灰色预测法简述
- 格式:doc
- 大小:99.50 KB
- 文档页数:7
灰色预测和时间序列预测的优缺点和应用场景比较灰色预测和时间序列预测是常用的预测分析方法,它们在很多领域都具有广泛的应用。
本文将比较这两个方法的优缺点和应用场景,以期帮助读者更好地理解和使用它们。
一、灰色预测方法灰色预测方法是一种基于信息不完备的小样本预测方法,它可以在数据量较小时对未来趋势进行预测。
它的优点包括:1、适用范围广:灰色预测方法适用于各种经济、社会和科技等领域的短期和中长期预测,对于复杂多变的系统也有较好的适应性。
2、效果显著:灰色预测方法可以针对不平衡数据或缺少有效信息的数据进行预测,准确率较高,在实际应用中表现出较好的效果。
3、计算简单:灰色预测方法原理简单,计算量小,对计算资源的要求较低。
但是,灰色预测方法也存在一些缺点:1、数据需求严格:灰色预测方法对数据要求较高,在数据量不充足的情况下容易出现预测偏差。
2、理论基础不足:灰色预测方法的理论体系相对较弱,缺乏统一的数学架构支撑。
3、易受外部因素影响:灰色预测方法很容易受到外部因素的影响,对于具有较强周期性的数据预测,其效果可能不太理想。
二、时间序列预测方法时间序列预测方法是指将某一现象随时间变化的过程所形成的数值序列作为研究对象,通过对序列的统计特征进行分析来预测未来的趋势。
它的优点有:1、适用性广泛:时间序列预测方法适用于各种领域的数据,并可应用于多种时间序列模型,如ARIMA、ARCH、GARCH等。
2、模型复杂,预测精度高:时间序列预测方法可使用多种复杂模型进行预测,模型优化后可以得到较为精确的预测结果。
3、预测稳定可靠:时间序列预测方法通常采用样本内和样本外检验来验证预测模型的稳定性和可靠性。
但是,时间序列预测方法也存在一些缺点:1、数据需求严格:时间序列预测方法对基础数据的准确性和完整性要求非常高,只有数据质量较高时才能得到准确的结果。
2、影响因素复杂:由于各种外部和内部因素的影响,某些时间序列的预测较为困难。
3、计算资源要求高:时间序列预测方法涉及多个模型、参数和算法,因此需要更高的计算资源和算法优化,计算成本较高。
什么是灰色预测法?灰色预测是就灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
简言之,灰色预测模型是通过少量的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述(模糊预测领域中理论、方法较为完善的预测学分支)。
灰色系统的概念是由邓聚龙教授于1982年提出的,它描述部分信急己知,部分未知介于黑白系统之间的系统。
GM(1,1)模型是灰色理论中较常用的预测方法,它以定性分析为先导,定量与定性结合,对离散序列建立微分方程以及白化方程,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤。
灰色系统通过对原始数据的整理来寻求其变化规律,这是一种就数据寻找数据的现实规律的途径,称为灰色序列的生成。
生成数通过对原始数据的整理寻找数的规律,分为三类:a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。
第7章 灰色预测方法 预测就是借助于对过去的探讨去推测、了解未来。
灰色预测通过原始数据的处理和灰色模型的建立,发现、掌握系统发展规律,对系统的未来状态做出科学的定量预测。
对于一个具体的问题,究竟选择什么样的预测模型应以充分的定性分析结论为依据。
模型的选择不是一成不变的。
一个模型要经过多种检验才能判定其是否合适,是否合格。
只有通过检验的模型才能用来进行预测。
本章将简要介绍灰数、灰色预测的概念,灰色预测模型的构造、检验、应用,最后对灾变预测的原理作了介绍。
7.1 灰数简介7.1.1 灰数一棵生长着的大树,其重量便是有下界的灰数,因为大树的重量必大于零,但不可能用一般手段知道其准确的重量,若用⊗表示大树的重量,便有[)∞∈⊗,0。
是一个确定的数。
海豹的重量在20~25公斤之间,某人的身高在1.8~1.9米之间,可分别记为 []25,201∈⊗,[]9.1,8.12∈⊗ 4. 连续灰数与离散灰数在某一区间内取有限个值或可数个值的灰数称为离散灰数,取值连续地充满某一区间的灰数称为连续灰数。
某人的年龄在30到35之间,此人的年龄可能是30,31,32,33,34,35这几个数,因此年龄是离散灰数。
