模电总结复习资料 模拟电子技术基础
- 格式:doc
- 大小:581.50 KB
- 文档页数:22
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7.PN结*PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
*PN结的单向导电性---正偏导通,反偏截止。
8.PN结的伏安特性二.半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2)等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴(正偏),二极管导通(短路);若V阳<V阴(反偏),二极管截止(开路)。
三.*三种模型四.五.六.七.微变等效电路法八. 稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电基础知识总结模拟电子技术(模电)是电子工程的重要基础学科,它研究的是电子元件与电路的工作原理和运行规律。
掌握模电的基础知识对于电子工程师来说至关重要。
本文将对模电的基础知识进行总结,希望能给读者提供一些帮助。
一、电路基础知识在学习模电之前,我们首先需要掌握一些电路的基础知识。
电路是电子工程中最基本的组成单元,它由电源、电阻、电容、电感等元件组成。
在电路中,电流和电压是重要的物理量。
电流表示电子在电路中的流动情况,而电压表示电子在电路中的能量转换。
二、放大器放大器是模电中一类重要的电子元件。
放大器的作用是将输入信号放大,以便输出信号具有较高的幅度。
常见的放大器有三种基本类型:电压放大器、电流放大器和功率放大器。
放大器有许多重要的性能指标,如增益、输入电阻、输出电阻等。
学习模电的过程中,我们需要熟悉这些性能指标的定义和计算方法。
三、滤波器滤波器是模电中用于剔除或改变信号中某些频率分量的电路。
滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器四种类型。
在实际应用中,我们经常需要使用滤波器来对信号进行处理。
了解滤波器的原理和性能对于电路设计至关重要。
四、振荡器振荡器是一种能够产生连续波形信号的电路。
在模电中有两种常见的振荡器:正弦波振荡器和方波振荡器。
振荡器的核心是一个反馈回路,该回路会使得输入信号被放大,并且以振荡的形式反馈给输入端。
振荡器在通信系统、计算机等领域有广泛的应用,掌握振荡器的原理和设计方法是模电学习的重要内容。
五、运算放大器运算放大器(Operational Amplifier)是模电中一种重要的集成电路。
它具有高增益、高输入阻抗和低输出阻抗的特点,在模拟电路中有广泛的应用。
运算放大器可以用于各种电路设计,如放大器、积分器、微分器和比较器等。
学习运算放大器的工作原理和应用是模电学习的核心内容。
六、模电实验模电实验是巩固和应用所学知识的重要环节。
通过实验,我们可以观察电路的实际运行情况,提高动手实践的能力。
模拟电路基础复习资料一、填空题1. 在P型半导体中, 多数载流子是(空隙), 而少数载流子是(自由电子)。
2. 在N型半导体中, 多数载流子是(电子), 而少数载流子是(空隙)。
3. 当PN结反向偏置时, 电源的正极应接( N )区, 电源的负极应接( P )区。
4.当PN结正向偏置时, 电源的正极应接( P )区, 电源的负极应接( N )区。
5. 为了保证三极管工作在放大区, 应使发射结(正向)偏置, 集电结(反向)偏置。
6.根据理论分析, PN结的伏安特性为,其中被称为(反向饱和)电流, 在室温下约等于( 26mV )。
7. BJT管的集电极、基极和发射极分别与JFET的三个电极(漏极)、(栅极)和(源极)与之相应。
8. 在放大器中, 为稳定输出电压, 应采用(电压取样)负反馈, 为稳定输出电流, 应采用(电流取样)负反馈。
9. 在负反馈放大器中, 为提高输入电阻, 应采用(串联-电压求和)负反馈, 为减少输出电阻, 应采用(电压取样)负反馈。
10.放大器电路中引入负反馈重要是为了改善放大器. 的电性. )。
11. 在BJT放大电路的三种组态中, (共集电极)组态输入电阻最大, 输出电阻最小。
(共射)组态即有电压放大作用, 又有电流放大作用。
12.在BJT放大电路的三种组态中,.共集电. )组态的电压放大倍数小于1,.共.)组态的电流放大倍数小于1。
13. 差分放大电路的共模克制比KCMR=(), 通常希望差分放大电路的共模克制比越(大)越好。
14. 从三极管内部制造工艺看, 重要有两大特点, 一是发射区(高掺杂), 二是基区很(薄)并掺杂浓度(最低)。
15.在差分放大电路中发射极接入长尾电阻后, 它的差模放大倍数将(不变), 而共模放大倍数将(减小), 共模克制比将(增大)。
