重庆市杨家坪中学八年级数学下册《16.2.2 分式的加减--异分母加减运算》学案(无答案) 新人教版
- 格式:doc
- 大小:114.50 KB
- 文档页数:3
第五章 分式与分式方程3.分式的加减——异分母分式加减法(1)教学目标:1、初步掌握通分的步骤,会把异分母分式的加减法转化为同分母分式的加减,会确定最简公分母。
2、类比异分母分数加减法法则,获得异分母分式加减法的法则,掌握异分母分式加减法的基本技能。
重点:分式的通分。
难点:如何确定最简公分母。
三、教学过程设计第一环节 旧知回顾1、xm n x m -+-1= ,b a b ab b a a ++++222= 。
2、异分母分数通分步骤:先求出原来几个分数的分母的 ;再根据 ,把原来的分数化成以最小公倍数为分母的分数。
3、异分母分数加减法法则:异分母分数相加减,先 ,化为 分数后,再加减。
4、分解因式: = , = 活动目的:通过回忆同分母分式的加减法、异分母分数的加减法运算,来引出本节课的内容,同时又对问题3点明了类比的思想方法,使进入新知识的学习顺理成章。
第二环节 新知引入(1)小明认为,只要把异分母的分式化成同分母的分式,异分母的分式的加减问题就变成了同分母的分式的加减问题。
小亮同意小明的这种看法,但他俩的具体做法不同: 小明:a aa a a a a a a a a a a a a 41341344124443413222==+=⨯+⨯⨯=+ 小亮:a a a a a a a 4134141241443413=+=+⨯⨯=+ 你对这两种做法有何评论?与同伴交流。
xx 43-25)(10)(2++-+y x y x第三环节 新知探究(一)确定最简公分母和通分问题1、若分式的分母是多项式(能分解因式)时,如何确定最简公分母?问题2、为了确定最简公分母和通分的简便,能约分的分式要先 。
问题3、通分(1) (2)21422+-x x x 与 (3)224222-+-+x x x x x 与 【归纳总结】:1、确定最简公分母的方法:(1)系数:各分式分母系数的 ;(2)因式:各分母中出现的不同因式都要取到;(3)因式的指数:取不同因式的 ;(4)最简公分母则是系数与每个因式的最高次幂的乘积。
八年级数学教案《分式的加减》CONTENTS•课程介绍与目标•分式的基本概念与性质•分式的加减运算规则•分式加减在实际问题中的应用•典型例题分析与解答•课堂练习与作业布置课程介绍与目标01分式的基本概念包括分式的定义、分子、分母及分式的表示方法等。
分式的加减法法则详细讲解同分母分式、异分母分式的加减运算方法。
分式的化简介绍如何通过约分、通分等方法将分式化简为最简形式。
使学生掌握分式的基本概念和加减法运算方法,能够熟练进行分式的加减运算和化简。
通过讲解、示范、练习等多种方式,引导学生积极参与课堂活动,提高分析问题和解决问题的能力。
培养学生严谨的数学思维习惯,增强数学学习的兴趣和自信心。
知识与技能过程与方法情感态度与价值观教学重点与难点教学重点分式的加减法运算方法和化简技巧。
教学难点异分母分式的加减运算,以及如何选择合适的方法进行分式的化简。
分式的基本概念与性质02分式的定义01分式是两个整式相除的商式,其中分子是被除数,分母是除数,分数线相当于除号。
02分式中的分子和分母都是整式,且分母不能为0,否则分式无意义。
分式的基本性质分式的值不变的性质分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变。
分式的符号性质分式的符号取决于分子和分母的符号,当分子和分母同号时,分式为正;异号时,分式为负。
分式的约分性质分式的分子和分母有公因式时,可以约去公因式,得到最简分式。
分式的值域与定义域分式的定义域分母不为0的所有实数组成的集合。
分式的值域根据分式的表达式和定义域,可以确定分式的值域。
一般来说,分式的值域是除了使分母为0的点以外的所有实数。
分式的加减运算规则03同分母分式加减时,分母保持不变,分子进行相应的加减运算。
规则理解如$frac{a}{c} + frac{b}{c} = frac{a+b}{c}$,$frac{a}{c} -frac{b}{c} = frac{a-b}{c}$。
实例解析确保进行运算的分式具有相同的分母。
2025届重庆市杨家坪中学数学八年级第一学期期末学业质量监测试题测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.下列式子是分式的是( )A .2xB .2xC .x πD .2x y + 2.如图①是一直角三角形纸片,∠A=30°,BC =4 cm ,将其折叠,使点C 落在斜边上的点C′处,折痕为BD ,如图②,再将图②沿DE 折叠,使点A 落在DC′的延长线上的点A′处,如图③,则折痕DE 的长为( )A .83cmB .23cmC .22cmD .3 cm3.如果m ﹥n ,那么下列结论错误的是( )A .m +2﹥n +2B .m -2﹥n -2C .2m ﹥2nD .-2m ﹥-2n4.小数0.0…0314用科学记数法表示为83.1410-⨯,则原数中小数点后“0”的个数为( )A .4B .6C .7D .85.如图所示的五角星是轴对称图形,它的对称轴共有( )A .1条B .3条C .5条D .无数条6.如图,在等腰ABC ∆中,AC 的垂直平分线l 交AB 于点D ,若BC a =,AC b =,则DBC ∆的周长是( )A .