人的身高、体重等是连续灰数。
5. 黑数与白数当()∞∞-∈⊗,或()21,⊗⊗∈⊗,即当⊗的上、下界皆为无穷或上、下界都为讨论方便,我们将黑数与白数看成特殊的灰数。
6. 本征灰数与非本征灰数本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值、宇宙的总能量、准确到秒或微妙的“年龄”等都是本征灰数。
非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其“代表”的灰数。
我们称此白数为相应灰数的白化值,记为⊗~,并用()a ⊗表示以a 为白化值的灰数。
如托人代买一件价格100元左右的衣服,可将100作为预购衣服价格()100⊗的白化数,记为()100100~=⊗。
从本质上来看,灰数又可分为信息型、概念型、层次型三类。
灰色预测原理及实例
一、灰色预测原理
灰色预测,是指根据动态系统的过去试验数据和实测数据,利用灰色规律进行预测的一种数学方法。
灰色预测的基本思想是:由内在原理和系统的实际运行数据,建立有关系的关于未来时间的数学模型,即所谓的灰色系统模型,从而建立未来状态的预测模型。
二、灰色预测实例
1、灰色模型在汽车行业的应用
汽车行业是一个特殊的行业,其市场受到很多因素的影响,因此,在汽车行业预测中,灰色模型能够很好地发挥其优势。
首先,根据汽车市场的详细统计数据,如汽车生产量、销售量,可以采集过去一定时间段内(如一年、两年)汽车的生产量及销售量等数据,将这些数据经过一定的模型处理,形成一个灰色模型,利用该模型可以预测汽车行业的今后发展趋势。
2、灰色模型在电力行业的应用。
南昌市民用汽车保有量灰色GM(1,1)模型预测灰色预测是一种对含有不确定因素的系统进行预测的方法。
灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。
其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。
灰色模型适合于小样本情况的预测,当然对于大样本数据,灰色模型也可以做,并且数据个数的选择有很大的灵活性。
原始序列X (0):表1 南昌市民用汽车保有量年份 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 南昌市民用汽车保有量(万辆)24.410926.730730.387836.380741.016143.7348.41615763.1第一步:构造累加生成序列X (1); 第二步:计算系数值;通过灰色关联分析软件GM 进行灰色模型拟合求解,得到:α= -0.101624 , μ=25.290111 , 平均相对误差为4.685749%第三步:得出时间响应预测函数模型为:()()858996.248269896.2731101624.01-=+⋅k e k X第四步:进行灰色关联度检验。
真实值:{24.4109,26.7307,30.3878,36.3807,41.0161,43.7300,48.4100,61.0000,57.0000,63.1000} 预测值:{24.4109,29.2310,32.3578,35.8190,39.6504,43.8917,48.5867,53.7839,59.5371,65.9056}计算得到关联系数为: {1,0.906683,0.444273,0.416579,0.82377,0.357133,0.715694,0.843178,0.333333,0.770986} 于是灰色关联度:r=0.661163关联度r=0.661163满足分辨率ρ=0.5时的检验准则r>0.60,关联性检验通过。
数学建模——灰色预测模型灰色预测模型(Grey Forecasting Model)是一种用于预测不确定性数据的数学模型。
它适用于那些缺乏充分历史数据、不具备明显的规律性趋势或周期性的情况。
灰色预测模型基于灰色系统理论,通过分析数据的变化趋势和规律,来进行预测。
该模型在处理少量数据、缺乏趋势规律的情况下,具有一定的优势。
灰色预测模型的基本思想:灰色预测模型基于“白化(Whitening)”和“黑化(Blackening)”的思想,将不确定性数据分为“白色”和“黑色”两部分。
其中,“白色”代表已知数据,具有规律性和趋势,可以进行预测;而“黑色”代表未知数据,缺乏规律,需要进行预测。
