322函数的运用(3)
- 格式:ppt
- 大小:443.50 KB
- 文档页数:21
wps函数公式大全及使用方法WPS是一个功能强大的办公软件套装,包括文字处理、表格和演示文稿等多个模块。
在WPS中,函数公式是一个非常重要的工具,可以帮助用户进行各种计算和数据分析。
本文将详细介绍WPS函数公式的大全及使用方法。
一、概述WPS函数公式是一个类似于Excel中函数的功能,它可以帮助用户进行各种数算、逻辑判断、文本处理等操作。
用户可以根据不同需求选择不同的函数来完成相应的任务。
WPS函数公式的语法和Excel中的函数语法类似,都是以函数名开头,后面跟着一对括号,括号中是函数的参数。
二、常用函数1. SUM 函数:用于求一组数据的总和。
使用方法:SUM(数字1, 数字2, ...)例子:SUM(1, 2, 3) 结果为6。
2. AVERAGE 函数:用于求一组数据的平均值。
使用方法:AVERAGE(数字1, 数字2, ...)例子:AVERAGE(1, 2, 3) 结果为2。
3. MAX 函数:用于求一组数据中的最大值。
使用方法:MAX(数字1, 数字2, ...)例子:MAX(1, 2, 3) 结果为3。
4. MIN 函数:用于求一组数据中的最小值。
使用方法:MIN(数字1, 数字2, ...)例子:MIN(1, 2, 3) 结果为1。
5. COUNT 函数:用于统计一组数据中的非空单元格个数。
使用方法:COUNT(单元格1, 单元格2, ...)例子:COUNT(A1, B1, C1) 结果为3。
6. IF 函数:根据指定的条件进行判断,满足条件返回一个值,否则返回另一个值。
使用方法:IF(条件, 返回值1, 返回值2)例子:IF(A1>10, "大于10", "小于等于10") 如果A1大于10则返回"大于10",否则返回"小于等于10"。
7. VLOOKUP 函数:在指定的数据范围中查找某个值,并返回相应的结果。
浙教版数学九年级上册1.4.3课时教学设计课题二次函数的应用单元 1 学科数学年级九学习目标情感态度和价值观目标进一步体验在问题解决的过程中函数与方程两种数学模式经常需要相互转换能力目标会用二次函数的图象求一元二次方程的解或近似解。
知识目标会运用一元二次方程求二次函数的图象与x轴或平行于x轴的直线的交点坐标,并用来解决相关的实际问题重点问题解决过程中二次函数与一元二次方程两种数学模型的转换难点用二次函数的图象求一元二次方程的解或近似解。
学法自主探究,合作交流教法多媒体,问题引领教学过程教学环节教师活动学生活动设计意图导入新课提问:1.求方程错误!未找到引用源。
2、求二次函数错误!未找到引用源。
与x轴的交点坐标A、B问题:你发现方程的解与坐标A、B有什么联系?学生回忆以前内容学生在教师的引导下,能很快回忆相关问题,引发对新问题的思考讲授新课例4、一个球从地面上竖直向上弹起时的速度为10m/s,经过t(s)时球的高度为h(m)。
已知物体竖直上抛运动中,错误!未找到引用源。
(v0表示物体运动上弹开始时的速度,g表示重力系数,取g=10m/s²)。
问球从弹起至回到地面需要多少时间?经多少时间球的高度达到3.75m? 学生思考,结合物理知识试着解答引导学生独立思考,学科间联系的能力,培养自主学习的能力分析:根据题意可以得出函数错误!未找到引用源。
并画出函数的大致图象,从图象我们可以看到,图象与横轴的两个交点分别为(0,0),(2,0).它们的横坐标分别为0与2,就是球从地面弹起和回到地面的时刻,此时h=0.所以这两个时刻也就是一元二次方程错误!未找到引用源。
的两个根.这两个时刻的差就是球从地面弹起至回到地面所需的时间。
解:由题意,得h关于t的二次函数解析式为h=10t-5t²取h=0,得一元二次方程10t-5t²=0解方程得t1=0;t2=2球从弹起至回到地面需要时间为t2-t1=2(s)取h=3.75,得一元二次方程10t-5t²=3.75解方程得t1=0.5;t2=1.5答:球从弹起至回到地面需要时间为2(s);经过圆心的0.5s或1.5s球的高度达到3.75m。
§3.2.2 (1)基本初等函数的求导公式一、知识与方法:1、基本初等函数的导数公式记忆:第一类为幂函数,1)'(-=a a ax x )0(≠a (注意幂函数a 为任意实数); 第二类为指数函数,()'ln (0,0)x x a a a a a =>≠且,当e a =时,x e 的导数是)('x a 的一个特例; 第三类为对数函数,11(log )'log (0,0)ln a a x e a a x x a==>≠且,当e a =时,x ln 也是 对数函数的一个特例;第四类为三角函数,可记住正弦函数的导数是余弦函数,余弦函数的导数是正弦函数的相 反数,正切函数的导数是余弦函数平方的倒数,余切函数的导数是正弦函数的平方的倒数 的相反数。
2、利用公式求函数的导数,这就要求熟练掌握公式。
特别注意x a y =的导数与a x y = 的导数的区别,不要犯这样的错误:1)(-='x x xa a 。
二、针对性训练:1、3x y =的导数是 ( )A .3xB .x 31 C .3231--x D .3231-x 2、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( ) A .319 B .316 C .313 D .310 3、 下列各结论正确的是 ( )A .3(log )'x =x 31 B .(2)'x =2x C .')(sin x =cosx D . (cosx)'=sinx 4、 若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=5、函数()f x =x a (a>0且a ≠1),'(2)f =2a ,则a = ( )A . 2 B. e C. 4 D. 2e6、曲线sin y x =, x ∈⎪⎭⎫ ⎝⎛-2,2ππ 的一条切线m 平行于直线30x y --=, 则m 的方程为( ) A. y=2πx, B.y x = C.1y x =+ D.不存在 7 、曲线x e y =在点)e (2,2处的切线与坐标轴所围三角形的面积为 ( )A .249e B .22e C .2e D .2e 2 8、)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2009x f ( ) x D x C x B xA cos .cos .sin .sin .-- 9、函数2y e =, 则'y =_________10、已知函数()sin ln f x x x =+,则()f x '= .11、已知()f x lnx =, ()g x x =. 且'()'()0f x g x ->,则x 的取值范围是_______12、求函数的导数:)3)(2)(1(+++=x x x y13、物体的运动方程是1223-+=t t s (位移单位:m ,时间单位:s ),当2=t 时,求物体的瞬时速度及加速度.14、()ln f x x =,若4'()f x x a +≥恒成立,求a 的取值范围。
