心肌内向整流钾通道和心律失常
- 格式:pdf
- 大小:530.93 KB
- 文档页数:7
基金项目:贵州省科学技术厅临床研究中心项目(黔科合平台人才〔(2017)5405〕);贵州省人民医院青年基金(GZSYQN〔2019〕19)通信作者:杨龙,E mail:yanglong1001@163.com心肌内向整流钾电流的调控因素及相关心律失常霍照美1,2 田龙海2 杨龙1,2(1.贵州医科大学,贵州贵阳550025;2.贵州省人民医院心内科,贵州贵阳550002)【摘要】心肌内向整流钾电流(IK1)由内向整流钾通道(Kir通道)家族成员Kir2.1通道介导。
细胞膜电位静息水平时Kir2.1通道处于开放状态,K+外流增加;而当膜去极化时,Kir2.1通道的通透性降低,K+外流减少。
IK1是形成心肌细胞静息膜电位的主要成分,在多种心律失常中发挥重要的作用。
现就IK1的调控及其相关心律失常做一综述。
【关键词】内向整流钾电流;离子通道;心律失常【DOI】10 16806/j.cnki.issn.1004 3934 2022 07 014RegulatoryFactorsandRelatedArrhythmiasofInwardRectifierPotassiumCurrentHUOZhaomei1,2,TIANLonghai2,YANGLong1,2(1.GuizhouMedicalUniversity,Guiyang550025,Guizhou,China;2.DepartmentofCardiology,GuizhouProvincialPeople’sHospital,Guiyang550002,Guizhou,China)【Abstract】Myocardialinwardrectifierpotassiumcurrent(IK1)ismediatedbyKir2.1channel,amemberofinwardrectifierpotassiumchannel(Kirchannel)family.Whenthecellmembranepotentialattherestinglevel,Kir2.1channelwasopenandK+outflowincreased.However,thepermeabilityofKir2.1channeldecreaseswithcellmembranedepolarization,resultinginthedecreaseofK+outflow.IK1isthemaincomponentofrestingpotentialofcardiomyocytes,andplaysanimportantroleinarrhythmias.ThepurposeofthispaperistoreviewtheresearchprogressaboutboththeregulationandrelatedarrhythmiasofIK1.【Keywords】Inwardrectifierpotassiumcurrent;Ionchannel;Arrhythmia 心肌细胞的电活动是心脏兴奋性、自律性、传导性和收缩性的基础,由细胞的跨膜电位决定,包括静息电位和动作电位的形成[1 2]。
内向整流钾通道的定义
内向整流钾通道(Inward Rectifier Potassium Channel,简称IRK)是一类阻止钾离子向细胞外扩散的离子通道,主要参与细胞内外离子平衡的调节,是细胞膜上最具代表性
的离子通道之一。
IRK 通道对于维持神经元、心肌细胞、内分泌细胞等组织器官的离子平
衡和心室复极和肾脏等重要功能具有重要作用。
IRK 通道是一类小分子蛋白,其表达存在于多种组织中,包括皮肤、肝脏、胆管、胰腺、心脏、肾脏、胃肠道以及中枢神经系统等。
IRK 通道具有结构特异性和功能特异性,
其中最具代表性的是基因家族Kir。
IRK 通道的结构如下:它由四个同构亚基组成,每个亚基中含有两个跨膜结构域,分
别是M1区和M2区。
其中M2区形成了离子通道所必要的孔道结构,而M1区则参与了通道
的开闭与调控。
IRK 通道的功能特异性主要表现在下列方面:
1.通道的选择性:由于通道具有选择性,IRK 通道可以区分钾离子与其他离子的差异,以维持细胞内外的离子平衡,保持正常的生理和代谢过程的进行。