+a bB .2+a bC .2a b +D .22a b + 7.计算1a ab b ab ÷等于( ) A .21ab ab B .1ab ab C .1ab b D .b ab8.如图,已知△ABC 的面积为12,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是( )A .10B .8C .6D .49.如图,直线AB ∥CD ,一个含60°角的直角三角板EFG (∠E=60°)的直角顶点F 在直线AB 上,斜边EG 与AB 相交于点H ,CD 与FG 相交于点M .若∠AHG=50°,则∠FMD 等于( )A .10°B .20°C .30°D .50°10.下列运算正确的是( )A .(8x 3-4x 2)÷4x = 2x 2-x B .x 5x 2 = x 10 C .x 2y 3÷(xy 3)= x y D .(x 2y 3)2 = x 4y 511.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于( )A .4.1米B .4.0米C .3.9米D .3.8米 12.21x y =-⎧⎨=⎩是关于x ,y 的方程组17ax by bx ay +=⎧⎨+=⎩的解,则(a +b )(a -b )的值为( ) A .-356 B .356 C .16 D .-16二、填空题(每题4分,共24分)13.用四舍五入法将2.0259精确到0.01的近似值为_____.14.如图,已知方格纸中是4个相同的小正方形,则12∠+∠的度数为______.15.已知函数y =3x n -1是正比例函数,则n 的值为_____.16._____3(填>,<或=)17.若(a ﹣4)2+|b ﹣9|=0,则以a 、b 为边长的等腰三角形的周长为_______.18.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).三、解答题(共78分)19.(8分)如图,在ABC ∆中,AD 是BC 边上的高,AE 是ABC ∆的角平分线,,40BE AE B ︒=∠=.(1)求EAD ∠的度数;(2)若1CD =,求AC 的长.20.(8分)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答下列问题:(1)已知:如图,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:当∠A≠36°时,一些等腰三角形也具有这样的特性,即经过等腰三角形某一顶点的一条直线可以把该等腰三角形分成两个小等腰三角形.则∠A的度数为______(写出两个答案即可);并画出相应的具有这种特性的等腰三角形及分割线的示意图,并在图中标出两个小等腰三角形的各内角的度数.(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出一个具有这种特性的三角形的示意图,并在图中标出两个小等腰三角形的各内角的度数.21.(8分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.22.(10分)随着智能手机的普及,微信抢红包已成为春节期间人们最喜欢的活动之一,某校七年级(1)班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.请根据以上信息回答:(1)该班同学所抢红包金额的众数是______,中位数是______;(2)该班同学所抢红包的平均金额是多少元?(3)若该校共有18个班级,平均每班50人,请你估计该校学生春节期间所抢的红包总金额为多少元?23.(10分)如图,在ABC 中,AB AC =,点D 在ABC 内,BD BC =,DBC 60∠︒=,点E 在ABC 外,BCE 150∠︒=,ABE 60∠︒=.(1)求ADB ∠的度数;(2)判断ABE 的形状并加以证明;(3)连接DE ,若DE BD ⊥,DE 8=,求AD 的长.24.(10分)如图,在ABC 中,∠CAB =90°,AC =AB ,射线AM 与CB 交于H 点,分别过C 点、B 点作CF ⊥AM ,BE ⊥AM ,垂足分别为F 点和E 点.(1)若AF =4,AE =1,请求出AB 的长;(2)若D 点是BC 中点,连结FD ,求证:BE =2DF+CF .25.(12分)列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.26.小红家有一个小口瓶(如图5所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)参考答案一、选择题(每题4分,共48分)1、B【解析】解:A 、C 、D 是整式,B 是分式.故选B .2、A【解析】因为在直角三角形中, ∠A=30°,BC =4,故∠CBA=60°,根据折叠的性质得: 90,?30,DC B ACB DBA CBD ∠∠∠∠︒'====︒故C BD 60,CDB ∠∠'==︒得: DB =8360332BC sin ︒==, 60ADC ∠='︒,根据折叠的性质得: 1 302C DE ADE ADC ∠∠∠===''︒, 90,EDB EDC BDC ∠∠∠=+='︒' 故△EDB 为直角三角形,又因为30DBA ∠=︒,故DE =DB tan30°=8338333=cm, 故答案选A.3、D【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 两边都加2,不等号的方向不变,故A 正确;B. 