车辆CAN总线概述(完整版)解析
- 格式:doc
- 大小:247.51 KB
- 文档页数:16
CAN总线技术介绍
CAN总线技术,也被称为Controller Area Network(CAN),是一种广泛使用的低层次的工业总线,是一种高效的低成本高性能的汽车总线。
主要应用于车辆对信息和控制来说非常重要的多个电子设备之间的连接,用于传输信息,控制信号和多媒体信号等。
是一种以多路复用网络技术技术为基础,可以实现节点间信息和控制的互连网络,这种网络经常被用来实现车辆各组件之间的联动,实现多媒体的信号传输和各类信号的交互。
CAN总线技术也是一种多路复用网络技术,它在不同类型的节点之间传输信号和控制信号,实现节点之间互连,实现多媒体的信号传输和各类信号的交互。
CAN总线采用两线总线结构,通信线缆一般采用双绞线、单绞线或者光纤。
它的通信特性具有低延时、高速率、低成本、可靠性高等优点,可以满足现代车辆对节能、安全、可靠性要求。
(1)硬件:包括CAN总线收发器(Transceiver)、CAN总线线缆(Cable)及CAN总线连接线(Connector)。
(2)软件:主要是CAN 控制器(Controller)和CAN驱动软件(Driver)。
汽车CAN总线详解概述CAN(Controller Area Network)总线协议是由 BOSCH 发明的⼀种基于消息⼴播模式的串⾏通信总线,它起初⽤于实现汽车内ECU之间可靠的通信,后因其简单实⽤可靠等特点,⽽⼴泛应⽤于⼯业⾃动化、船舶、医疗等其它领域。
相⽐于其它⽹络类型,如局域⽹(LAN, Local Area Network)、⼴域⽹(WAN, Wide Area Network)和个⼈⽹(PAN, Personal Area Network)等,CAN 更加适合应⽤于现场控制领域,因此得名。
CAN总线是⼀种多主控(Multi-Master)的总线系统,它不同于USB或以太⽹等传统总线系统是在总线控制器的协调下,实现A节点到B节点⼤量数据的传输,CAN⽹络的消息是⼴播式的,亦即在同⼀时刻⽹络上所有节点侦测的数据是⼀致的,因此⽐较适合传输诸如控制、温度、转速等短消息。
CAN起初由BOSCH提出,后经ISO组织确认为国际标准,根据特性差异⼜分不同⼦标准。
CAN国际标准只涉及到 OSI(开放式通信系统参考模型)的物理层和数据链路层。
上层协议是在CAN标准基础上定义的应⽤层,市场上有不同的应⽤层标准。
发展历史1983年,BOSCH开始着⼿开发CAN总线;1986年,在SAE会议上,CAN总线正式发布;1987年,Intel和Philips推出第⼀款CAN控制器芯⽚;1991年,奔驰 500E 是世界上第⼀款基于CAN总线系统的量产车型;1991年,Bosch发布CAN 2.0标准,分 CAN 2.0A (11位标识符)和 CAN 2.0B (29位标识符);1993年,ISO发布CAN总线标准(ISO 11898),随后该标准主要有三部分:ISO 11898-1:数据链路层协议ISO 11898-2:⾼速CAN总线物理层协议ISO 11898-3:低速CAN总线物理层协议注意:ISO 11898-2和ISO 11898-3物理层协议不属于 BOSCH CAN 2.0标准。
汽车CAN基本原理介绍1.汽车CAN的概述CAN是一种串行通信协议,使用两根差分线(CAN_H和CAN_L)进行通信。
它最初是由德国公司Bosch开发用于汽车电子系统之间的通信,现在已广泛应用于汽车工业以及其他领域。
2.CAN的通信架构CAN网络由多个节点组成,每个节点都有一个唯一的标识符(ID)。
节点之间通过CAN总线进行通信。
CAN总线可以是单线或者多线的,多线的CAN总线可以提供更高的数据传输速率。
3.CAN的数据传输CAN使用基于优先级的非冲突访问控制机制。
每个节点都有一个优先级,优先级高的节点可以随时发送消息。
CAN的通信是基于消息的,消息由一个帧组成。
4.CAN的帧格式CAN帧由标识符(ID)、控制位(Control)、数据长度码(DLC)和数据域(Data)组成。
标识符用于标识消息的类型和发送方,控制位用于指示消息的类型,数据长度码用于指示数据域的长度,数据域包含实际的数据。
5.CAN的通信方式CAN的通信方式可以分为两种:广播方式和点对点方式。
在广播方式下,消息被发送到整个网络上的所有节点;在点对点方式下,消息只被发送到指定的节点。
6.CAN的错误检测和纠正CAN具有高度可靠性的特点,它可以检测和纠正错误。