2.通道的调控:IRK 通道也具有调控性质,它可以被多种细胞因子、离子和其他信号
物质所影响,以调控钾离子通道的开闭与活性,从而对细胞内环境产生影响。
3.通道的开放与闭合:IRK 通道的开放和闭合是受到内环境、外环境和信号物质的影
响的。
在缺氧、离子平衡障碍等病理状态下,IRK 通道的状态会发生改变,导致心律失常、脑缺血等病变。
总的来说,IRK 通道在维持细胞内外离子平衡和调节细胞内环境方面具有重要作用,
同时也成为了一种重要的药物靶点,例如钾通道药物用于控制心脏疾病和癫痫等神经疾
病。
靶向治疗:心律失常新“利器”心律失常的靶向治疗是最近几年悄然而兴起的新治疗概念,主要得益于分子生物学的发展和离子通道的深入研究。
心律失常靶向治疗就是针对某种心律失常产生的特有基质、离子通道、基因等有选择性地进行治疗。
心律失常靶向治疗分为两种:特异性治疗,某离子通道只在心房或心室存在,应用对这一通道有阻滞作用的药物则可达到治疗心律失常的目的,如Ikur通道;选择性治疗,某通道可能在心房和心室组织都存在,但某药物阻断这种离子通道时,仅选择性阻滞心房或心室组织上的该通道,而对其他部位的该通道无作用。
缺血性心肌病心律失常研究已证实,β受体阻滞剂在缺血性心肌病患者治疗中可以发挥其多效性。
然而其具体的作用机制如何?人们从分子生物学、离子通道以及基因研究找到了β受体阻滞剂在该疾病治疗中的靶标——β肾上腺素能受体/cAMP/PKA途径和转录因子血清反应因子(SRF)。
该途径和SRF能上调缝隙连接Cx43的形成和内向整流钾通道(IK1),从而引起恶性心律失常的产生。
而β受体阻滞剂正是通过抑制β肾上腺素能受体/cAMP/PKA途径和SRF的表达降低miR-1水平,达到抗心律失常的目的和保护受损的心肌(图1)。
Nattel S等研究发现心肌细胞缺血坏死造成细胞与细胞之间的耦联受损是引起缺血性心肌病心律失常的重要原因,改善耦联受损的缝隙连接激动剂的靶向治疗目前正在研究中。
离子通道型心律失常兰诺定受体(RYR2)基因变异是家族性儿茶酚胺敏感性室速主要病因。
靶向兰诺定受体的新型抗心律失常药物目前已经申请专利,不久将来有望临床应用。
QT间期异常的离子通道心脏病的靶向治疗亦有一定的进展,譬如针对编码蛋白质hERG1异常的hERG1通道激活剂可能成为QT间期异常的离子通道型心脏疾病的治疗方向。
心房颤动心房选择性化合物S9947被誉为房颤靶向治疗的“精确导弹”,该药物具有心房选择性,不影响心室组织的电流,可避免改变心室复极,以免触发心室或严重心律失常。
整流是一种物理现象,指正方向的导通远远大于逆方向的导通。
就电学而言,指的是电流在导体内流动时,正方向的电导( conduction )远远大于逆方向的电导。
从钾离子流来说,当膜电位处在钾的电-化学平衡电位( E K )时,净跨膜钾流为零。
当膜电位负于 E K 时, K + 内流;而当膜电位正于 E K 时, K + 外流。
前者为内向电流,后者为外向电流。
如果不存在整流现象的话,钾流的电流-电压关系应是一条直线或基本上是一条直线。
图 4 - 2 是兔心室肌细胞 I K1 电流的电流-电压关系曲线。
横轴是膜电位, 0 左侧细胞内为负, 0 右侧细胞内为正。
纵轴是膜电流,本图为I K1 钾电流, 0 以下为内向电流, 0 以上为外向电流。
从本图可以看出,当膜电位负于- 80mV 时(超极化), I K1 的 K + 流呈直线向下的内向电流。
当膜电位去极化时, I K1 的 K + 流没有按内向电流的斜率呈直线向上的外向电流,而是趋向平坦,也就是向下移位或内向移位,这就是内向整流现象,故 I K1 钾流又称为内向整流钾流。
图 4-2 兔心室肌细胞 I K1 电流的电流-电压关系曲线实验证明, I K1 通道的内向整流现象并非由于门控活动引起,而是膜电位去极化时,细胞内的 Mg 2+ 和多胺(如腐胺、亚精胺、精胺)移向 I K1 通道内口并堵塞之,钾离子不能循 I K1 通道外流,从而出现内向整流现象。
在实验中,如果移去细胞内的 Mg 2+ 和多胺,则 I K1 通道的内向整流现象消失。
快反应心肌细胞在静息电位(或最大舒张电位)水平时, I K1 通道处于开放状态。