导数知识点归纳及应用●知识点归纳一、相关概念1.导数的概念函数y=f(x),如果自变量x 在x 处有增量,那么函数y 相应地有增量=f (x +0x ∆y ∆0)-f (x ),比值叫做函数y=f (x )在x 到x +之间的平均变化率,即x ∆0xy∆∆00x ∆=。
如果当时,有极限,我们就说函数y=f(x)在点x x y ∆∆xx f x x f ∆-∆+)()(000→∆x x y ∆∆处可导,并把这个极限叫做f (x )在点x 处的导数,记作f’(x )或y’|。
000x x =即f (x )==。
00lim →∆x x y∆∆0lim →∆x xx f x x f ∆-∆+)()(00说明:(1)函数f (x )在点x 处可导,是指时,有极限。
如果不存在极限,00→∆x x y ∆∆xy∆∆就说函数在点x 处不可导,或说无导数。
0(2)是自变量x 在x 处的改变量,时,而是函数值的改变量,可以是x ∆00≠∆x y ∆零。
由导数的定义可知,求函数y=f (x )在点x 处的导数的步骤:0① 求函数的增量=f (x +)-f (x );y ∆0x ∆0② 求平均变化率=;x y ∆∆xx f x x f ∆-∆+)()(00③ 取极限,得导数f’(x )=。
0xyx ∆∆→∆lim 例:设f(x)= x|x|, 则f ′( 0)= .[解析]:∵ ∴f ′( 0)=00||lim ||lim )(lim )0()0(lim0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x 2.导数的几何意义函数y=f (x )在点x 处的导数的几何意义是曲线y=f (x )在点p (x ,f (x ))000处的切线的斜率。
也就是说,曲线y=f (x )在点p (x ,f (x ))处的切线的斜率00是f’(x )。
0相应地,切线方程为y -y =f /(x )(x -x )。
ʏ孙明花解数学问题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法㊂换元法可以化高次为低次㊁化分式为整式㊁化无理式为有理式㊁化超越式为代数式㊁化隐含为显性关系等,在研究方程㊁不等式㊁函数㊁向量㊁三角函数等问题中都有广泛的应用㊂一㊁利用换元法,求外层函数的解析式例1 函数f (x )满足f (x 2-3)=l g x2x 2-6,求f (x )并研究其奇偶性㊂解:设u =x 2-3㊂由题设知x 2-6>0,则u =x 2-3=(x 2-6)+3>3,所以x 2=u +3㊂所以f (u )=l gu +3u -3,其定义域为(3,+ɕ),即f (x )=l gx +3x -3(x >3)㊂因为f (x )=l gx +3x -3(x >3)的定义域关于原点不对称,所以f (x )为非奇非偶函数㊂升华:换元法求解外层函数的表达式,注意原变量的值域应为外层函数的定义域㊂二㊁局部换元法,借力二次函数求最值例2 函数f (x )=s i n 2x +3c o s x -34x ɪ0,π2的最大值是㊂解:(1)由题意得f (x )=1-c o s 2x +3c o s x -34㊂令c o s x =t 且t ɪ[0,1],则原函数等价于函数y =-t 2+3t +14=-t -322+1㊂故当t =32时,y 取最大值1,即所求函数的最大值为1㊂升华:复合型的二次函数最值,可借助换元法化归为二次函数在区间上的值域,切记换元后新变量的取值范围㊂三㊁整体换元法,借力二次函数求最值例3 函数f (x )=s i n x +c o s x +2s i n x c o s x x ɪ-π4,π4的最小值是㊂解:设s i n x +c o s x =t ,则2s i n x c o s x =t 2-1,t =2s i n x +π4㊂因为x ɪ-π4,π4,所以x +π4ɪ0,π2,所以0ɤt ɤ1,则原函数等价于g (t )=t 2+t -1,0ɤt ɤ1㊂因为函数g (t )=t 2+t -1的图像的开口向上,且对称轴为t =-12,所以在区间[0,1]上单调递增㊂故当t =0时,g (t )取得最小值为-1,即所求函数的最小值为-1㊂升华:解答本题的关键是换元法的灵活运用,即令t =s i n x +c o s x ,把原函数化归为二次函数在区间上的值域问题求解㊂四㊁局部换元法,借力二次函数求解不等式恒成立问题例4 对所有的实数x ,不等式x 2l o g 24(a +1)a +2x l o g 22a a +1+l o g 2(a +1)24a 2>0恒成立,求a 的取值范围㊂解:设l o g 22a a +1=t ɪR ,则l o g 24(a +1)a=l o g 28(a +1)2a =3+l o g 2a +12a=3-l o g 22a a +1=3-t ㊂同理可得l o g 2(a +1)24a2=2l o g 2(a +1)2a=-2t ㊂所以原不等式等价于(3-t )x 2+2t x -2t >0对一切实数x 恒成立,所以3-t >0,Δ=4t 2+8t (3-t )<0,解得t <3,t <0或t >6,所以t <0,所以l o g 22aa +1<0,所以0<2aa +1<1,解得0<a <1㊂故所求a 5知识结构与拓展高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.的取值范围为(0,1)㊂升华:本题是利用局部换元法,通过化归为二次不等式在R 上恒成立问题求解的㊂五㊁二元变量的最值双换元,看穿本质借力不等式求解例5 设实数a ,b >0,a +b =5,则a +1+b +3的最大值为㊂解:利用换元,使得题目更清晰,再利用不等式求最值㊂设a +1=x ,b +3=y ,则原问题等价于实数x ,y >1,x 2+y 2=9,求x +y 的最大值㊂利用不等式x +y22ɤx 2+y 22,可得x +y ɤ32,当且仅当x =y =322时取等号㊂故a +1+b +3的最大值为32㊂或者,利用柯西不等式直接求解㊂由题意得(a +1+b +3)2ɤ(1+1)2(a +1+b +3)2=18,所以a +1+b +3ɤ32,即a +1+b +3的最大值为32㊂升华:本题是求二元变量的最值,解题的关键是利用双换元求解的㊂六㊁三角换元或均值换元,借力有界性或方程有实数解,构建不等式求最值例6 实数x ,y 满足4x 2-5x y +4y 2=5,设S =x 2+y 2,求1S m a x +1S m i n的值㊂解法1:由S =x 2+y 2,联想到c o s 2α+s i n 2α=1,于是进行三角换元切入求解㊂设x =S c o s α,y =S si n α,代入原式化简得4S -5S ㊃s i n αc o s α=5,所以S =108-5s i n 2α㊂因为-1ɤs i n 2αɤ1,所以3ɤ8-5s i n 2αɤ13,所以1013ɤ108-5s i n αɤ103,所以1S m a x+1S m i n =310+1310=1610=85㊂解法2:由S =x 2+y 2,可考虑均值换元求解㊂设x 2=S 2+t ,y 2=S 2-t ,t ɪ-S 2,S 2,则x y =ʃS 24-t 2,代入原式化简得4S ʃ5S 24-t 2=5,移项平方整理得39S 