两边都减2,不等号的方向不变,故B 正确;C. 两边都乘以2,不等号的方向不变,故C 正确;D. 两边都乘以-2,不等号的方向改变,故D 错误;故选D.此题考查不等式的性质,解题关键在于掌握运算法则4、C【分析】科学记数法的标准形式为a×10n (1≤|a|<10,n 为整数).本题数据“83.1410-⨯”中的a =3.14,指数n 等于−8,所以,需要把3.14的小数点向左移动8位,就得到原数,即可求解.【详解】解:3.14×10−8=0.1. 原数中小数点后“0”的个数为7,故答案为:C .【点睛】本题考查写出用科学记数法表示的原数.将科学记数法a×10n 表示的数,“还原”成通常表示的数,当n >0时,就是把a 的小数点向右移动n 位所得到的数,当n <0时,就是把a 的小数点向左移动n 位所得到的数.5、C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】五角星的对称轴共有5条,故选C .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.6、A【解析】先根据线段垂直平分线的性质得到AD =DC ,由ABC ∆是等腰三角形得到AB=AC ,则AD +DB =DC +DB =AC ,再根据△BCD 的周长=BC +BD +CD 即可进行解答.【详解】∵l 是线段AC 的垂直平分线,∴AD =DC ,∵ABC ∆是等腰三角形,∴AB AC =,∴AD +CD =BD +CD =AC ,∵BC a =,AC b =,∴△BCD 的周长BC BD CD BC AC a b =++=+=+.【点睛】本题考查的是线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两个端点的距离相等是解题的关键.7、A【分析】直接利用二次根式的乘除运算法则化简求出即可. 【详解】1a ab b ab ÷ =11a b ab ab⋅⋅ =31ab=21ab ab 故选A.【点睛】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.8、C【分析】延长AP 交BC 于E ,根据已知条件证得△ABP ≌△EBP ,根据全等三角形的性质得到AP =PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC =12S △ABC . 【详解】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP =∠EBP ,∵AP ⊥BP ,∴∠APB =∠EPB =90°,在△ABP 和△EBP 中,ABP EBP BP BP APB EPB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABP ≌△EBP (ASA ),∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=12S△ABC=12×12=6.故选C.【点睛】本题考查了全等三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出全等三角形是解题的关键.9、B【解析】试题解析:如图:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG-∠G=50°-30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选B.考点:平行线的性质.10、A【分析】根据整式的除法法则、同底数幂相乘的法则、积的乘方和幂的乘方法则对各选项进行分析即可求解.【详解】(8x3﹣4x2)÷4x=2x2﹣x,故选项A正确;x1x2 =x7≠x10,故选项B错误;x2y3÷(xy3)=x≠x y,故选项C错误;(x2y3)2=x4y6≠x4y1.故选项D错误.故选:A.【点睛】本题考查了同底数幂的乘法、多项式除以单项式、单项式除以单项式及积的乘方,题目比较简单,掌握整式的运算法则是解决本题的关键.11、A【分析】根据题意欲通过如图的隧道,只要比较距厂门中线1.2米处的高度比车高即可,根据勾股定理得出CD的长,进而得出CH的长,即可得出答案.【详解】车宽2.4米,∴欲通过如图的隧道,只要比较距厂门中线1.2米处的高度与车高,在Rt OCD△中,由勾股定理可得:1.6CD==(m),1.62.5 4.1CH CD DH=+=+=米,∴卡车的外形高必须低于4.1米.故选:A.【点睛】此题主要考查了垂径定理和勾股定理的应用,根据题意得出CD的长是解题关键.12、D【解析】把21xy=-⎧⎨=⎩代入方程组17ax bybx ay+=⎧⎨+=⎩,得到关于,a b的方程组,即可求解.【详解】把21xy=-⎧⎨=⎩代入方程组17ax bybx ay+=⎧⎨+=⎩,得:2127a bb a-+=⎧⎨-+=⎩,解得:35. ab=-⎧⎨=-⎩()()()8216.a b a b∴+-=-⨯=-故选:D.【点睛】考查二元一次方程的解法,常用的解法有:代入消元法和加减消元法.