2019届高考一轮复习备考资料之数学人教A版全国用讲义之第五章5.4平面向量的综合应用
- 格式:docx
- 大小:448.97 KB
- 文档页数:18
高考数学知识点精华帖 第五章平面向量 新人教A 版考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离、平移. 考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式.§05. 平面向量 知识要点1.本章知识网络结构2.向量的概念(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 AB ;字母表示:a ;坐标表示法 a =xi+yj =(x,y). (3)向量的长度:即向量的大小,记作|a |. (4)特殊的向量:零向量a =O ⇔|a |=O .单位向量a O 为单位向量⇔|a O |=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)⎩⎨⎧==⇔2121y y x x(6) 相反向量:a =-b ⇔b =-a ⇔a +b =0(7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a ∥b .平行向量也称为共线向量. 运算类型几何方法坐标方法运算性质向量的 加法1.平行四边形法则2.三角形法则1212(,)a b x x y y +=++a b b a +=+()()a b c a b c ++=++AC BC AB =+向量的 减法三角形法则1212(,)a b x x y y -=--()a b a b -=+-AB BA =-,AB OA OB =-数 乘 向 量1.a λ是一个向量,满足:||||||a a λλ=2.λ>0时, a a λ与同向;λ<0时, a a λ与异向;λ=0时, 0a λ=.(,)a x y λλλ=()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+//a b a b λ⇔=向 量 的 数 量 积a b •是一个数1.00a b ==或时,0a b •=.2.00||||cos(,)a b a b a b a b ≠≠=且时,1212a b x x y y •=+a b b a •=•()()()a b a b a b λλλ•=•=•()a b c a c b c +•=•+•2222||||=a a a x y =+即||||||a b a b •≤4.重要定理、公式(1)平面向量基本定理e 1,e 2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)两个向量平行的充要条件a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=O. (3)两个向量垂直的充要条件a ⊥b ⇔a ·b =O ⇔x 1x 2+y 1y 2=O. (4)线段的定比分点公式设点P 分有向线段21P P 所成的比为λ,即P P 1=λ2PP ,则OP =λ+111OP +λ+112OP (线段的定比分点的向量公式) ⎪⎪⎩⎪⎪⎨⎧++=++=.1,12121λλλλy y y x x x (线段定比分点的坐标公式) 当λ=1时,得中点公式:OP =21(1OP +2OP )或⎪⎪⎩⎪⎪⎨⎧+=+=.2,22121y y y x x x (5)平移公式设点P (x ,y )按向量a =(h,k)平移后得到点P ′(x ′,y ′), 则P O '=OP +a 或⎩⎨⎧+='+='.,k y y h x x曲线y =f (x )按向量a =(h,k)平移后所得的曲线的函数解析式为: y -k=f (x -h) (6)正、余弦定理 正弦定理:.2sin sin sin R CcB b A a === 余弦定理:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .(7)三角形面积计算公式:设△ABC 的三边为a ,b ,c ,其高分别为h a ,h b ,h c ,半周长为P ,外接圆、内切圆的半径为R ,r .①S △=1/2ah a =1/2bh b =1/2ch c ②S △=Pr ③S △=abc/4R④S △=1/2sin C ·ab=1/2ac ·sin B=1/2cb ·sin A ⑤S △=()()()c P b P a P P --- [海伦公式] ⑥S △=1/2(b+c-a )r a [如下图]=1/2(b+a-c )r c =1/2(a+c-b )r b[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心. 如图:图1 图2 图3 图4图1中的I 为S △ABC 的内心, S △=Pr图2中的I 为S △ABC 的一个旁心,S △=1/2(b+c-a )r a附:三角形的五个“心”; 重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点.AB Oa cI A BC D EF IA B C D EF r ar ar abc a a b c ACN E F旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O 是△ABC 的内切圆,若BC =a ,AC =b ,AB =c [注:s 为△ABC 的半周长,即2cb a ++] 则:①AE=a s -=1/2(b+c-a ) ②BN=b s -=1/2(a+c-b ) ③FC=c s -=1/2(a+b-c )综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt △ABC ,c 为斜边,则内切圆半径r =cb a abc b a ++=-+2(如图3). ⑹在△ABC 中,有下列等式成立C B A C B A tan tan tan tan tan tan =++. 