16. 多级级联放大器中常用的级间耦合方式有(阻容), (变压器)和(直接)耦合三种。
17. 直接耦合放大器的最突出的缺陷是(零点漂移)。
模电考前知识点总结模拟电子技术主要研究内容包括模拟电路的设计和分析、模拟信号的处理和传输、模拟电子系统的设计和调试等。
在模拟电子技术中,最基本的理论是基于几种基本电路元件,如二极管、三极管等,建立各种电路方程模型,进而解决各种电子电路问题。
在学习模拟电子技术的过程中,有一些知识点是必须要掌握的。
以下是一些常见的模拟电子技术知识点总结:一、基本电路分析方法1. 谈论母线电力超过220伏特进行电压升降的原理和方法。
2. 需要了解R-L,R-C 串并联电路的等效变换原理及实际应用。
3. 掌握电容电压跟踪积分电路和非积分电路的基本工作原理和参数设计方法。
4. 对于理想电感,理解它在激励下的等效原理。
5. 了解关于画感性理想电感变压器、绕组波音特性原理。
以上是一些基本电路分析方法的知识点总结。
在模拟电子技术中,学生需要通过理论学习和实践操作,熟练掌握这些方法,才能更好地理解和应用模拟电子技术。
二、线性集成电路线性集成电路是模拟电子技术中非常重要的一部分,主要包括放大器、滤波器、示波器、振荡器、计算和计算机等。
掌握了线性集成电路基本的分析与设计方法,可以更好地应用模拟电子技术。
1. 熟悉主要的线性集成电路,了解其特性和使用方法。
2. 了解基于 MOS 器件的模拟 IC 结构、工作原理和指标。
会设计基于 MOS 器件的模拟集成电路电路图。
以上是一些线性集成电路方面的知识点总结。
掌握了这些知识之后,可以更好地理解和应用模拟电子技术,从而更好地解决实际电路问题。
三、信号处理技术在模拟电子技术中,信号处理技术也是一个重要的方面。
掌握了信号处理技术相关知识后,能更好地理解和应用模拟电子技术。
1. 掌握基本信号的表示方法, 变换,系统特性的描述(零-极点,频域与时域的转换)2. 会进行系统励波,知道辨别各种非线性工作特性3. 了解控制工程与信号处理之间的联系和区别4. 实现对系统行为与性能的评估、设计,调节;5. 了解基于 DSP 的数字控制技术,了解模拟电子技术的近期发展,结合数字技术提出新的功能要求。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯洁的具有单晶体结构的半导体。
4. 两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
表达的是半导体的掺杂特性。
*P型半导体: 在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。
*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为,锗材料约为。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管,锗管。
*死区电压------硅管,锗管。
3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
1〕图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的上下: 假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模电总结复习资料-模拟电子技术基础第一章半导体二极管一.半导体的基础知识1.*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
2.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
3.PN结*PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
*PN结的单向导电性---正偏导通,反偏截止。
4.PN结的伏安特性二.半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
分析方法------将二极管断开,分析二极管两端电位的高低:若V 阳>V阴(正偏),二极管导通(短路);若V阳u-时,uo=+Uom当u+2.当AF=0时,表明反馈效果为零。
3.当AF<0时,Af升高,这种反馈称为正反馈。
4.当AF=-1时,Af→∞。
放大器处于“自激振荡”状态。
二.反馈的形式和判断1.反馈的范围----本级或级间。
2.反馈的性质----交流、直流或交直流。
直流通路中存在反馈则为直流反馈,交流通路中存在反馈则为交流反馈,交、直流通路中都存在反馈则为交、直流反馈。
