八年级数学分式的加减法
- 格式:ppt
- 大小:457.50 KB
- 文档页数:9
分式的加减法(一)学习目标1.能利用分式的基本性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.要点梳理要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:.要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:.要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.要点四、分式的混合运算与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握.(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.典型例题类型一、同分母分式的加减1、计算:(1);(2);【变式】计算:(1);(2).类型二、异分母分式的加减2、计算:(1);(2);(3)【变式】计算:(1);(2)类型三、分式的加减运算的应用3、请先化简,再选取一个使原式有意义而你又喜欢的数代入求值.类型四、分式的混合运算4、计算:(1);(2)巩固练习一.选择题1.已知()A.B.C.D.2.等于()A.B.C.D.3.的计算结果是()A.B.C.D.4. 化简,其结果是()A. B. C. D. 5.等于()A.B.C.D.6.等于()A.B.C.D.1二.填空题7. 分式的最简公分母是______.8.分式的最简公分母是______.9.计算的结果是____________.10. ____________.11. _________.12.若=2,=3,则=______.三.解答题13. 计算下列各题:(1)(2)(3)(4)14.已知,用“+”或“-”连结M、N,有三种不同的形式:M+N、M-N、N-M,请你任选其中一种进行计算,并化简求值,其中∶=5∶2.15.已知,求代数式的值.【答案与解析】解:(1);(2)【总结升华】本例为同分母分式加减法的运算,计算时注意运算符号,结果一定要化简.【变式】计算:(1);(2). 答案与解析【答案】解:(1).(2)。
八年级数学知识点整理:分式的加减分式的四则运算1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。
用字母表示为:a/c±b/c=(a±b)/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进展计算。
用字母表示为:a/b ±c/d=(ad±cb)/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c不管什么样的计算,其过程都是需要大家急躁和细心的。
一、约分与通分:1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;分式约分:将分子、分母中的公因式约去,叫做分式的约分。
分式约分的依据是分式的根本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。
约分的方法和步骤包括:(1)当分子、分母是单项式时,公因式是一样因式的最低次幂与系数的最大公约数的积;(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。
2.通分:依据分式的根本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。
分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。
(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的`最小公倍数、一样字母的最高次幂的全部不同字母的积;(2)假如各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;(3)通分后的各分式的分母一样,通分后的各分式分别与原来的分式相等;(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。