通过建立数学模型,将“白色”和“黑色”数据进行融合,得出预测结果。
灰色预测模型的基本步骤:1.建立灰色数列:将原始数据分成“白色”和“黑色”两部分,构建灰色数列。
2.建立灰色微分方程:对“白色”数列进行微分,得到一阶或高阶微分方程。
3.求解微分方程:求解微分方程,得到预测模型的参数。
4.进行预测:利用已知的模型参数,对“黑色”数据进行预测,得出未来的趋势。
示例:用灰色预测模型预测销售量假设你是一家新开设的小型餐厅的经营者,你希望预测未来三个月的月销售量。
然而,你的餐厅刚刚开业不久,历史销售数据有限,且不具备明显的趋势。
这种情况下,你可以考虑使用灰色预测模型来预测销售量。
步骤:1.建立灰色数列:将已知的销售数据分为“白色”(已知数据)和“黑色”(未知数据)两部分。
2.建立灰色微分方程:对“白色”销售数据进行一阶微分,得到灰色微分方程。
3.求解微分方程:根据灰色微分方程的形式,求解微分方程,得到模型的参数。
4.进行预测:利用求解得到的模型参数,对“黑色”销售数据进行预测,得到未来三个月的销售量趋势。
这个例子中,灰色预测模型可以帮助你基于有限的历史销售数据,预测未来的销售趋势。
虽然该模型的精确度可能不如其他更复杂的方法,但在缺乏充足数据时,它可以提供一种有用的预测工具。
python实现灰⾊预测GM(1,1)模型灰⾊系统预测灰⾊预测公式推导来源公式推导连接关键词:灰⾊预测 python 实现灰⾊预测 GM(1,1)模型灰⾊系统预测灰⾊预测公式推导⼀、前⾔ 本⽂的⽬的是⽤Python和类对灰⾊预测进⾏封装⼆、原理简述1.灰⾊预测概述 灰⾊预测是⽤灰⾊模型GM(1,1)来进⾏定量分析的,通常分为以下⼏类: (1) 灰⾊时间序列预测。
⽤等时距观测到的反映预测对象特征的⼀系列数量(如产量、销量、⼈⼝数量、存款数量、利率等)构造灰⾊预测模型,预测未来某⼀时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。
通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰⾊模型预测事物未来变动的轨迹。
(4) 系统预测,对系统⾏为特征指标建⽴⼀族相互关联的灰⾊预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。
上述灰⾊预测⽅法的共同特点是: (1)允许少数据预测; (2)允许对灰因果律事件进⾏预测,例如: 灰因⽩果律事件:在粮⾷⽣产预测中,影响粮⾷⽣产的因⼦很多,多到⽆法枚举,故为灰因,然⽽粮⾷产量却是具体的,故为⽩果。
粮⾷预测即为灰因⽩果律事件预测。
⽩因灰果律事件:在开发项⽬前景预测时,开发项⽬的投⼊是具体的,为⽩因,⽽项⽬的效益暂时不很清楚,为灰果。
项⽬前景预测即为灰因⽩果律事件预测。
(3)具有可检验性,包括:建模可⾏性的级⽐检验(事前检验),建模精度检验(模型检验),预测的滚动检验(预测检验)。
2.GM(1,1)模型理论 GM(1,1)模型适合具有较强的指数规律的数列,只能描述单调的变化过程。
已知元素序列数据:做⼀次累加⽣成(1-AGO)序列:其中,令为的紧邻均值⽣成序列:其中,建⽴GM(1,1)的灰微分⽅程模型为:其中,为发展系数,为灰⾊作⽤量。
设为待估参数向量,即,则灰微分⽅程的最⼩⼆乘估计参数列满⾜其中再建⽴灰⾊微分⽅程的⽩化⽅程(也叫影⼦⽅程):⽩化⽅程的解(也叫时间响应函数)为那么相应的GM(1,1)灰⾊微分⽅程的时间响应序列为:取,则再做累减还原可得即为预测⽅程。
灰色预测法1.介绍灰色预测就是灰色系统所做的预测,灰色系统理论是我国著名学者邓聚龙教授创立的一种兼具软硬科学特性的新理论。
灰色系统的具体含义就是:部分信息已知,部分信息未知的某一系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素有很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
2.适用问题灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
比如说人口预测、气象预报、初霜预测、灾变预测(如地震时间的预测)、数列预测(如对消费物价指数的预测)。
灰色预测模型所需要的数据量比较少,预测比较准确,精确度比较高。
样本分布不需要有规律性,计算简便,检验方便。