3.反馈的取样----电压反馈:反馈量取样于输出电压;具有稳定输出电压的作用。
(输出短路时反馈消失)电流反馈:反馈量取样于输出电流。
具有稳定输出电流的作用。
(输出短路时反馈不消失)4.反馈的方式-----并联反馈:反馈量与原输入量在输入电路中以电流形式相叠加。
Rs越大反馈效果越好。
反馈信号反馈到输入端)串联反馈:反馈量与原输入量在输入电路中以电压的形式相叠加。
Rs越小反馈效果越好。
反馈信号反馈到非输入端)5.反馈极性-----瞬时极性法:(1)假定某输入信号在某瞬时的极性为正(用+表示),并设信号的频率在中频段。
(2)根据该极性,逐级推断出放大电路中各相关点的瞬时极性(升高用+表示,降低用-表示)。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。
其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。
2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。
常见的信号形式有直流信号、交流信号、脉冲信号等。
3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。
常见的放大器有运放放大器、晶体管放大器等。
4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。
5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。
调制解调技术是模拟电子技术中的重要应用之一。
二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。
常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。
2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。
常见的电容电路包括RC电路、LC电路、多级滤波器等。
3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。
常见的电感电路包括RLC电路、振荡电路、滤波器等。
4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。
5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。
常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。
6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。
常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。
7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。
模电基础知识总结导言模拟电子技术(Analog Electronics)是电子学的一个重要分支,包括分析和设计各种电子电路,以便于对在电子系统中表现为连续值的信号进行处理。
模拟电子技术是电子技术的核心内容之一,广泛应用于各种电子系统中。
本文将对模拟电子技术的基础知识进行总结。
电路基础电压、电流与电阻•电压:电荷的偏移量,单位为伏特(V)。
•电流:电荷单位时间通过导体的速度,单位为安培(A)。
•电阻:导体抵抗电流的能力,单位为欧姆(Ω)。
电路定律•欧姆定律: $ V = IR $•基尔霍夫定律:–基尔霍夫电压定律:节点电压之和为零。
–基尔霍夫电流定律:分支电流之和为零。
放大器放大器概述放大器是一种电子电路,用于增加信号的幅度。
放大器可以分为电压放大器、电流放大器和功率放大器等类型。
放大器特性•增益(Gain):输出信号幅度与输入信号幅度的比值。
•带宽(Bandwidth):放大器能够放大信号的频率范围。
•输入/输出阻抗:放大器的输入和输出接口的阻抗匹配对信号传输至关重要。
滤波器滤波器概述滤波器是一种能够选择特定频率信号的电路。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器设计•利用电容和电感可以设计无源RC和RL滤波器。
•主动滤波器使用放大器来增强滤波效果。
•数字滤波器基于离散时间信号进行设计。
零件及器件二极管与晶体管•二极管:具有单向导电特性,用于整流和电压调节。
•晶体管:根据不同类型(NPN/PNP),可作为放大器、开关或振荡器使用。
集成电路•集成电路(IC):将多个电子元器件集合在一起形成的整体,方便应用到复杂的电路中。