2-160S +100=-100t 2,所以39S 2-160S +100ɤ0,解得1013ɤS ɤ103,所以1S m a x +1S m i n =310+1310=1610=85㊂升华:解法1,利用已知条件S =x 2+y 2,联想到三角公式c o s 2α+s i n 2α=1,借力三角换元,从而得到S =108-5s i n 2α求解的㊂也可由s i n 2α=8S -10S 的有界性求解,即解不等式8S -10Sɤ1,这种方法是求函数值域时经常用到的 有界性法 ㊂解法2,利用已知条件S =x 2+y 2,考虑到均值换元x 2=S 2+t ,y 2=S2-t ,构建含t 的方程有实数根的条件,从而解出S 的取值范围㊂已知函数f (x )=x 2-(a +4)x +a 2+a +10(a >0),且f (a 2+3)=f (3a -2),则f (n )+6a n +1(n ɪN *)的最小值为㊂提示:二次函数f (x )=x 2-(a +4)x +a 2+a +10的对称轴为x =a +42㊂因为f (a 2+3)=f (3a -2),所以a 2+3=3a -2或a 2+32+3a -22=a +42㊂因为a >0,所以a =1,所以函数f (x )=x 2-5x +12㊂所以n 2-5n +12+6n +1=(n +1)2-7(n +1)+24n +1=(n +1)+24n +1-7㊂函数g (x )=x +24x -7在(0,26)上单调递减,在(26,+ɕ)上单调递增㊂因为4<26<5,又g (4)=4+244-7=3,g (5)=5+245-7=145<3,所以f (n )+6n +1(n ɪN *)的最小值为145㊂作者单位:山东省胶州市第三中学(责任编辑 郭正华)6知识结构与拓展 高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.。
第十八讲三次函数的切线条数知识与方法研究过点(),P a b 可以作出三次函数()32f x ax bx cx d =+++()0a ≠图象的几条切线,本质上是研究方程根的个数,可以设切点为()()00,x f x ,则切线方程为()()()000y f x f x x x '-=-,将点P 的坐标代入切线方程可得()()()000b f x f x a x '-=-,这一关于0x 的方程有几个实数解,过点P 就可以作出函数()y f x =图象的几条切线,这一问题的结论如下图所示:典型例题【例题】已知函数322()27,R f x x ax a x a =-+-∈.(1)若1x =是()f x 的极大值点,求a 的值;(2)若过点(0,1)A 可以作曲线()f x 的三条切线,求a 的取值范围.【解析】(1)22()34f x x ax a '=-+,由2(1)340f a a =-+='解得1a =或3a =,当1a =时,2()341(31)(1)f x x x x x '=-+=--,由()0f x '>得13x <或1x >,由()0f x '<得113x <<,即()f x 在1,3∞⎛⎫- ⎪⎝⎭,(1,)+∞上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,则函数()f x 在1x =处取得极小值,不符合题意,舍去,当3a =时,2()31293(1)(3)f x x x x x =-+=--',由()0f x '>得1x <或3x >,由()0f x '<得13x <<,即函数()f x 在(,1),(3,)-∞+∞上单调递增,在(1,3)上单调递减,()f x 在1x =处取得极大值,所以3a =.(2)设过点(0,1)A 作曲线()f x 的切线的切点为00(,)P x y ,则切线方程为()()()322220000002734y x ax a x x ax a x x --+-=-+-,将点(0,1)A 的坐标代入,整理得320040x ax -+=,令32()4h x x ax =-+,依题意,()h x 有三个零点,22()3233a h x x ax x x ⎛⎫=-=- ⎝'⎪⎭,当0a =时,()0,()h x h x '≥在(,)-∞+∞上单调递增,则()h x 只有一个零点,当0a <时,由()0f x '>得23ax <或0x >,由()0f x '<得203a x <<,即()h x 在2,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭上递增,在2,03a ⎛⎫⎪⎝⎭上递减,函数()h x 在23a x =处取极大值,在0x =处取极小值,而(0)40h =>,则()h x 只有一个零点,当0a >时,由()0f x '>得0x <或23a x >,由()0f x '<得203ax <<,即()h x 在2(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭上递增,在20,3a ⎛⎫ ⎪⎝⎭上递减,函数()h x 在0x =处取极大值,在23ax =处取极小值,而(0)40h =>,要使()h x 有三个零点,当且仅当32440327a a h ⎛⎫=-< ⎪⎝⎭,解得3a >,所以a 的取值范围是(3,)+∞.强化训练1.已知函数()3f x x ax =-,若过点()1,0A 可作函数()y f x =图象的两条切线,则实数a =________.【解析】解法1:由题意,()23f x x a '=-,设()3000,P x x ax -为函数()y f x =图象上的任意一点,则()f x 在点P 处的切线方程为()()()3200003y x ax x a x x --=--,将点()1,0A 代入整理得:320230x x a -+=①,过点A 可作函数()y f x =图象的两条切线等价于关于x 的方程①有两个实数解,设()3223g x x x a =-+()x ∈R ,则()g x 有两个零点,易求得()()61g x x x '=-,所以()0 0g x x '>⇔<或1x >,()001g x x '<⇔<<,从而()g x 在(),0-∞上,在()0,1上,在()1,+∞上,故()g x 有极大值()0g a =,极小值()11g a =-,所以()g x 有两个零点的充要条件是()()()01 10g g a a =-=,解得:0a =或1.解法2:显然()f x 图象的对称中心是原点,易求得()23f x x a '=-,所以()f x 在原点处的切线为y ax =-,要使若过点()1,0A 可作函数()y f x =图象的两条切线,则点A 在切线y ax =-或()y f x =的图象上,所以0a -=或10a -=,解得:0a =或1.【答案】0或12.已知函数()33f x x x =-,若过点()2,A m 可作出函数()y f x =的图象的3条切线,则实数m 的取值范围是________.