灰色GM(1,1) 模型是指运用曲线拟合和灰色系统理论进行预测的方法,对历史数据有很强的依赖性,没有考虑各个因素之间的联系,所以误差偏大,只适合做中长期的预测,不适合长期预测。
3.数学方法核心步骤3.1数据的检验与处理首先,为了确保建模方法的可行性,需要对抑制数据作必要的检验处理,设参考数据为(0)(0)(0)(0)((1),(2),...,())x x x x n =,计算数列的级比(0)(0)(1)().2,3,...,()x k k k n x k λ-== 如果所有的级比()k λ 都在可容覆盖2212(,)n n e e -++ 内,则数列(0)x 可以作为模型GM(1,1)的数据进行灰色预测,否则,需要对(0)x 做必要地变换处理,使其落入可容覆盖内,即取适当的c ,做平移变换 (0)(0)()(),1,2,...,y k x k c k n =+=则是数列(0)(0)(0)(0)()((1),(2),...,())y k y y y n =的级比(0)(0)(1)(),2,3,...,()y y k k X k n y k λ-=∈= 3.2 建立模型按照下面的办法建立模型GM (1,1)(1) 由上面的叙述知道参考数据列为(0)(0)(0)(0)((1),(2),...,())x x x x n =,对其做一次累加(AGO )生成数列(1)x(1)(1)(1)(1)(1)(1)(0)(1)(0)((1),(2),...,())((1),(1)(2),...,(1)())x x x x n x x x x n x n ==+-+其中(1)(0)1()()(1,2,...,)k i x k x i k n ===∑ 。
灰色预测法原理及解题步骤一、类型数列预测——某现象随时间的顺延而发生的变化所做的预测灾变预测——对发生灾害或异常突变时间可能发生的时间预测系统预测——对系统中众多变量间相互协调关系的发展变化所进行的预测拓扑预测——将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。
注意:使用方法前一定要在段前作一个引子,连接问题分析和数据特点,以下便是:通过对已知数据的分析,随着时间的变化,排污量一直呈增长趋势,并且增长的很快。
在这里利用灰色预测模型对()进行预测。
通过对数据的分析,传统的数理统计预测方法往往需要足够多的数据,而本问题的数据给出的数据偏小,如果采用传统的方法误差太大。
根据上述的特点可采用灰色预测模型。
二、灰色预测具体步骤1》检验处理数据,级比必须满足A、如果不全属于,则要做必要的变换处理(如取适当的常数C,作平移变换),使其落入区域中。
B、若A不成立,则建立GM(1,1)模型建立GM(1,1)模型(1)一次累加生成数列AGO,(目的是弱化原始时间序列的随机性,增加其稳定程度)(2)求均值数列(3)建立GM(1,1)模型相应的白化微分方程其中:α称为发展灰数;μ称为内生控制灰数。
(4)求的参数估计a、b(最小二乘法)(5)给出累加时间数列预测模型(6)做差得到原始预测值三、检验预测值(1)残差检验(2)级比偏差值检验1》参考数据计算出级比,再由发展系数a,求出相应级比偏差若ρ(k)<0.2,则达到一般要求;若ρ(k)<0.1,则效果好程序实现:采用EXCEl的方法实现灰色预测。
2013-2-2 于北华大学电子宋方雷。
灰色预测方法实验报告实验报告:灰色预测方法一、实验目的通过使用灰色预测方法,对某个问题进行预测,并分析预测结果的准确性。
二、实验原理灰色预测方法是一种基于数据的预测方法,用于在缺乏足够数据的情况下对未来趋势进行预测。
该方法主要基于灰色系统理论,通过对数据序列进行灰色分析,找出其内在规律,并建立预测模型。
三、实验步骤1. 收集相关数据:首先,需要收集与要预测的问题相关的数据,包括历史数据和现有数据。
2. 数据预处理:对收集到的数据进行清洗和处理,确保数据的准确性和可靠性。
3. 灰色分析:使用灰色分析方法对数据进行处理,包括建立灰色模型、计算关联度等步骤。
4. 模型建立:基于灰色分析的结果,建立预测模型。
5. 验证模型:使用部分历史数据进行模型验证,评估模型的准确性和可靠性。
6. 进行预测:根据建立的模型,对未来一段时间内的数据进行预测。
7. 分析结果:对预测结果进行分析,并评估预测的准确性和可行性。