结论本文对模拟电子技术领域的基础知识进行了总结,涵盖了电路基础、放大器、滤波器和常见零部件等内容。
这些基础知识是深入理解模拟电子技术的关键,也是进行电路设计和分析的基石。
希望读者通过本文的学习,能够对模拟电子技术有更深入的了解。
以上是本文对模拟电子基础知识的总结,希望对您有所帮助。
(完整版)模拟电子技术基础总结第一章晶体二极管及应用电路一、半导体知识1.本征半导体·单质半导体材料是具有4价共价键晶体结构的硅(Si)和锗(Ge)(图1-2)。
前者是制造半导体IC的材料(三五价化合物砷化镓GaAs 是微波毫米波半导体器件和IC 的重要材料)。
·纯净(纯度>7N)且具有完整晶体结构的半导体称为本征半导体。
在一定的温度下,本征半导体内的最重要的物理现象是本征激发(又称热激发或产生)(图1-3)。
本征激发产生两种带电性质相反的载流子——自由电子和空穴对。
温度越高,本征激发越强。
+载流子。
空穴导电的本质是价电子依次填补本征晶·空穴是半导体中的一种等效q+电荷的空位宏观定向运动(图1-4)。
格中的空位,使局部显示q·在一定的温度下,自由电子与空穴在热运动中相遇,使一对自由电子和空穴消失的现象称为载流子复合。
复合是产生的相反过程,当产生等于复合时,称载流子处于平衡状态。
2.杂质半导体·在本征硅(或锗)中渗入微量5价(或3价)元素后形成N型(或P型)杂质半导体(N型:图1-5,P型:图1-6)。
·在很低的温度下,N型(P型)半导体中的杂质会全部电离,产生自由电子和杂质正离子对(空穴和杂质负离子对)。
·由于杂质电离,使N型半导体中的多子是自由电子,少子是空穴,而P型半导体中的多子是空穴,少子是自由电子。
·在常温下,多子>>少子(图1-7)。
多子浓度几乎等于杂质浓度,与温度无关;两少子浓度是温度的敏感函数。
·在相同掺杂和常温下,Si的少子浓度远小于Ge的少子浓度。
3.半导体中的两种电流在半导体中存在因电场作用产生的载流子漂移电流(这与金属导电一致);还存在因载流子浓度差而产生的扩散电流。
4.PN结·在具有完整晶格的P型和N型材料的物理界面附近,会形成一个特殊的薄层——PN结(图1-8)。
模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。
下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。
2.信号描述与频域分析:时间域与频域的关系。
傅里叶级数和傅里叶变换的基本概念和应用。
3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。
4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。
二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。
2.放大器的稳定性:稳态稳定性和瞬态稳定性。
3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。
4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。
5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。
三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。
2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。
3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。
4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。
四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。
2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。
3.双向可调电源的控制方式:串行控制和并行控制。
五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。
2.滤波器的频率响应特性:通频带、截止频率、衰减量。
3.滤波器的传输函数:频率选择特性、阶数选择。
4.滤波器的实现方法:RC、RL、LC和电子管等。
六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。
2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。