二、填空题(每题4分,共24分)13、2.1【分析】把千分位上的数字5进行四舍五入即可.【详解】解:2.0259精确到0.01的近似值为2.1.故答案为:2.1.【点睛】本题考查的知识点是近似数与有效数字,近似数精确到哪一位,就看它的后面一位,进行四舍五入计算即可.14、90º【分析】首先证明三角形全等,根据全等三角形的性质可得对应角相等,再由余角的定义和等量代换可得∠1与∠2的和为90°. 【详解】解:如图,根据方格纸的性质,在△ABD 和△CBE 中AB BC B B BD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBE (SAS ),∴∠1=∠BAD ,∵∠BAD+∠2=90°,∴12∠+∠=90°. 故答案为:90°.【点睛】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.15、1【分析】根据正比例函数:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,可得答案.【详解】解:∵函数y =3x n ﹣1是正比例函数,∴n ﹣1=1,则n =1.故答案是:1.【点睛】本题主要考查正比例函数的概念,掌握正比例函数的概念是解题的关键.16、<.【解析】将3转化为,再比较大小即可得出结论.【详解】∵3=, ∴<, ∴<3. 故答案为<.【点睛】本题考查了实数的大小比较,解题的关键是熟练的掌握实数的大小比较方法. 17、1【分析】先根据非负数的性质列式求出a 、b 再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a -4=0,b -9=0,解得a =4,b =9,① 若a =4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,② 若b =9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长=9+9+4=1.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.18、②.【分析】一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解.【详解】∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC ∆≌DCB ∆;若添加②AC DB =,则属于边边角的顺序,不能判定ABC ∆≌DCB ∆;若添加③AB DC =,则属于边角边的顺序,可以判定ABC ∆≌DCB ∆.故答案为②.【点睛】本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.三、解答题(共78分)19、(1)10°;(1)1.【分析】(1)由题知∠ABE=∠BAE=40°,根据三角形的一个外角等于与它不相邻的两个内角和求得∠AEC=80°,因为AD 是BC 边上的高,即可求解.(1) AE 是ABC ∆的角平分线,结合题(1)得出∠DAC=30°,即可求解.【详解】解:(1)∵,40BE AE B ︒=∠=∴40BAE B ︒∠=∠=∴80AEC BAE B ︒∠=∠+∠=∵AD 是BC 边上得高,∴90ADE ADC ︒∠=∠=∴90908010EAD AEC ︒︒︒︒∠=-∠=-=(1)∵AE 是ABC ∆的角平分线,∴40CAE BAE ︒∠=∠=∴401030CAD CAE EAD ︒︒︒∠=∠=-∠=-=∵90ADC ︒∠=∴22AC CD ==【点睛】本题考查了三角形外角的性质以及角平分线的性质,掌握这两个知识点是解题的关键.20、(1)见解析;(2)90°或108°或01807;(3)见解析 【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C =72°,那么∠BDC =72°则可得AD =BD =CB ∴△ABD 与△DBC 都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形.【详解】(1)证明:在△ABC 中,∵AB=AC ,∠A=36°∴∠ABC=∠C=12(180°-∠A )=72° ∵BD 平分∠ABC ,∴∠1=∠2=36°∴∠1=∠A∴AD=BD∴△ABD是等腰三角形∵∠BDC=∠1+∠A=72°∴∠BDC=∠C=72°∴BD=BC,∴△BDC是等腰三角形(2)如下图所示:∴顶角∠A的度数为90°或108°或1807︒,故答案为:90°或108°或1807︒;(3)如图所示.【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.21、OE⊥AB,证明见解析.【分析】首先进行判断:OE⊥AB,由已知条件不难证明△BAC≌△ABD,得∠OBA=∠OAB,再利用等腰三角形“三线合一”的性质即可证得结论.【详解】解:在△BAC和△ABD中AC=BD∠BAC=∠ABDAB=BA∴△BAC ≌△ABD∴∠OBA=∠OAB∴OA=OB又∵AE=BE∴OE ⊥AB .22、(1)30,30;(2)32.4元;(3)29160元.【分析】(1)由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数;(2)根据加权平均数的计算公式列式求解即可;(3)利用样本平均数乘以该校总人数即可.