【解析】解法1:由题意,()233f x x '=-,设过点A 的直线与()f x 的图象相切于点()3000,3P x x x -,则该切线的方程为()()()320000333y x x x x x --=--,将点()2,A m 代入整理得:32002660x x m -++=①,过点A 可作函数()y f x =图象的三条切线等价于关于0x 的方程①有三个实数解,设()32266g x x x m =-++()x ∈R ,则()g x 有三个零点,易求得()()62g x x x '=-,所以()00g x x '>⇔<或2x >,()002g x x '<⇔<<,从而()g x 在(),0-∞上,在()0,2上,在()2,+∞上,故()g x 有极大值()06g m =+,极小值()22g m =-,所以()g x 有三个零点的充要条件是()()()()02620g g m m =+-<,解得:62m -<<.解法2:显然()f x 图象的对称中心是原点,易求得()233f x x '=-,所以()f x 在原点处的切线为3y x =-,要使过点()2,A m 可作出函数()y f x =的图象的3条切线,则点A 应夹在切线和()f x 的图象之间,如图,点A 应在直线2x =上的B 、C 两点之间,将2x =分别代入3y x =-和33y x x =-可求得6y =-,2,所以B 、C 两点的纵坐标分别为6-和2,故m 的取值范围是()6,2-.【答案】()6,2-3.设函数()32132a f x x x bx c =-++()0a >,曲线()y f x =在点()()0,0P f 处的切线方程为1y =.(1)确定b 、c 的值;(2)设曲线()y f x =在()()11,x f x 及()()22,x f x 处的切线都过点()0,2,证明:当12x x ≠时,()()12f x f x ''≠(3)若过点()0,2可作曲线()y f x =三条不同的切线,求a 的取值范围.【解析】(1)由题意,()2f x x ax b '=-+,且()00f b '==,()01f c ==.(2)由(1)可得()321132a f x x x =-+,()2f x x ax '=-,所以曲线()y f x =在()()11,x f x 处的切线方程为()()()21111y f x x ax x x -=--,将点()0,2代入整理得:321121032a x x -+=①,同理可得:322221032a x x -+=②,下面用反证法证明当12x x ≠时,()()12f x f x ''≠,假设()()12f x f x ''=,则221122x ax x ax -=-,整理得:()()12120x x x x a -+-=,所以12x x a +=③,由①-②整理可得:()()2121212220332a x x x x x x +--+=,将式③代入得:2124a x x =④,联立③④解得:122ax x ==,这与12x x ≠矛盾,所以当12x x ≠时,()()12f x f x ''=(3)由(2)可得问题等价于关于x 的方程3221032a x x -+=有三个不同的实数解,令()322132a h x x x =-+()x ∈R ,则()h x 有三个零点,且()()2h x x x a '=-所以()00h x x '>⇔<或2a x >,()002ah x x '<⇔<<,从而()h x 在(),0-∞上单调递增,在0,2a ⎛⎫ ⎪⎝⎭上单调递减,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,故()h x 有极大值()01h =,极小值3232112322224a a a a a h ⎛⎫⎛⎫⎛⎫=-+=-⎪ ⎪ ⎝⎭⎝⎭⎝⎭,所以()h x 有三个零点的充要条件是()3010224a a h h ⎛⎫=-< ⎪⎝⎭,解得:a >,故a 的取值范围为()+∞.4.已知函数()3f x x x =-.(1)求曲线()y f x =在点()(),M t f t 处的切线方程;(2)设0a >,如果过点(),a b 可作曲线()y f x =的三条切线,证明:()a b f a -<<.【解析】(1)由题意,()231f x x '=-,所以()231f t t '=-故曲线()y f x =在点M 处的切线方程为()()()3231y t t t x t --=--,整理得:()23312y t x t =--.(2)将点(),a b 代入()23312y t x t =--整理得:32230t at a b -++=①,过点(),a b 可作曲线()y f x =的三条切线等价于关于t 的方程①有三个实数根,设()()3223g t t at a b t =-++∈R ,则()g t 有三个零点,易求得()()2666g t t at t t a '=-=-,因为0a >,所以()00g t t '>⇔<或t a >,()00g t t a '<⇔<<,从而()g t 在(),0-∞上单调递增,在()0,a 上单调递减,在(),a +∞上单调递增,故()g t 有极大值()0g a b =+,极小值()32323g a a a a a b a a b=-⋅++=-++所以()g t 有三个零点的充要条件是()()()()300g g a a b a a b =+-++<,故3a b a a -<<-,即()a b f a -<<.5.已知函数()323f x x x =-.(1)求()f x 在区间[]2,1-上的最大值;(2)若过点()1,P t 存在三条直线与曲线()y f x =相切,求实数t 的取值范围;(3)过点()1,2A -、()2,10B 、()0,2C 分别存在几条直线与曲线()y f x =相切?(只需写出结论)【解析】(1)由题意,()2216366222f x x x x x ⎛⎛⎫'=-=-=+- ⎪ ⎝⎭⎝⎭⎝⎭当[]2,1x ∈-时,()2022f x x '>⇔-≤<-或212x <≤,()22022f x x '<⇔-<<,所以()f x 在2,2⎡--⎢⎣⎭上单调递增,在22⎛ ⎝⎭上单调递减,在2⎛⎤ ⎥ ⎝⎦上单调递增,又323222f ⎛⎫⎛⎛-=⨯--⨯-= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,()11f =-,所以()12f f ⎛> ⎝⎭,故()f x 在[]2,1-.(2)设过点()1,P t 的直线与曲线()y f x =相切于点()3,23Q a a a -则该切线的方程为()()()322363y a a a x a --=--,将点()1,P t 代入整理可得:324630a a t -++=①,因为过点P 存在三条直线与曲线()y f x =相切,所以关于a 的方程①有三个不同的实数解,设()32463x x x t ϕ=-++()x ∈R ,则函数()x ϕ有三个零点,易求得()()21212121x x x x x ϕ'=-=-,所以()00x x ϕ'>⇔<或1x >,()001x x ϕ'<⇔<<,从而()x ϕ在(),0-∞上单调递增,在()0,1上单调递减,在()1,+∞上单调递增,故()x ϕ有极大值()03t ϕ=+,极小值()11t ϕ=+,所以()x ϕ有三个零点的充要条件是()()()()01310t t ϕϕ=++<,解得:31t -<<-,故实数t 的取值范围是()3,1--.(3)显然函数()y f x =的对称中心是原点,且函数()f x 在原点处的切线方程为3y x =-,如图,A 、B 、C 三点与函数()y f x =的图象的位置关系如图所示,由图可知过点A 、B 、C 分别可作曲线()y f x =的3条、2条、1条切线.。