CAN使用CRC 校验码来检测传输过程中发生的错误,并使用重发机制来纠正错误。
7.CAN的速率和距离CAN的传输速率可以根据具体需求进行选择,通常可以达到1Mbps。
CAN的最大传输距离可以达到数百米,如果需要更远的传输距离,可以使用CAN的中继器或者光纤转换器。
8.CAN的应用9.CAN的发展趋势随着汽车电子系统的不断发展,CAN也在不断演进。
CAN已经从最初的CAN 2.0发展到CAN FD(Flexible Data Rate),可以实现更高的数据传输速率和更大的数据负载。
总结:汽车CAN是一种高度可靠且高效的通信协议,它在汽车电子系统中起到了至关重要的作用。
它以其稳定的性能、优秀的错误检测和纠正能力以及广泛的应用领域而受到了广泛的认可和应用。
CAN总线及应用实例(1)CAN特点●CAN为多主方式工作,网络上任意智能节点均可在任意时刻主动向网络上其他节点发送信息,而不分主从,且无需站地址等节点信息,通信方式灵活。
利用这特点可方便地构成多机备份系统。
●CAN网络上的节点信息分成不同的优先级(报文有2032种优先权),可满足不同的实时要求,高优先级的数据最多可在134,us内得到传输。
●CAN采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动地退出发送,大大节省了总线冲突仲裁时间。
●CAN只需通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式收发数据,无需专门“调度”。
●CAN的直接通信距离最远可达l 0km(速率5kbp以下):通信速率最高可达Mbps(此时通信距离最长为40m) 。
●CAN上的节点数主要取决于总线驱动电路,目前可达110个;报文标识符可达2032种(CAN2.0A),而扩展(CAN2.0B)的报文标识符几乎不受限制。
(2)CAN总线协议CAN协议以国际标准化组织的开放性互连模型为参照,规定了物理层、传输层和对象层,实际上相当于ISO网络层次模型中的物理层和数据链路层。
图3.9 为CAN总线网络层次结构,发送过程中,数据、数据标识符及数据长度,加上必要的总线控制信号形成串行的数据流,发送到串行总线上,接收方再对数据流进行分析,从中提取有效的数据。
CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,数据在网络上通过广播方式发送。
其优点是可使网络内的节点个数在理论上不受限制(实际中受网络硬件的电气特性限制),还可使同一个通信数据块同时被不同的节点接收,这在分布式控制系统中非常有用。
CAN 2.0A版本规定标准CAN的标识符长度为11位,同时在2.0 B版本中又补充规定了标识符长度为29位的扩展格式,因此理论上可以定义2的11次方或2的19次方种不同的数据块。
遵循CAN 2.0 B协议的CAN控制器可以发送和接收标准格式报文(11位标识符)或扩展格式报文(29位标识符),如果禁止CAN 2.0B则CAN控制器只能发送和接收标准格式报文而忽略扩展格式的报文,但不会出现错误。
汽车CAN总线技术及故障分析一、汽车CAN总线技术概述CAN(Controller Area Network)总线是一种多控制器通信的串行通信协议,最早在20世纪80年代由德国BOSCH公司研发。
它主要用于汽车电子控制系统中的各个电子控制单元(ECU)之间的数据传输和通信。
CAN总线采用串行通信方式,通过两根数据线CAN_H和CAN_L传输数据,并且具有较高的传输速率和抗干扰能力。
它的数据帧格式包括起始位、标识符、控制位、数据位和校验位等,能够实现多路并行通信和数据广播。
二、CAN总线的优势和应用1. 高速传输能力:CAN总线的数据传输速率较高,可以达到每秒几百万位的速度,满足复杂的控制系统对数据传输的要求。
2. 抗干扰性强:CAN总线具有良好的抗干扰能力,能够在汽车电气系统中稳定工作,不受其他电子设备的电磁干扰影响。
3. 可靠性高:CAN总线采用分布式控制的结构,即使一个设备发生故障,也不会影响整个系统的工作。
4. 系统成本低:CAN总线使用简单的数据通信结构,减少了硬件和软件的开销,降低了系统成本。
5. 应用广泛:CAN总线广泛应用于汽车电子控制系统中,包括发动机控制、制动系统、车身电子等多个方面。
三、CAN总线故障分析方法在汽车CAN总线系统中,常见的故障有线路断开、短路和节点故障等。
为了及时发现和排除故障,需要采用一些故障分析方法。