3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。
模拟电子技术基础知识一、模拟电子技术基础- -模拟信号与模拟电路1、模拟信号我们将连续性的信号称为模拟信号,而将离散型的信号称为数字信号。
2、模拟电路模拟电路是对模拟信号进行处理的电路,其最基本的处理是对信号的放大,含有功能和性能各异的放大电路。
二、模拟电子技术基础- -电子信息系统的组成电子信息系统由信号的提取、信号的预处理、信号的加工和信号的驱动与执行四部分构成,如下列图所示。
三、模拟电子技术基础- -半导体1、基本概念导体:极易导电的物体;绝缘体:几乎不导电的物体;半导体:导电性介于导体和绝缘体之间的物质;2、本征半导体共价键:在硅和锗的结构中,每个原子与其相邻的原子之间形成共价键,共用一对价电子;自由电子:由于热运动,具有足够能量而摆脱共价键束缚的价电子;空穴:由于自由电子的产生,使得共价键中产生的空位置;复合:自由电子与空穴相碰同时消逝的现象;载流子:运载电荷的粒子;导电机理:在本征半导体中,电流包括两部分,一部分是自由电子移动产生的电流,另一部分是由空穴移动产生的电流,因此,本征半导体的导电技能取决于载流子的浓度。
温度越高,载流子浓度越高,本征半导体导电技能越强。
3、本征半导体共价键:在硅和锗的结构中,每个原子与其相邻的原子之间形成共价键,共用一对价电子;自由电子:由于热运动,具有足够能量而摆脱共价键束缚的'价电子;空穴:由于自由电子的产生,使得共价键中产生的空位置;复合:自由电子与空穴相碰同时消逝的现象;载流子:运载电荷的粒子;导电机理:在本征半导体中,电流包括两部分,一部分是自由电子移动产生的电流,另一部分是由空穴移动产生的电流,因此,本征半导体的导电技能取决于载流子的浓度。
温度越高,载流子浓度越高,本征半导体导电技能越强。
电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。
在模拟电路中,电压和电流可以在一定范围内取任意值。
这是理解模拟电路的关键起点。
二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。
当正向偏置时,电流容易通过;反向偏置时,电流极小。
二极管常用于整流电路,将交流转换为直流。
2、三极管三极管分为 NPN 型和 PNP 型。
它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。
三极管在放大电路中应用广泛。
3、场效应管场效应管分为结型和绝缘栅型。
它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。
三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。
2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。
3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。
四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
1、理想运算放大器特性具有“虚短”和“虚断”的特点。
“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。
2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。
五、反馈电路反馈可以改善放大器的性能。
1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。
负反馈能稳定放大倍数、改善频率特性等。
2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。
六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。
1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。
模电总结复习资料模拟电⼦技术基础第⼀章半导体⼆极管⼀.半导体的基础知识1.半导体---导电能⼒介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流⼦----带有正、负电荷的可移动的空⽳和电⼦统称为载流⼦。
5.杂质半导体----在本征半导体中掺⼊微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺⼊微量的三价元素(多⼦是空⽳,少⼦是电⼦)。
*N型半导体: 在本征半导体中掺⼊微量的五价元素(多⼦是电⼦,少⼦是空⽳)。