三角函数图像变换一、选择题1.(本题5分)函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则()4f π的值为()B.0C.12.(本题5分)[2014·郑州质检]要得到函数y=cos2x 的图象,只需将函数y=sin2x 的图象沿x 轴()A.向右平移4π个单位 B.向左平移4π个单位C.向右平移8π个单位D.向左平移8π个单位3.(本题5分)在函数①|2|cos x y =,②|cos |x y =,③62cos(π+=x y ,④42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B.①③④C.②④D.①③4.(本题5分)已知a 是第二象限角,5sin ,cos 13a a ==则()A.1213B.513-C.513D.-12135.(本题5分)已知函数()sin cos f x x x ωω+(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是()A、2,,63k k k Zππππ⎡⎤++∈⎣⎦B、,,36k k k Zππππ⎡⎤-+∈⎣⎦C、42,2,33k k k Z ππππ⎡⎤++∈⎣⎦D、52,2,1212k k k Z ππππ⎡⎤-+∈⎣⎦6.(本题5分)已知1cos sin 21cos sin x xx x -+=-++,则x tan 的值为()A、34B、34-C、43D、43-7.(本题5分)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,下列结论:①最小正周期为π;②将f(x)的图象向左平移6π个单位,所得到的函数是偶函数;③f(0)=1;④f(1211π)<f(1413π);⑤f(x)=-f(53π-x).其中正确的是()A.①②③B.②③④C.①④⑤D.②③⑤8.(本题5分)将函数()3cos 22x x f x =-的图象向右平移23π个单位长度得到函数()y g x =的图象,则函数()y g x =的一个单调递减区间是()A.(,42ππ-B.(,)2ππC.(,)24ππ--D.3(,2)2ππ9.(本题5分)函数cos sin y x x x =-在下面哪个区间内是增函数().A.3,22ππ⎛⎫⎪⎝⎭B.(),2ππC.35,22ππ⎛⎫⎪⎝⎭D.()2,3ππ10.(本题5分)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称二、填空题11.(本题5分)已知tan()2θπ-=,则22sin sin cos 2cos 3θθθθ+-+的值为12.(本题5分)已知函数()sin f x x ω=,()sin(2)2g x x π=+,有下列命题:①当2ω=时,函数y =()()f x g x 是最小正周期为2π的偶函数;②当1ω=时,()()f x g x +的最大值为98;③当2ω=时,将函数()f x 的图象向左平移2π可以得到函数()g x 的图象.其中正确命题的序号是(把你认为正确的命题的序号都填上).13.(本题5分)已知函数()()log 01a f x x a a =>≠且和函数()sin2g x x π=,若()f x 与()g x 的图象有且只有3个交点,则a 的取值范围是.14.(本题5分)若函数()sin f x a x =+在区间[],2ππ上有且只有一个零点,则实数a =__________.15.(本题5分)给出下列四个命题:①若0x >,且1x ≠则1lg 2lg x x+≥;②2()lg(1),,22f x x ax R a =++-<<定义域为则;③函数)32cos(π-=x y 的一条对称轴是直线π125=x ;④若x R ∈则“复数()21(1)z x x i =-++为纯虚数”是“lg 0x =”必要不充分条件.其中,所有正确命题的序号是.三、解答题16.(本题12分)已知函数2()2sin cos 1f x x x x =-++⑴求()f x 的最小正周期及对称中心;⑵若[,63x ππ∈-,求()f x 的最大值和最小值.17.(本题12分)已知()()()3cos cos 2sin 223sin sin 2f αααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭=⎛⎫--+ ⎪⎝⎭πππππ.(1)化简()fα;(2)若α是第三象限角,且31cos 25α⎛⎫-=⎪⎝⎭π,求()f α的值.18.(本题12分)设向量(1)若,求x 的值(2)设函数,求f(x)的最大值19.(本题12分)(本小题10的最大值为1.(1)求函数()f x 的单调递增区间;(2)将()f x 的图象向左平移个单位,得到函数()g x 的图象,若方程()g x =m 在x∈m 的取值范围.参考答案1.D【解析】试题分析:由已知,4112,(),2,3126A T πππω==⨯-==,所以()2sin 2()f x x ϕ=+,将(),26π代人得,()2,s 2si in(6)1n 23ππϕϕ==⨯+,所以,,326πππϕϕ==+,()2sin 2(2sin 2(),()2co64466s f x x f πππππ=⨯==+=+D .考点:正弦型函数,三角函数诱导公式.2.B【解析】∵y=cos2x=sin(2x+2π),∴只需将函数y=sin2x 的图象沿x 轴向4π个单位,即得y=sin2(x+4π)=cos2x 的图象,故选B.3.A【解析】试题分析:①中函数是一个偶函数,其周期与cos 2y x =相同,22T ππ==;②中函数|cos |x y =的周期是函数cos y x =周期的一半,即T π=;③22T ππ==;④2T π=,则选A.考点:三角函数的图象和性质4.D【解析】试题分析:∵a 是第二象限角,∴cos a ==1213-,故选D.考点:同角三角函数基本关系.5.A【解析】试题分析:因为()sin cos 2sin()6f x x x x πωωω+=+最小值为-2,可知y=-2与f(x)两个相邻公共点之间的距离就是一个周期,于是2T ππω==,即ω=2,即()2sin(2)6f x x π=+令322,2622x k k πππππ⎡⎤+∈++⎣⎦,k∈Z,解得x∈2,,63k k k Z ππππ⎡⎤++∈⎣⎦,选A 考点:三角函数恒等变形,三角函数的图象及周期、最值、单调性.6.A【解析】试题分析:由条件,得1cos sin 22cos 2sin x x x x -+=---,整理得:3sin cos 3x x +=-,即cos 3sin 3x x =--①,代入22sin cos 1x x +=中,得22sin 3sin 31x x +--=(),整理得:25sin 9sin 40x x ++=,即sin 15sin 40x x ++=()(),解得sin 1x =-(舍)或4sin 5x =-,把4sin 5x =-,代入①,得3cos 5x =-,所以4tan 3x =,故选A.