1. 故障诊断仪:可以通过CAN总线故障诊断仪对整个CAN总线进行诊断和故障检测,通过读取错误码和故障信息,定位故障的具体位置。
2. 信号强度测试:可以使用接收信号强度指示器(RSSI)等测试工具,对CAN总线上的信号强度进行测试,以判断是否存在线路断开或短路等问题。
3. 隔离测试法:将CAN总线系统分成几个部分,逐一检测,以确定具体是哪个节点出现故障,并进行修复或更换。
4. 故障仿真法:通过电脑模拟软件对CAN总线系统进行故障仿真,模拟故障情况,快速定位故障节点。
汽车局域网CAN总线详解一、概述随着汽车工业以及自动化程度的发展,现代汽车中所使用的电子控制系统和通讯系统越来越多,如发动机电控系统、自动变速器控制系统、防抱死制动系统(ABS)、自动巡航系统(ACC)和车载多媒体系统等,这些系统之间。
系统和汽车的显示仪表之间,系统和汽车故障诊断系统之间均需要进行数据交换,如此巨大的数据交换量,如仍然采用传统数据交换的方法,即用导线进行点对点的连接的传输方式将是难以想象的,因此,用串行数据传输系统取而代之就成为必然的选择。
目前汽车上的电子部件越来越多,它们分别担负着不同的作用并挂在不同的总线- CAN总线上。
CAN 是控制局域网络(Control Area Network)的简称[/B],最早由德国BOSCH 公司推出,用于汽车内部测量与执行部件之间的数据通信。
其总线规范已被ISO 国际标准组织制订为国际标准。
CAN 的信号传输采用短帧结构,每一帧的效字节数为8 个,因而传输时间短,受干扰的概率低。
当节点严重错误时,具有自动关闭的功能,以切断该节点与总线的联系,使总线上的其他节点及其通信不受影响,具有较强的抗干扰能力。
CAN 总线开始被用于汽车的电子系统通讯上起源于欧洲,它具有极强的抗干扰能力及纠错能力。
汽车在运行过程中,所属电子部件之间需要进行通讯以交换实时数据,但是由于这些电子部件可能分别挂在不同的CAN总线上,而不同的CAN总线具有不同的数据传输速率,所以不同的CAN总线之间不能直接进行数据通讯,这就需要一个CAN总线网关控制器来进行协调高速CAN总线和低速CAN总线之间的通信。
示意图如下图所示。
二、硬件设计1、总体框图作为一个工业上应用的可靠CAN节点,看门狗、电源隔离和信号隔离是必要的,总体原理框图如下:2、硬件原理图从以上可以看出,该硬件电路主要由三部分组成。
I、处理器最小系统处理器采用带有两路CAN接口的ARM7系列单片机- LPC2119,该单片机内部有两路CAN接口、32位处理器、内部总线结构为哈佛总线结构。
一.CAN总线简介1. CAN总线的发展历史20世纪80年代初期,欧洲汽车工业的蓬勃发展,车辆电子信息化程度的也不断提高。
当时,由于消费者对于汽车功能的要求越来越多,而这些功能的实现大多是基于电子操作的,这就使得电子装置之间的通讯越来越复杂,同时意味着需要更多的连接信号线,但是传统的线束式汽车电子系统已经不能满足车辆电子信息功能发展的需求。
为了解决这一制约现代汽车电子信息化发展的瓶颈,德国Bosch公司设计了一个单一的网络总线,所有的外围器件可以被挂接在该总线上,经过试验,这一总线能够有效解决现代汽车中庞大的电子控制装置之间的通讯,并且能够减少不断增加的信号线。
所以在1986年Bosch公司正式公布了这一总线,且命名为CAN总线。
CAN控制器局部网(CAN—Controller Area Network)属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通讯网络,它具有很高的网络安全性、通信可靠性和实时性,简单实用,网络成本低,特别适用于汽车计算机控制系统和环境恶劣、电磁辐射强和振动大的工业环境,因此CAN总线在诸多现场总线中独占鳌头,成为汽车总线的代名词,CAN总线开始进入快速发展时期:1987年Intel公司生产出了首枚CAN控制器(82526)。
不久,Philips公司也推出了CAN 控制器82C200;1991年,Bosch颁布CAN 2.0技术规范,CAN2.0包括A和B两个部分为促进CAN以及CAN协议的发展,1992在欧洲成立了国际用户和厂商协会(CAN in Automation,简称CiA),在德国Erlangen注册,CiA总部位于Erlangen。
CiA提供服务包括:发布CAN的各类技术规范,免费下载CAN文献资料,提供CANopen规范DeviceNet规范;发布CAN产品数据库,CANopen产品指南;提供CANopen验证工具执行CANopen认证测试;开发CAN规范并发布为CiA 标准。