四、实验结果通过实验,我们成功应用了灰色预测方法对某个问题进行了预测,并得到了如下结果:1. 在灰色分析过程中,我们找到了数据序列的内在规律,并建立了预测模型。
2. 模型验证结果显示,该模型在部分历史数据上具有较高的准确性和可靠性。
3. 根据建立的模型,我们对未来一段时间内的数据进行了预测,并取得了一定的准确性。
五、实验结论通过实验,我们验证了灰色预测方法的有效性和可行性,该方法可以在缺乏足够数据的情况下进行预测,并取得一定的准确性。
在实际应用中,我们可以根据实际问题的特点,选择适当的灰色预测方法,并进行合理的预测。
六、实验总结通过本次实验,我们对灰色预测方法有了更深入的了解,并且验证了其在预测问题上的有效性。
实验过程中,我们还需要注意数据的质量和预处理的准确性,以及模型的验证过程,确保预测结果的准确性和可靠性。
灰色预测方法在实际应用中有很大的潜力,可以帮助我们做出合理的预测和决策。
运用灰色预测法测算我市“十一五”时期
人才数量
一、基本原理
系统是指相互依赖的两个或两个以上要素所构成的具有特定功能的有机整体。
系统可以根据其信息的清晰程度,分为白色、黑色和灰色系统。
白色系统是指信息完全清晰可见的系统;黑色系统是指信息完全未知的系统;灰色系统是介于白色和黑色系统之间的系统,即部分信息已知、部分信息未知的系统。
宇宙间大量存在的是灰色系统,严格的说,灰色系统是绝对的,而白色和黑色系统则是相对的。
运用灰色系统理论、通过建立灰色模型所进行的预测即为灰色预测。
对经济、社会、农业等系统的预测属于本征性灰色系统的预测。
因为这类系统没有物理原型,不清楚系统的作用机制,很难判断信息的完备性,难以对系统关系、结构作精确描述,人们只能凭逻辑推理、凭某种观念意识、凭某种准则对系统的结果、关系进行论证,然后再建立某种模型,这些模型充其量只能看作是原系统的代表、同构。
灰色系统不同于模糊系统,模糊系统内涵明确而外延模糊,灰色系统外延明确而内涵不为人们所掌握;灰色系统是基于关联度收敛原理、生成数、灰导数、灰微分方程等的观点和方法,通过建立灰色方程型模型所进行的预测,它具有如下的特点:
(一)灰色模块建模,而不直接用原始数据序列。
在建模前,先对原始数据进行整理和处理,使之呈现一定的规律性,这种方法叫做生成;经过一定方式生成的新序列称之为“模块”这样做的目的是为了消除原始序列的随机性,使上下波动的时间序列转变成单调升、并带有线性或指数规律的序列。
(二)建立微分方程的动态模型。
这种建模方法为本征性灰色系统的实体化、物理化找到了途径,把自然科学的试验手段移植到抽象系统。
(三)关联分析代替回归分析。
灰色系统主张按机理、按发展变化态势作特征分析,按发展态势建立关联的测度,研究关联序,以研究生成函数的逼近度、检验预测精度等。
二、灰色简单模型
现行的比较常用的灰色模型有:灰色简单模型、灰色新还原模型、灰色残差模型、灰色新还原残差模型、DGM模型和费尔哈斯模型。
人才发展会受到不确定因素的影响,且人才在发展中部分信息是已知的,部分信息是未知的。
所以,可以采用灰色模型预测分析“十一五”期间的北京人才数量情况。
以下先介绍最简单的也最常用的灰色模型,即灰色简单模型,简称为GM(1,1)模型。
(一)灰色微分方程
在介绍一般的灰色模型前,我们先介绍灰色微分方程。
灰色系统理论通过对一般微分方程的深刻剖析定义了系列的灰导数,从而使我们能够利用离散数据系列建立近似的微分方程模型:
u ax dt
dx
=+
(1-1)
其中
dt
dx 为x 的导数,x 为dt
dx 的背景值;a ,u 为参数。
(二)GM (1,1)模型
灰色简单模型GM (1,1)表示一阶的,一个变量的微分预测模型,用于时间序列预测的是其离散形式的模型。
设原始系列为
其累加生成序列X (1)为:
对一阶生成数列x (1),建立GM (1,1)模型
()
()u ax dt
dx =+11 (1-2)
由导数的定义有
t
t x t t x dt dx t ∆-∆+=→∆)
()(lim
0,因为一般预测的系列都在时间上是离散的,所以我们以离散的形式表示,则有: 又由于离散的关系,我们取x (1)(k )为x (1)(k )和x (1)(k-1)的均值。
于是我们可以把公式(1-2)的微分方程表示为如下的离散方程:
u k az k x =+)()()1()0(
(1-3)
其中),,3,2(;2/)]1()([)()1()1()1(n k k x k x k z =-+=。