6. 杂质半导体的特性*载流⼦的浓度---多⼦浓度决定于杂质浓度,少⼦浓度与温度有关。
*体电阻---通常把杂质半导体⾃⾝的电阻称为体电阻。
*转型---通过改变掺杂浓度,⼀种杂质半导体可以改型为另外⼀种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截⽌。
8. PN结的伏安特性⼆. 半导体⼆极管*单向导电性------正向导通,反向截⽌。
*⼆极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析⽅法------将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳1)图解分析法该式与伏安特性曲线的交点叫静态⼯作点Q。
2) 等效电路法直流等效电路法*总的解题⼿段----将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳*三种模型微变等效电路法三. 稳压⼆极管及其稳压电路*稳压⼆极管的特性---正常⼯作时处在PN结的反向击穿区,所以稳压⼆极管在电路中要反向连接。
第⼆章三极管及其基本放⼤电路⼀. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。
模电基本知识点总结一、基本电子元件在模拟电子技术中,常用的基本电子元件包括电阻、电容、电感和二极管、晶体管等。
下面我们来介绍一下这些基本电子元件的特性和应用。
1. 电阻电阻是用来限制电流的一种电子元件,它的电阻值用欧姆(Ω)来表示。
电阻的大小取决于材料的电阻率和尺寸。
在实际电路中,电阻通常用来分压、限流、接地等。
电阻的连接方式有串联和并联两种。
2. 电容电容是用来存储电荷的一种电子元件,它的容量用法拉得(F)来表示。
电容的存储能力取决于材料的介电常数和结构。
在实际电路中,电容通常用来滤波、隔直、储能等。
电容的连接方式有串联和并联两种。
3. 电感电感是用来储存能量的一种电子元件,它的电感值用亨利(H)来表示。
电感的大小取决于线圈的匝数和磁芯的材料。
在实际电路中,电感通常用来滤波、隔交、振荡等。
电感的连接方式有串联和并联两种。
4. 二极管二极管是一种非线性元件,它的特性是只允许电流单向通过。
二极管的主要作用是整流、限流、反向保护等。
常见的二极管有硅二极管、锗二极管、肖特基二极管等。
5. 晶体管晶体管是一种半导体器件,它主要有三个端子:发射极、基极和集电极。
晶体管有两种类型:NPN型和PNP型。
晶体管可以作为信号放大、开关、振荡等。
常见的晶体管有通用型晶体管、场效应晶体管、双极型晶体管等。
二、放大器放大器是模拟电子电路中起放大作用的重要器件,其作用是放大输入信号的幅度,以便驱动负载。
根据放大器的工作方式和放大电路的结构,放大器大致可以分为三类:电压放大器、电流放大器和功率放大器。
1. 电压放大器电压放大器是将输入信号的电压放大到较大的幅度,以便驱动负载。
常见的电压放大器有共射放大器、共集放大器、共源放大器等。
这些电压放大器基本上由晶体管、耦合电容、电阻等元件组成。
2. 电流放大器电流放大器是将输入信号的电流放大到较大的幅度,以便驱动负载。
常见的电流放大器有共基放大器、共漏放大器、共栅放大器等。
这些电流放大器基本上由晶体管、耦合电容、电阻等元件组成。
第一章半导体二极管一。
半导体的基础知识1。
半导体—--导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性———光敏、热敏和掺杂特性。
3。
本征半导体-—--纯净的具有单晶体结构的半导体。
4. 两种载流子—--—带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体————在本征半导体中掺入微量杂质形成的半导体.体现的是半导体的掺杂特性.*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度--—多子浓度决定于杂质浓度,少子浓度与温度有关.*体电阻-——通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体.7。
PN结* PN结的接触电位差---硅材料约为0。
6~0.8V,锗材料约为0。
2~0。
3V。
* PN结的单向导电性——-正偏导通,反偏截止。
8. PN结的伏安特性二。
半导体二极管*单向导电性--——-—正向导通,反向截止.*二极管伏安特性-———同PN结。
*正向导通压降---——-硅管0.6~0。
7V,锗管0。
2~0。
3V.*死区电压——--—-硅管0.5V,锗管0。
1V。