【详解】(1)捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30.故答案为30,30;(2)该班同学所抢红包的平均金额是(6×10+13×20+20×30+8×50+3×100)÷50=32.4(元);(3)18×50×32.4=29160(元).答:估计该校学生春节期间所抢的红包总金额为29160元.【点睛】此题考查加权平均数,中位数,众数,解题关键在于利用统计图中的数据进行计算.23、 (1) 150°;(2) △ABE 是等边三角形,理由见解析;(3)1 【分析】(1)首先证明△DBC 是等边三角形,推出∠BDC=60°,再证明△ADB ≌△ADC ,推出∠ADB=∠ADC 即可解决问题.(2)结论:△ABE 是等边三角形.只要证明△ABD ≌△EBC 即可.(3)首先证明△DEC 是含有30度角的直角三角形,求出EC 的长,理由全等三角形的性质即可解决问题.【详解】(1)解:∵BD=BC ,∠DBC=60°,∴△DBC 是等边三角形,∴DB=DC ,∠BDC=∠DBC=∠DCB=60°,在△ADB 和△ADC 中,AB AC AD AD DB DC =⎧⎪=⎨⎪=⎩,∴△ADB ≌△ADC ,∴∠ADB=∠ADC ,∴∠ADB=12(360°﹣60°)=150°.(2)解:结论:△ABE 是等边三角形.理由:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE ,在△ABD 和△EBC 中,150AB EB ADB BCE ABD CBE =⎧⎪∠=∠=︒⎨⎪∠=∠⎩,∴△ABD ≌△EBC ,∴AB=BE ,∵∠ABE=60°,∴△ABE 是等边三角形. (3)解:连接DE .∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°, ∴∠EDC=30°,∴EC=12DE=1,∵△ABD ≌△EBC ,∴AD=EC=1. 【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质.24、(117;(2)见解析【分析】(1)证明△ABE ≌△CAF 得BE =AF ,进而由勾股定理求得AB ; (2)连接AD 、DE ,证明△ADE ≌△CDF 得到DE =DF ,进而得EF 2DF ,进而得出结论.【详解】解:(1)∵CF ⊥AM ,BE ⊥AM ,∴∠AEB =∠CFA =90°,∵∠CAB =90°,∴∠BAE+∠ABE =∠BAE+∠CAF =90°,∴∠ABE =∠CAF ,∵AC =AB ,∴△ABE ≌△CAF (AAS ),∴BE =AF =4,∴AB 22221417AE BE +=+=;(2)连接AD、DE,∵△ABE≌△CAF,∴AE=CF,∵,∠CAB=90°,AC=AB,D是BC的中点,∴AD=CD,∠ADC=90°,∵CF⊥AM,∴∠CFA=90°,∵∠AHD=∠CHF,∴∠DAE=∠DCF,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∴∠EDF=∠ADC=90°,∴EF=2DF,∵AF=AE+EF,BE=AF,∴BE=2DF+CF.【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的性质及判定,勾股定理,关键在构造和证明全等三角形.25、纯电动车行驶一千米所需电费为0.18元【解析】试题分析:此题的等量关系是:A地到B地的路程是不变的,即:试题解析:设新购买的纯电动汽车每行驶一千米所需电费为x元.由题意得:解得:x=0.18经检验0.18为原方程的解答:纯电动车行驶一千米所需电费为0.18元.考点:分式方程的应用26、见解析.【分析】连接AB 、CD ,由条件可以证明△AOB ≌△DOC ,从而可以得出AB=CD ,故只要量出AB 的长,就可以知道玻璃瓶的内径.【详解】解:连接AB 、CD ,∵O 为AD 、BC 的中点,∴AO=DO ,BO=CO .在△AOB 和△DOC 中,AO DO AOB DOC BO CO =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△DOC .∴AB=CD .∴只要量出AB 的长,就可以知道玻璃瓶的内径.。
2017春八年级数学下册16.2.2《分式的加减》分式的加减—异分母分式加减教案2(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春八年级数学下册16.2.2《分式的加减》分式的加减—异分母分式加减教案2(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春八年级数学下册16.2.2《分式的加减》分式的加减—异分母分式加减教案2(新版)华东师大版的全部内容。
16。
2.2 分式的加减—-异分母分式加减教学目标:1.理解掌握异分母分式加减法法则.2。
能正确熟练地进行异分母分式的加减运算。
3。
在课堂活动中培养学生乐于探究、合作学习的习惯;渗透类比、化归数学思想方法,提高运算能力。
重点难点:重点:异分母分式的加减法法则及其运用。
难点:正确确定最简公分母和灵活运用法则。