在动作电位去极化的过程中,由于内向整流现象, I K1 通道逐步被堵塞,到去极化达- 20mV 以上时, I K1 通道几乎完全被堵塞,K + 通过 I K1 通道的外流量几乎为零。
正由于 I K1 通道的内向整流特性和 I K 通道的延迟激活特性,细胞内 K + 很难流出细胞外,造成复极化困难而使动作电位呈现平台期。
心律失常钾通道阻滞剂的适应症和使用方法心律失常是指心脏节律的异常,可以表现为心搏过速、过缓、快速心律失常等症状。
钾通道阻滞剂作为治疗心律失常的一种药物,被广泛应用于临床。
本文旨在探讨心律失常钾通道阻滞剂的适应症和使用方法。
一、心律失常钾通道阻滞剂的适应症心律失常钾通道阻滞剂主要适用于下列情况:1. 室性心律失常:室性早搏、室性心动过速、室性扑动、室性颤动等。
2. 室上性心律失常:窦房结功能障碍引起的心动过缓、窦性心律失常等。
3. 心脏复律:对某些嗜铬细胞瘤、心脏手术后的心律失常有很好的治疗效果。
4. 心力衰竭:对心力衰竭伴快速心律失常的患者,可通过调节心率来减轻症状。
二、心律失常钾通道阻滞剂的使用方法心律失常钾通道阻滞剂按需采取口服、静脉持续输注等方式使用。
具体使用方法如下:1. 口服给药:根据医生的指导,按照剂量准确服用药物。
通常情况下,每日三次或每日两次给药。
建议在饭后一小时内服用,能够提高药效。
2. 以静脉滴注方式应用:在监护下进行,遵循严格的操作规程。
剂量和滴速应根据患者的具体病情和体重进行调整。
3. 心律失常钾通道阻滞剂的治疗持续时间需要根据患者的具体情况确定。
有些患者可能需要长期使用,而其他患者则可短期使用。
4. 在使用心律失常钾通道阻滞剂过程中,需要密切监测患者的心率、心电图等指标。
及时发现和处理可能出现的不良反应和并发症。
三、心律失常钾通道阻滞剂的注意事项在使用心律失常钾通道阻滞剂时,需要注意以下事项:1. 心律失常药物应在医生的指导下使用,剂量和疗程需根据医生的具体建议来确定。
2. 患者需要定期监测心率、心电图、血钾等相关指标,以确保治疗的有效性及安全性。
3. 心律失常钾通道阻滞剂一般不适用于妊娠、哺乳期女性以及对该类药物过敏的患者。
4. 需要关注患者是否出现心律失常药物的不良反应,如低血压、心动过缓、皮疹等,及时处理。
5. 患者在使用心律失常钾通道阻滞剂期间,应避免饮酒、吸烟等不良生活习惯,有助于促进疗效。
内向整流钾通道原理内向整流钾通道(Inward Rectifier Potassium Channels,IRK)是一种重要的离子通道蛋白,它可以通过调节细胞内输送离子的通道状态来影响细胞的代谢和功能。
IRK通常存在于细胞膜上,可以调节细胞内钾离子的运输,也可以参与抑制神经元的兴奋性和心肌细胞的收缩等各种生理功能。
内向整流钾通道的原理是什么呢?我们来一起了解一下。
1. IRK的结构首先,我们需要知道IRK的结构是由4个亚基组成的,其中每个亚基有2个跨膜螺旋。
整个通道的4个亚基形成一个长形分子,通道形成一个四孔穴,每个亚基把两个钾离子从细胞外侧传递到内侧。
2. IRK的活化和抑制IRK的活化和抑制是通过不同的信号分子作用于其异源性的N末端结构域而实现的。
例如,ATP、镁、蛋白质酪氨酸磷酸化酶等分子都能够对IRK产生影响。
在正常条件下,IRK处于一种微弱开放状态,当细胞外的钾离子浓度升高时,IRK会自动开放,以使钾离子从细胞外侧进入细胞内侧。
而在低钾环境下,则会发生IRK抑制,即内钾离子浓度升高,导致IRK通道关闭,使得钾离子无法进入细胞内侧。
此外,IRK还可能被某些精神药物和麻醉药物所抑制。
这些药物通过与通道蛋白结合,改变膜电位和离子流动的状态,从而影响神经元的兴奋活动和心脏细胞的收缩等生理过程。
3. IRK的生理功能钾离子是细胞内最主要的阳离子,细胞膜上的离子通道能够调节细胞内钾离子的运输,从而影响细胞的代谢和生理功能。
IRK在多种细胞类型中广泛表达,它参与了许多重要的生理过程,包括心肌细胞的稳定和快速兴奋、平滑肌细胞的弛缓、诱导神经元的去极化和调节胰岛素分泌等。
比如,在心肌细胞中,IRK的通道状态可以调节心脏的正常收缩。
当钾离子在细胞膜内侧累积时,IRK通道关闭,使心肌细胞兴奋性降低,心肌收缩力度逐渐下降。
反之,当钾离子在细胞外侧升高时,IRK通道会打开,兴奋性增加,心肌会自主兴奋,从而推动正常收缩。