3.分析方法-——-——将二极管断开,分析二极管两端电位的高低:若 V阳〉V阴(正偏),二极管导通(短路);若 V阳〈V阴(反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2)等效电路法➢直流等效电路法*总的解题手段————将二极管断开,分析二极管两端电位的高低:若 V阳〉V阴( 正偏),二极管导通(短路);若 V阳〈V阴(反偏 ),二极管截止(开路)。
*三种模型➢微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性-—-正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
第二章三极管及其基本放大电路一。
三极管的结构、类型及特点1。
类型—--分为NPN和PNP两种。
2。
特点—-—基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。
二。
三极管的工作原理1. 三极管的三种基本组态2. 三极管内各极电流的分配*共发射极电流放大系数(表明三极管是电流控制器件式子称为穿透电流。
3。
共射电路的特性曲线*输入特性曲线--—同二极管。
*输出特性曲线(饱和管压降,用U CES表示放大区—--发射结正偏,集电结反偏。
截止区—-—发射结反偏,集电结反偏。
4。
温度影响温度升高,输入特性曲线向左移动。
温度升高I CBO、I CEO、I C以及β均增加.三. 低频小信号等效模型(简化)h ie—-—输出端交流短路时的输入电阻,常用r be表示;h fe---输出端交流短路时的正向电流传输比,常用β表示;四。
基本放大电路组成及其原则1。
VT、V CC、R b、R c 、C1、C2的作用。
2.组成原则-—-—能放大、不失真、能传输.五。
放大电路的图解分析法1. 直流通路与静态分析*概念—-—直流电流通的回路。
*画法---电容视为开路.*作用--—确定静态工作点*直流负载线—--由V CC=I C R C+U CE确定的直线。
*电路参数对静态工作点的影响1)改变R b:Q点将沿直流负载线上下移动。
2)改变R c :Q点在I BQ所在的那条输出特性曲线上移动。
3)改变V CC:直流负载线平移,Q点发生移动。
2. 交流通路与动态分析*概念—-—交流电流流通的回路*画法-——电容视为短路,理想直流电压源视为短路。
*作用—-—分析信号被放大的过程。
*交流负载线-—- 连接Q点和V CC’点V CC'= U CEQ+I CQ R L’的直线。
3. 静态工作点与非线性失真(1)截止失真*产生原因-——Q点设置过低*失真现象-——NPN管削顶,PNP管削底。
*消除方法--—减小R b,提高Q.(2)饱和失真*产生原因———Q点设置过高*失真现象——-NPN管削底,PNP管削顶。
*消除方法—-—增大R b、减小R c、增大V CC .4。
放大器的动态范围(1)U opp—--是指放大器最大不失真输出电压的峰峰值。
(2)范围*当(U CEQ-U CES)>(V CC’ - U CEQ )时,受截止失真限制,U OPP=2U OMAX=2I CQ R L'。
*当(U CEQ-U CES)<(V CC’ - U CEQ)时,受饱和失真限制,U OPP=2U OMAX=2 (U CEQ-U CES)。
*当(U CEQ-U CES)=(V CC’ - U CEQ),放大器将有最大的不失真输出电压。
六. 放大电路的等效电路法1.静态分析(1)静态工作点的近似估算(2)Q点在放大区的条件欲使Q点不进入饱和区,应满足R B>βRc。
2.放大电路的动态分析*放大倍数*输入电阻* 输出电阻七. 分压式稳定工作点共射放大电路的等效电路法1.静态分析2.动态分析*电压放大倍数在R e两端并一电解电容C e后输入电阻在R e两端并一电解电容C e后*输出电阻八. 共集电极基本放大电路1.静态分析2.动态分析*电压放大倍数* 输入电阻* 输出电阻3。
电路特点* 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。
* 输入电阻高,输出电阻低.第三章场效应管及其基本放大电路一. 结型场效应管( JFET)1.结构示意图和电路符号2。
输出特性曲线(可变电阻区、放大区、截止区、击穿区)转移特性曲线U P -—--- 截止电压二。
绝缘栅型场效应管(MOSFET)分为增强型(EMOS)和耗尽型(DMOS)两种.结构示意图和电路符号2. 特性曲线*N-EMOS的输出特性曲线* N—EMOS的转移特性曲线式中,I DO是U GS=2U T时所对应的i D值。
* N-DMOS的输出特性曲线注意:u GS可正、可零、可负。
转移特性曲线上i D=0处的值是夹断电压U P,此曲线表示式与结型场效应管一致。