称(1-3)式为GM(1,1)模型,而把公式(1-2)的方程称为(1-3)的白化方程。
这样可以得到如下的方程组:
⎪⎪⎩
⎪⎪⎨
⎧=+=+=+u n az n x u
az x u az x )()()3()3()2()2()1()0()
1()0()1()0(
(1-4) (三).模型参数求解
式(1-1)中,a 、u 为待估参数,-a 为发展灰数,反映了)1(ˆX 及)0(ˆX 的发展态势;u 为灰色作用量是从背景值挖掘出来的数据,
它反映数据变化的关系,其确切内涵是灰的。
灰色作用量是内涵外延化的具体体现,它的存在是区别灰色建模与一般输入输出建
模的分水岭。
将两个待估参数表示为向量形式:T u a a
],[ˆ=。
对于(1-2)的方程组,用最小二乘法求解,和一元线性回归的参数估计方法相同,可得
()
Y B B B a
T T 1
ˆ-= (1-5)
式中:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢
⎢⎣⎡=)()3()2()0()0()0(n x x x Y ,⎥⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎣⎡---=1)
(1)3(1)
2()1()1()1(n z z z B (四)GM (1,1)预测
在求出模型的参数后,下一步的工作就是进行预测了。
式(1-2)即GM (1,1)的白化方程的解为:
()()()()a
u
e a u x t x at +-=-]0[11
(1-6)
它的离散形式
()()()()),,2,1(;]0[1ˆ11n k a
u
e a u x k x
ak =+-=+- (1-7)
即为GM (1,1)方程的时间响应系列。
一般有x (1)(0)=x (0)(1),则:
()()()()),,2,1(;]1[1ˆ01n k a
u
e a u x k x
ak =+-=+- (1-8)
还原得:
()()()()),,2,1(;]1)[1(1ˆ00n k e a
u
x e k x
ak a =--=+- (1-9)
这就是灰色简单模型的预测公式。
其中待定参数()Y B B B a
T T 1
ˆ-= 三、“十一五”时期北京地区人才发展预测报告 (一)北京地区人才总量预测
到2004年底,按照原有人才标准,北京地区具有中专及以上学历或专业技术职称的各类人才达到220余万人。
如表1所示: 表1 原有人才标准下2001年-2004年人才总量情况 “十一五”期间(2005年至2010年)各年的人才总量可以通
过预测得出,利用灰色模型预测未来北京地区人才总量。
将2001-2004年各年的人才总量186.0万人,189.5万人,194.5万
人,220.2万人作为一组灰色数列。
设有原始统计数列X(0)= {}
186,189.5,194.5,220.2
第一步,累加生成1-AGO系列行x(1),并计算邻近均值系列z(1)
因此x(1)= {}
186,375.9,570.4,790.6
确定数据矩阵Y=
189.5
194.5
220.2
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎣⎦
, B=
281.01
473.21
680.51
-⎡⎤
⎢⎥
-⎢⎥
⎢⎥
-
⎢⎥
⎣⎦
计算模型参数
a=-0.0284,b=177.3662
因为x(1)(k+1)=[x(0)(1)-b/a]*e-ak+b/a,所以计算得出
x(1)(k+1)=(180+177.3662/0.0284)*e0.0284k-177.3662/0.0284
这就是最终得出的模糊预测模型公式
当k=10以及K=9时,分别代入上面的公式,计算得出x(1)(11)和x(1)(10)的值。
以,分别为2290.0648和2054.8992通过累减得到原始数列,x(1)(11)-x(1)(10)计算得出x(0)(10)的值235.1656,也就是2010年人才总量的预测计算数值。
数值如下:(其他值同法计算得出)
规划专栏二预测材料(原始数据来源于2000-2004年度北京市统计年鉴)1.科学家和工程师指具有中高级技术职称人员与无中高级技术职称的大学本科及以上学历人员
2.各类人才中具有大学本科以上学历的人数在人才总量所占比例到2010年预计达到60%左右,说明“十一五”时期各类专业技术人才平均学历将接近大学本科。