考点:同角三角函数基本关系.7.C【解析】由图可知,A=2,4T =712π-3π=4π⇒T=π⇒ω=2,2×712π+φ=2kπ+32π,φ=2kπ+3π,k∈Z.f(x)=2sin(2x+3π)⇒6π)=2sin(2x+3π+3π)=2sin(2x+23π),对称轴为直线x=2k π+12π,k∈Z,一个对称中心为(56π,0),所以②、③不正确;因为f(x)的图象关于直线x=1312π对称,且f(x)的最大值为f(1312π),1211π-1312π=1211π⨯>1312π-1413π=1312π⨯,所以f(1211π)<f(1413π),即④正确;设(x,f(x))为函数f(x)=2sin(2x+3π)的图象上任意一点,其关于对称中心(56π,0)的对称点(53π-x,-f(x))还在函数f(x)=2sin(2x+3π)的图象上,即f(53π-x)=-f(x)⇒f(x)=-f(53π-x),故⑤正确.综上所述,①④⑤正确.选C.8.C【解析】试题分析:因为()2sin(26x f x π=-,所以2()()2sin()2cos 32632x x g x f x πππ=-=--=-,则()g x 在(,24ππ--上递减.考点:三角函数的性质.9.B【解析】试题分析:cos sin cos sin y x x x x x x '=--=,当2x ππ<<时,0y '>,所以函数在区间(,2)ππ上为增函数,故选B.考点:导数与函数的单调性.10.D 【解析】试题分析:()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 单调递减,图象关于直线2x π=对称。
2022年暑假 数学 初升高衔接 专题资料07 二次函数的图像与性质◇◇ 知知 识识 链链 接接 ◇◇知识链接01 二次函数的解析式(1)一般式:y =ax 2+bx +c (a ≠0);(2)顶点式:y =a (x +h )2+k (a ≠0),其中顶点坐标是(-h ,k ). (3)交点式:y =a (x -x 1) (x -x 2) (a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.知识链接02 二次函数的图像与性质(1)二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.(2)二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”; k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. (3)二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(ⅰ)当a >0时,y =ax 2+bx +c 图象开口向上;顶点为24(,)24b ac b a a--,对称轴为直线x =2b a-;当x 2b a<-时,y 随着x 的增大而减小;当x 2b a>-时,y 随着x 的增大而增大;当x 2b a =-时,函数取最小值y =244ac b a-.(ⅱ)当a <0时, y =ax 2+bx +c图象开口向下;顶点为24(,)24b ac b a a--, 对称轴为直线x =2b a-;当x 2b a<-时,y 随着x 的增大而增大;当x 2b a>-时,y 随着x 的增大而减小;当x 2b a =-时,函数取最大值y =244ac b a-.(4)函数y =ax 2+bx +c 图象作图要领:(ⅰ)确定开口方向:由二次项系数a 决定;(ⅱ)确定对称轴及顶点:对称轴方程为2b x a =-,顶点24(,)24b ac b a a --;(ⅲ)确定图象与x 轴的交点情况:①若△>0则与x 轴有两个交点,可由方程x 2+bx +c=0求出; ②若△=0则与x 轴有一个交点,可由方程x 2+bx +c=0求出; ③若△<0则与x 轴有无交点。
第2讲函数之三:函数的值域(最⼤值与最⼩值)第2讲函数之三:函数的值域(函数的最⼤值或最⼩值)1.⼆次函数配⽅法:例1.求函数]3,0[,232∈-+=x x x y 时的最⼤值和最⼩值。
解:4)1(3222+--=++-=x x x y∴]1,(-∞∈x 时为增函数,],1(+∞∈x 时为减函数 ]3,0[∈x , f (3)当4,1max ==y x 时例2.求函数98212+-=x x y 的最⼤值解:令1)2(298222+-=+-=x x x u∴u ≥1 ∴01≤1 ∴0例3.设]1,1[-∈x ,求函数)(32R a ax x y ∈+-=的最⼤值和最⼩值解:43)2(3222a a x ax x y -+-=+-=1)2a>1 ,即a >2当a y x +=-=4,1max 时; 当a y x -==4,1min 时2)2a<-1 ,即a <-2当a y x -==4,1max 时; 当a y x +=-=4,1min 时3)-1≤2a≤0 ,即-2≤a ≤0当=x 2a 时,432min a y -=;当a y x -==4,1max 时4)0<当=x 2a 时,432min a y -=;当a y x +=-=4,1min 时例4.某商店如将进货单价为8元的商品,按每件10元出售,每天可销售50件,现采⽤提⾼该商品售价,减少货量的办法,增加利润。
已知该商品每提⾼1元,其销售量减少5件,问每件价格多少,才能使每天销售所得利润最⼤?并求最⼤值。
解:设利润为y ,每件价格为x 元)8)](10(550[---=x x y )8)(1005(-+-=x x180)19628(52++--=x 180)14(52+--=x∴当x =14时,最⼤利润为180元。
2.利⽤函数单调性例1.求函数x x y --=13的值域解:定义域1-x ≥0 ,x ≤1在(]1,∞-∈x 时,是增函数∴y ≤3∴值域为(]3,∞-(注:本题还可以⽤换元法。
第7章 二次函数的最值问题【知识衔接】————初中知识回顾————二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少. 二次函数的最值 一般二次函数求最值根据最值公式计算即可,或把对称轴代入表达式,对应的函数值就是最值。
————高中知识链接————给定自变量取值范围求二次函数的最值①如果给定的范围在对称轴的一侧,只需要计算两个端点的函数值,两个值中最大的为最大值,最小的为最小值。
②如果给定的范围包含对称轴,需要计算两个端点的函数值和顶点的纵坐标,三个值中最大的为最大值,最小的为最小值。
具体归纳如下:1、一元二次函数)0(2≠++=a c bx ax y044,02min<-=>••a a b ac y a 时,ab ac y 442max -=2、一元二次函数)0()(2>++==a c bx ax x f y 在区间[m,n]上的最值。