教学过程一、情境引入:从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有1km的上坡路,2km的下坡路,小丽在上坡路上的骑车速度为vkm/h ,在平路上的骑车速度为2vkm/h,在下坡路上的骑车速度为3vkm/h,那么当走第二条路时,她从甲地到乙地需要多长时间?12()3hv v +她走哪条路花费时间少?少用多长时间?123()32hv v v+-二、解读探究1、想一想,异分母分数如何加减?(学生举例)你认为异分母的分式应该如何加减?比如314a a+应该怎样计算?议一议,小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同.小明:a a 413+a a a a a aa a a a a a a 41341344124443222==+=⋅+⋅⋅= 小亮:a a a a a a a 4134141241443413=+=+⋅⨯=+你对这两种做法有何评论?与同伴交流.小结:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分。
回忆:如何计算5251+、6141+,从中可以得到什么启示?16.2.2 分式的加减法教学目标:1、知识与技能:使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算。
2、过程与方法:通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式通分,培养学生分式运算的能力。
3、情感态度与价值观:渗透类比、化归数学思想方法,培养学生的能力。
教学重点:让学生熟练地掌握同分母、异分母分式的加减法。
教学难点:分式的分子是多项式的分式减法的符号法则,去括号法则应用。
教学过程:一、实践与探索1、回忆:同分母的分数的加减法法则: 同分母的分数相加减,分母不变,把分子相加减。
2、试一试:计算:(1)a a b 2+;(2)ab a 322- 3、总结一下怎样进行分式的加减法? 概括:同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二、例题1、例3计算:xy yx xy y x 22)()(--+2、例4 计算:1624432---x x .分析.. 这里两个加项的分母不同,要先通分.为此,先找出它们的最简公分母.注意到162-x =)4)(4(-+x x ,所以最简公分母是)4)(4(-+x x解 1624432---x x=)4)(4(2443-+--x x x =)4)(4(24)4)(4()4(3-+--++x x x x x =)4)(4(24)4(3-+-+x x x=)4)(4(123-+-x x x =)4)(4()4(3-+-x x x =43+x三、练习:P9第1题(1)(3)、第2题(1)(3)四、作业:P9习题17.2第2、3、4题五、教学反思:1、同分母分式的加减法:类似于同分母的分数的加减法;2、异分母分式的加减法步骤:①. 正确地找出各分式的最简公分母。
求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。
新课标人教版初中八年级下册第十六章《16.2.2分式的加减》精品教案一、教学过程(一)复习提问1.什么叫通分?2.通分的关键是什么?3.什么叫最简公分母?4.通分的作用是什么?(引出新课)(二)新课1.同分母的分式加减法.由学生类比同分母分数加减法小结同分母分式加减法法则,训练学生使用数学语言.文字叙述:同分母的分式相加减,分母不变,把分子相加减.2.由学生小结异分母的分式加减法法则.文字叙述:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.例1 计算:小结:(1)注意分数线有括号的作用,分子相加减时,要注意添括号.(2)把分子相加减后,如果所得结果不是最简分式,要约分.例2 计算:请学生分析:(1)分母是否相同?(2)如何把分母化为相同的?小结:注意符号问题.例3 计算:由学生分析解法:①通分;②加减.请学生观察题目特点,通过讨论,得到最简洁的解法.(三)课堂小结1.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.2.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.3.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.4.作为最后结果,如果是分式则应该是最简分式.(四)课堂练习教材P.83.1、2、3(1)、(3)、(5).学生板演,并相互纠错.二、作业三、板书设计16.2.2分式的加减(2)一、教学过程(一)复习提问分式加减法法则.(二)新课分式混合运算.例1 计算:解:小结:1.对于混合运算,一般应按运算顺序,有括号先做括号中的运算,若利用乘法对加法的分配律,有时可简化运算,而合理简捷的运算途径是我们始终提倡和追求的.2.对每一步变形,均应为后边运算打好基础,并为后边运算的简捷合理提供条件.可以说,这是运算能力的一种体现.3.当通分熟练之后,有些步骤可以同时进行.4.注意约分时的符号问题.例2 计算:由学生板演.解:=-a-1.解:解:(三)练习教材P.22中1、2.二、作业三、板书设计。