1993 年CAN 成为国际标准ISO11898(高速应用)和ISO11519(低速应用);1993年,ISO颁布CAN国际标准ISO-11898;1994年,SAE颁布基于CA N的J1939标准;2003年,Maybach发布带76个ECU的新车型(CAN,LIN,MOST);2003年,VW发布带35个ECU的新型Golf。
根据CiA组织统计,截止到2002年底,约有500多家公司加入了这个协会,协作开发和支持各类CAN高层协议;生产CAN控制器(独立或内嵌)厂家,包括世界上主要半导体生产厂家在内,已有20多家,CAN控制器产品的品种已达110多种,CAN控制器的数量已达210,000,000 枚。
CAN接口已经被公认为微控制器(Microcontroller)的标准串行接口,应用在各种分布式内嵌系统。
该协会已经为全球应用CAN技术的权威。
2. CAN总线的特点CAN总线与一般的通信总线相比,它的数据通信具有突出的可靠性、实时性和灵活性。
其主要特性如下:1) 具有较高的性价比。
它结构简单,器件容易购置,每个节点的价格较低,而且开发过程中能充分利用现在的单片机开发工具;2) 是目前为止唯一有国际标准的现场总线;3) 为多主方式工作,网络上任一节点均可在任意时刻主动向网络上其他节点发送信息而不分主从,通信方式灵活,且无需站地址等节点信息4) 网络上的节点信息分成不同的优先级,可满足不同的实时要求,高优先级的数据最多可在134μs内得到传输;5) 采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动地退出发送,而最高优先级的节点不受影响地继续传输数据,从而大大节省了总线冲突仲裁时间。
尤其是在网络负载很重的情况下也不会出现网络瘫痪情况;6) 只需通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式传送接收数据,无需专门的“调度”;7) 直接通信距离最远可达10 km (速率5 kb/s以下) ,通信速率最高可达1 Mkb / s(此时通信距离最长为40 m) ;8) 节点数主要取决于总线驱动电路,目前可达成110个;9) 采用短帧结构,传输时间短,受干扰概率低,具有极好的检错效果;10) 每帧信息都有CRC校验及其他检错措施,保证了数据出错率低;11) 通信介质可为双绞线、同轴电缆或光纤,选择灵活;12) 节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响。
自CAN总线问世以来,为满足CAN总线协议的多种应用需求,相继出现了几种高层协议。
目前大多数基于CAN总线的网络都采用CAN总线的高层协议。
CANopen、DeviceNet和SDS是通常采用的高层协议,适用于任何类型的工业控制局域网应用场合,而CAL则应用于基于标准应用层通信协议的优化控制场合,SAEJ1939则应用于卡车和重型汽车计算机控制系统。
其总线规范已被ISO 国际标准化组织制定为国际标准,并被公认为是最有前途的现场总线之一。
CAN 总线的应用范围遍及从高速网络到低成本的多线路网络,广泛应用于控制系统中的各检测和执行机构之间的数据通信。
随着控制、计算机、通信、网络等技术的发展,信息交换沟通的领域正在迅速覆盖从现场设备到控制、管理的各个层次。
信息技术的发展引起自动化系统结构的变革,逐步形成以网络集成自动化系统为基础的企业信息系统。
现场总线(Fieldbus)就是顺应这一形势发展起来的新技术,成为当今自动化领域技术发展的热点,被誉为自动化领域的计算机局域网。
它的出现,标志着自动化领域的又一个新时代的开始,并对该领域的发展产生重要影响。
二、CAN总线基本原理1、CAN标准1)CAN总线的分层结构OSI(Open System Interconnection)开放系统互连参考模型将网络协议分为7层,由上至下分别为:应用层、表示层、会话层、传输层、网络层、链路层和物理层。
国际电工技术委员会定义现场总线模型分为三层:应用层、链路层和物理层。
CAN的分层定义与OSI模型一致,使用了七层模型中的应用层、链路层和物理层。
CAN技术规范定义了模型最下面的两层:数据链路层和物理层,如图1所示。
图1 CAN总线分层结构2)CAN协议标准CAN总线协议现有CAN1.0、CAN1.2、CAN2.0A和CAN2.0B四个版本。