1°当m ab<-2 ,)()(),()(min max m f x f n f x f ==2°当22n m a b m +≤-≤,a b ac x f n f x f 44)(),()(2min max -==3°当n ab n m ≤-<+22时, a bac x f m f x f 44)(),()(2min max -==4°n ab>-2时, )()(),()(min max n f x f m f x f ==3、一元二次函数)0()(2<++==a c bx ax x f y 在区间[m,n]上的最值类比2可求得。
【经典题型】初中经典题型1.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3).D 是抛物线26y x x =-+上一点,且在x 轴上方.则△BCD 的最大值为 .【答案】152.2.已知当x 1=a ,x 2=b ,x 3=c 时,二次函数21y x mx 2=+对应的函数值分别为y 1,y 2,y 3,若正整数a ,b ,c 恰好是一个三角形的三边长,且当a <b <c 时,都有y 1<y 2<y 3,则实数m 的取值范围是 . 【答案】5m >2-.3.已知二次函数2y x bx c =++(b ,c 为常数). (Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式; (Ⅲ)当c=b 2时,若在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.【答案】(Ⅰ)二次函数取得最小值-4. (Ⅱ)542++=x x y 或542+-=x x y .(Ⅲ)772++=x x y 或1642+-=x x y .(Ⅲ)当c=b 2时,二次函数的解析式为22b bx x y ++=,它的图象是开口向上,对称轴为2bx -=的抛物线.分三种情况进行讨论,①对称轴位于b≤x≤b+3范围的左侧时,即2b-<b ;②对称轴位于b≤x≤b+3这个范围时,即b≤2b-≤b+3;③对称轴位于b≤x≤b+3范围的右侧时,即2b ->b+3,根据列出的不等式求得b 的取值范围,再根据x 的取值范围b≤x≤b+3、函数的增减性及对应的函数值y 的最小值为21可列方程求b 的值(不合题意的舍去),求得b 的值代入也就求得了函数的表达式.(Ⅲ)当c=b 2时,二次函数的解析式为22b bx x y ++=.它的图象是开口向上,对称轴为2bx -=的抛物线. ①若2b-<b 时,即b >0, 在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 随x 的增大而增大,故当x=b 时,2223b b b b b y =+⋅+=为最小值.∴2132=b ,解得 71=b ,72-=b (舍去).②若b≤2b-≤b+3,即-2≤b≤0, 当x=2b -时,22243)2()2(b b b b b y =+-⋅+-=为最小值.∴21432=b ,解得 721=b (舍去),722-=b (舍去).高中经典题型1.二次函数213222y x x =-++的图象如图所示,当﹣1≤x≤0时,该函数的最大值是( )A .3.125B .4C .2D .0【答案】C .2.已知函数()42f x x x x =-+,存在3210x x x >>≥,使得()()()123f x f x f x ==,则()123x x f x ⋅⋅的取值范围是__________. 【答案】()64,81 【解析】根据题意, ()222,442{ 6,4x x x f x x x x x x x -≥=-+=-+<,由图象可知, 126,x x +=()()()1231116x x f x x x f x ∴⋅⋅=⋅-⋅ ()()2111166x x x x =⋅-⋅-+= ()22116x x -+=()22139x ⎡⎤--+⎣⎦, ()()21123,398,9x x <<∴--+∈, ()()12364,81x x f x ∴⋅⋅∈,故答案为()64,81. 3.已知函数,其中为常数.(1)若函数在区间上单调递减,求实数的取值范围; (2)若,都有,求实数的取值范围.【答案】(1)(2)【解析】分析:(1)根据二次函数性质得对称轴不在区间 内,解不等式可得实数的取值范围,(2) 根据二次函数图像得得在x 轴上方,即,解得实数的取值范围.详解:(1)因为开口向上,所以该函数的对称轴是因此,解得所以的取值范围是. (2)因为恒成立,所以,整理得解得因此,的取值范围是.4.如图,抛物线21251233y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C .若点P 是线段AC 上方的抛物线上一动点,当△ACP 的面积取得最大值时,点P 的坐标是( )A .(4,3)B .(5,3512)C .(4,3512) D .(5,3) 【答案】C .【分析】连接PC 、PO 、P A ,设点P 坐标(m ,21251233m m -++),根据S △P AC =S △PCO +S △POA ﹣S △AOC 构建二次函数,利用函数性质即可解决问题.【解析】连接PC 、PO 、P A ,设点P 坐标(m ,21251233m m -++) 令x =0,则y =53,点C 坐标(0,53),令y =0则212501233x x -++=,解得x =﹣2或10,∴点A 坐标(10,0),点B 坐标(﹣2,0),∴S △P AC =S △PCO +S △POA ﹣S △AOC =21511251510()10232123323m m m ⨯+⨯⨯-++-⨯⨯=25125(5)1212m --+,∴x =5时,△P AC 面积最大值为12512,此时点P 坐标(5,3512).故选C .【实战演练】————先作初中题 —— 夯实基础————A 组1.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或﹣5B .﹣1或5C .1或﹣3D .1或3 【答案】B .【分析】由解析式可知该函数在x =h 时取得最小值1、x >h 时,y 随x 的增大而增大、当x <h 时,y 随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.2.一次函数与二次函数交于x轴上一点,则当时,二次函数的最小值为( )A.15 B.-15 C.16 D.-16【答案】D【解析】分析:首先根据一次函数得出与x轴的交点坐标,从而得出二次函数的解析式,根据二次函数的增减性得出函数的最值.详解:根据一次函数解析式可得与x轴的交点坐标为(-5,0),将(-5,0)代入二次函数可得:25-10-b=0,解得:b=15,∴二次函数的解析式为:,∴在中当x=-1时,函数的最小值为-16,故选D.点睛:本题主要考查的是二次函数的性质以及一次函数与x轴的交点坐标问题,属于中等难度题型.解决这个问题的关键就是得出一次函数与x轴的交点,从而得出二次函数解析式.3.