三。
场效应管的主要参数1.漏极饱和电流I DSS2。
夹断电压U p3.开启电压U T4。
直流输入电阻R GS5。
低频跨导g m (表明场效应管是电压控制器件)四. 场效应管的小信号等效模型E-MOS 的跨导g m ---五。
共源极基本放大电路1。
自偏压式偏置放大电路*静态分析动态分析若带有C s,则2.分压式偏置放大电路* 静态分析* 动态分析若源极带有C s,则六。
共漏极基本放大电路*静态分析或* 动态分析第四章多级放大电路一. 级间耦合方式1. 阻容耦合--——各级静态工作点彼此独立;能有效地传输交流信号;体积小,成本低。
但不便于集成,低频特性差。
2. 变压器耦合———各级静态工作点彼此独立,可以实现阻抗变换。
体积大,成本高,无法采用集成工艺;不利于传输低频和高频信号。
3. 直接耦合—-——低频特性好,便于集成。
各级静态工作点不独立,互相有影响。
存在“零点漂移”现象。
*零点漂移—-—-当温度变化或电源电压改变时,静态工作点也随之变化,致使u o偏离初始值“零点"而作随机变动.二. 单级放大电路的频率响应1.中频段(f L≤f≤f H)波特图---幅频曲线是20lg A usm=常数,相频曲线是φ=-180o。
2.低频段(f ≤f L)‘3.高频段(f ≥f H)4.完整的基本共射放大电路的频率特性三。
分压式稳定工作点电路的频率响应1.下限频率的估算2.上限频率的估算四. 多级放大电路的频率响应1。
频响表达式2。
波特图第五章功率放大电路一。
功率放大电路的三种工作状态1。
甲类工作状态导通角为360o,I CQ大,管耗大,效率低。
2.乙类工作状态I CQ≈0,导通角为180o,效率高,失真大。
3。
甲乙类工作状态导通角为180o~360o,效率较高,失真较大。
二. 乙类功放电路的指标估算1. 工作状态➢任意状态:U om≈U im➢尽限状态:U om=V CC—U CES➢理想状态:U om≈V CC2. 输出功率3. 直流电源提供的平均功率4。
管耗P c1m=0。
2P om5.效率理想时为78.5%三。
甲乙类互补对称功率放大电路1.问题的提出在两管交替时出现波形失真——交越失真(本质上是截止失真)。
2。
解决办法➢甲乙类双电源互补对称功率放大器OCL-———利用二极管、三极管和电阻上的压降产生偏置电压。
动态指标按乙类状态估算。
➢甲乙类单电源互补对称功率放大器OTL-———电容C2上静态电压为V CC/2,并且取代了OCL功放中的负电源-V CC。
动态指标按乙类状态估算,只是用V CC/2代替。
四。
复合管的组成及特点1.前一个管子c-e极跨接在后一个管子的b-c极间.2.类型取决于第一只管子的类型.3.β=β1·β 2第六章集成运算放大电路一。
集成运放电路的基本组成1。
输入级--—-采用差放电路,以减小零漂。
2。
中间级--——多采用共射(或共源)放大电路,以提高放大倍数。
3.输出级-——-多采用互补对称电路以提高带负载能力。
4。
偏置电路————多采用电流源电路,为各级提供合适的静态电流。
二. 长尾差放电路的原理与特点1。
抑制零点漂移的过程--—-当T↑→i C1、i C2↑→i E1、i E2 ↑→u E↑→u BE1、u BE2↓→i B1、i B2↓→i C1、i C2↓。
R e对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。
2静态分析1)计算差放电路I C设U B≈0,则U E=-0.7V,得2) 计算差放电路U CE•双端输出时••单端输出时(设VT1集电极接R L)对于VT1:对于VT2:3. 动态分析1)差模电压放大倍数•双端输出••单端输出时从VT1单端输出:从VT2单端输出:2)差模输入电阻3)差模输出电阻•双端输出:•单端输出:三。
集成运放的电压传输特性当u I在+U im与—U im之间,运放工作在线性区域:四. 理想集成运放的参数及分析方法1. 理想集成运放的参数特征* 开环电压放大倍数A od→∞;* 差模输入电阻R id→∞;* 输出电阻R o→0;* 共模抑制比K CMR→∞;2. 理想集成运放的分析方法1)运放工作在线性区:*电路特征-—引入负反馈*电路特点-—“虚短”和“虚断”:“虚短”--—“虚断"—-—2) 运放工作在非线性区* 电路特征——开环或引入正反馈* 电路特点—-输出电压的两种饱和状态:当u+>u-时,u o=+U om当u+〈u-时,u o=—U om两输入端的输入电流为零:i+=i—=0第七章放大电路中的反馈一. 反馈概念的建立*开环放大倍数---A*闭环放大倍数---Af*反馈深度---1+AF*环路增益---AF:1.当AF>0时,Af下降,这种反馈称为负反馈.2.当AF=0时,表明反馈效果为零。