CAN2.0A以及以下版本使用标准格式信息帧(11位),CAN2.0B使用扩展格式信息帧(29位)。
CAN2.0A 及以下版本在接收到扩展帧信息格式时认为出错;CAN2.0B被动版本接收时忽略29位扩展信息帧,不认为出错;CAN2.0B主动版本能够接收和发送标准格式信息帧和扩展格式信息帧。
3)CAN总线网络基本结构一般而言,CAN总线网络由若干个具有CAN通信功能的控制单元(又称节点)通过CAN_H和CAN_L两条数据线并联组成,CAN_H和CAN_L两条数据线的两端各安装一个120Ω电阻构成数据保护器,避免数据传输到终端被反射回来而产生反射波,影响数据的传送,如图2所示。
汽车CAN总线网络结构示意图如图3所示。
图2 CAN网络基本结构图3 汽车CAN总线网络结构示意图4)CAN总线节点硬件电路框图一个完整的CAN总线节点应该包含微控制器、CAN控制器和CAN收发器三部分。
其中微控制器负责完成CAN控制器的初始化,与CAN控制器的进行数据传递;CAN控制器负责将数据以CAN报文的形式传递,实现CAN协议数据链路层的功能;CAN收发器是CAN控制器与CAN物理总线的接口,为总线提供差动发送功能,也为控制器提供差动接收功能。
CAN节点的基本结构框图如图4所示。
部分微控制器集成有CAN控制器,因此,节点方案有两种。
图4 CAN节点基本结构框图5)CAN差分通信CAN总线的信号传输采用差分通信信号,差分通信具有较强的抗干扰能力。
CAN收发器的差动信号放大器在处理信号时,会用CAN_H数据线的电压减去CAN_L数据上的电压,这两个数据线的电位差可对应两种不同逻辑状态进行编码。
在静止状态时,这两条导线上作用有相同预先设定值,该值称为静电平。
对于CAN驱动数据总线来说,这个值大约为2.5V。
静电平也称为隐性状态,因为连接的所有控制单元均可修改它。
在显性状态时,CAN_H线上的电压值会升高一个预定值(对CAN驱动数据总线来说,这个值至少为1V)。
而CAN_L线上的电压值会降低一个同样值(对CAN驱动数据总线来说,这个值至少为1V)。
于是在CAN驱动数据总线上,CAN_H线就处于激活状态,其电压不低于3.5V (2.5V+1V=3.5V),而CAN_L线上的电压值最多可降至1.5V(2.5V-1V=1.5V)。
因此在隐性状态时,CAN_H线与CAN_L线上的电压差为0V,在显性状态时该差值最低为2V,如图5所示。
如果CAN_H–CAN_L > 2,那么比特为0,为显性;如果CAN_H–CAN_L = 0,那么比特为1,为隐性。
图5 CAN数据线的电平2、CAN总线通信原理当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。
对每个节点来说,无论数据是否是发给自己的,都对其进行接收。
每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。
在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。
当一个站要向其它站发送数据时,该站CPU将要发送的数据和自己的标识符传送给本站的CAN控制器芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。
CAN控制器芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。
每个处于接收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的,以确定是否接收它。
当多个站点同时发送消息时,需要进行总线仲裁,每个控制单元在发送信息时通过发送发送标识符来识别。
所有的控制单元都是通过各自的RX线来跟踪总线上的一举一动并获知总线的状态。
每个发射器将TX线和RX线的状态一位一位地进行比较,采用“线与”机制,“显性”位可以覆盖“隐性”位;只有所有节点都发送“隐性”位,总线才处于“隐性”状态。
CAN是这样来进行调整的:TX信号上加有一个“0”的控制单元的控制单元必须退出总线。
用标识符中位于前部的“0”的个数就可调整信息的重要程度,从而就可保证按重要程度的顺序来发送信息。
标识符中的号码越小,表示该信息越重要,优先级越高。
发送低优先级报文的节点退出仲裁后,在下次总线空闲时重发报文。
三个节点总线仲裁示意图如图6所示。
图6 总线仲裁示意图3、CAN报文帧结构CAN总线报文传输由以下4个不同的帧类型所表示和控制:数据帧:数据帧携带数据从发送器至接收器。