有:
1、提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。
2、在并联高压电抗器中性点加装小电抗用这个措施可以阻断非
全相运行时工频电压传递及串联谐振。
3、破坏发电机产生自励磁的条件,防止参数谐振过电压。
4、严格执行调度规程
在运行方式上和倒闸操作过程中,防止断路器断口电容器与空
载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。
它包括两个方面:
①应避免用带断口电容器的断路器切带电磁式电压互感器的
空载母线。
②避免用带断口电容器的回路的刀闸对带电磁式电压互感器的
空载母线进行合闸操作。
具体可采用下述方式来实现:在切空母线时,先拉开电压互
感器,对母线断电;在投空母线时,先断开被送电母线PT,
对母线送电,再合母线电压互感器。
5、避免操作过电压
在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振
时,应立即合上带断口电容器的断路器,切除回路电容,终止
谐振,防止隐患发展形成事故。
6、中性接地点
增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压,如:在变电站基建设计时,采用
电容式电压互感器。
在进行变电站更换电压互感器时,也应尽量选取电容式电压互感器。
7、继电保护
针对具体事故发生的情况,如在变电站母线发生单相接地,母差保护动作,母联开关跳闸后,如果主变开关先于线路开关动作,将不会引发谐振。
因此,建议将只带一条出线(线路开关动作抢在主变开关前动作的可能性较大),同时该出线为不带电源的负载线路时,母线母差保护动作次序调整为:母联开关首先开断后,先跳主变开关,再跳出线开关。