二次函数y=x2-2x-3,当m-2≤x≤m时函数有最大值5,则m的值可能为___________【答案】0或4【解析】分析:根据二次函数的图像和解析式,判断出函数的最值的自变量x的值,然后根据m的范围求出m的值即可.详解:令y=5,可得x2-2x-3=5,解得x=-2或x=4所以m-2=-2,m=4即m=0或4.故答案为:0或4.点睛:此题主要考查了二次函数的最值,求二次函数的最大(小)值有三种方法,第一种可由图像直接得出,第二种配方法,第三种公式法,此题关键是根据最值构造一元二次方程求解.4.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x+m)2+n的顶点在线段AB上,与x轴交于C,D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标的最大值为______.【答案】8【解析】分析:当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD 间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.详解:当点C横坐标为−3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D(8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故选:D.点睛:本题主要考查二次函数的性质,待定系数法求二次函数的解析式,用直接开平方法解一元二次等知识点,理解题意并根据已知求二次函数的解析式是解此题的关键.5.已知二次函数,当时,函数值的最小值为,则的值是________.【答案】或【解析】分析:将二次函数配方成顶点式,分m<-1、m>2和-1≤m≤2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得.详解:y=x²−2mx=(x−m)²−m²,①若m<−1,当x=−1时,y=1+2m=−2,解得:m=−;②若m>2,当x=2时,y=4−4m=−2,解得:m=<2(舍);③若−1⩽m⩽2,当x=m时,y=−m2=−2,解得:m=或m=−<−1(舍),∴m的值为−或,故答案为:−或.点睛:本题主要考查了二次函数的最值,根据二次函数的增减性分类讨论是解答本题的关键.6.若实数a,b满足a+b2=1,则2a2+7b2的最小值是_____.【答案】2【解析】分析:根据得到代入所求式子,用配方法即可求出最小值.详解:∵∴,∴∵∴∴当,即b=0时,的值最小.∴最小值是2.7.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.【答案】(1)3(2)-15(3)m=2,n=-3【解析】分析:(1)根据一次函数与x轴的交点,求出A点的坐标,然后把A点坐标和m的值代入可求出n 的值;(2)表示出二次函数的对称轴,由m的值以及二次函数的图像与性质得到二次函数的最值;(3)根据函数的对称轴的位置,分类讨论即可求出m、n的值.详解:(1)当y=x+3=0时,x=﹣3,∴点A的坐标为(﹣3,0).∵二次函数y=x2+mx+n的图象经过点A,∴0=9﹣3m+n,即n=3m﹣9,∴当m=4时,n=3m﹣9=3.(2)抛物线的对称轴为直线x=﹣,当m=﹣2时,对称轴为x=1,n=3m﹣9=﹣15,∴当﹣3≤x≤0时,y随x的增大而减小,∴当x=0时,二次函数y=x2+mx+n的最小值为﹣15.(3)①当对称轴﹣≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x2+mx+n的最小值为0,∴此情况不合题意;②当﹣3<﹣<0,即0<m<6时,如图2,有,解得:或(舍去),∴m=2、n=﹣3;③当﹣≥0,即m≤0时,如图3,有,解得:(舍去).综上所述:m=2,n=﹣3.点睛:此题主要考查了二次函数与一次函数的综合,正确判断二次函数的对称轴,以及函数的图像与性质,利用二次函数的图像与性质判断其最值是关键,解题时应用到分类讨论思想和方程思想.8.如图, 已知抛物线经过A(-2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.学科-网【答案】(1);(2)最大值为;(3)符合条件的点的坐标为或.【解析】分析:(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)由于二次项系数a=-<0,所以抛物线有最大值,最大值为,代入计算即可;(3)先将点D(2,m)代入(1)中所求的抛物线的解析式,求出m的值,得到点D的坐标,然后假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,再分三种情况进行讨论:①PB=PD;②BP=BD;③DP=DB;每一种情况都可以根据两点间的距离公式列出关于y的方程,解方程即可.详解:(1)将A(-2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,得,解得:,所以此抛物线的解析式为y=-x2+x+4;(2)∵y=-x2+x+4,a=-<0,∴抛物线有最大值,最大值为;(3)∵点D(2,m)在抛物线y=-x2+x+4上,∴m=-×22+2+4=4,∴D(2,4),∵B(4,0),∴BD=.假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,分三种情况:①如果PB=PD,那么42+y2=22+(y-4)2,解得y=,所以P1(0,);②如果BP=BD ,那么42+y 2=20,解得y=±2(负值舍去),所以P 2(0,2);③如果DP=DB ,那么22+(y-4)2=20,解得y=0或8,y=0不合题意舍去,y=8时,(0,8)与D ,B 三点共线,不合题意舍去;学=科网综上可知,所有符合条件的P 点的坐标为P 1(0,),P 2(0,2).点睛:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,抛物线的最值的求法,等腰三角形的性质等知识,难度适中.运用分类讨论、方程思想是解题的关键.————再战高中题 —— 能力提升————B 组1、函数242-+-=x x y 在区间]4,1[上的最小值是( )A 、-7B 、-4C 、-2D 、2 2、已知函数322+-=x x y 在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A 、),1[+∞B 、[0,2]C 、[1,2]D 、]2,(-∞ 3、如果函数c bx x x f ++=2)(对任意实数都有)2()2(t f t f -=+,那么( )A 、)4()1()2(f f f <<B 、)4()2()1(f f f <<C 、)1()4()2(f f f <<D 、)1()2()4(f f f <<4、若0,0≥≥y x ,且12=+y x ,那么232y x z +=的最小值为( )A 、2B 、43C 、32D 、05、设21,,x x R m ∈是方程01222=-+-m mx x 的两个实数根,则2221x x +的最小值是 。