证明:因为,C B A -=+π所以()()C B A -=+πtan tan ,所以C BA BA tan tan tan 1tan tan -=-+,∴结论!⑺在△ABC 中,D 是BC 上任意一点,则DC BD BCBCAB BD AC AD ⋅-+=222.证明:在△ABCD 中,由余弦定理,有 B BD AB BD AB AD cos 2222⋅⋅-+=① 在△ABC 中,由余弦定理有 BC AB AC BC AB B ⋅-+=2cos 222②,②代入①,化简可得,DC BD BCBCAB BD AC AD ⋅-+=222(斯德瓦定理)①若AD 是BC 上的中线,2222221a cb m a -+=; ②若AD 是∠A 的平分线,()a p p bc cb t a -⋅+=2,其中p为半周长; ③若AD 是BC 上的高,()()()c p b p a p p ah a ---=2,其中p 为半周长.⑻△ABC 的判定:⇔+=222b a c △ABC 为直角△⇔∠A + ∠B =2π2c <⇔+22b a △ABC 为钝角△⇔∠A + ∠B <2π 2c >⇔+22b a △ABC 为锐角△⇔∠A + ∠B >2π 附:证明:abc b a C 2cos 222-+=,得在钝角△ABC 中,222222,00cos c b a c b a C +⇔-+⇔⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.)2=空间向量1.空间向量的概念:具有大小和方向的量叫做向量 注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量 ⑶空间的两个向量可用同一平面内的两条有向线段来表示DACB图52.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下b a+=+= b a-=-=)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a 平行于b 记作b a//.当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线. 4.共线向量定理及其推论:共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对于任意一点O ,点P 在直线l 上的充要条件是存在实数t 满足等式t +=a.其中向量a叫做直线l 的方向向量. 5.向量与平面平行:已知平面α和向量a ,作OA a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量 说明:空间任意的两向量都是共面的 6.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使MP xMA yMB =+或对空间任一点O ,有OP OM xMA yMB =++ ① ①式叫做平面MAB7 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个 有序实数,,x y z ,使OP xOA yOB zOC =++8 空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥. 9.向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a . 10.向量的数量积: a b ⋅=||||cos ,a b a b ⋅⋅<>.已知向量AB a =和轴l ,e 是l 上与l 同方向的单位向量,作点A 在l 上的射影A ',作点B 在l 上的射影B ',则A B ''叫做向量AB 在轴l 上或在e 上的正射影.可以证明A B ''的长度||||cos ,||A B AB a e a e ''=<>=⋅. 11.空间向量数量积的性质:(1)||cos ,a e a a e ⋅=<>.(2)0a b a b ⊥⇔⋅=.(3)2||a a a =⋅. 12.空间向量数量积运算律:(1)()()()a b a b a b λλλ⋅=⋅=⋅.(2)a b b a ⋅=⋅(交换律)(3)()a b c a b a c ⋅+=⋅+⋅(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+))(,,(321R a a a a ∈=λλλλλ332211b a b a b a b a ++=⋅a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔0332211=++⇔⊥b a b a b a b a222321aaa++==(=⇒⋅=)232221232221332211||||,cosbbbaaababababababa++⋅++++=⋅⋅>=<②空间两点的距离公式:212212212)()()(zzyyxxd-+-+-=.(2)法向量:若向量a所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a,如果α⊥a那么向量a叫做平面α的法向量.(3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面α的法向量,AB是平面α的一条射线,其中α∈A,则点B到平面α②利用法向量求二面角的平面角定理:设21,n分别是二面角βα--l中平面βα,的法向量,则21,nn所成的角就是所求二面角的平面角或其补角大小(21,nn方向相同,则为补角,21,nn反方,则为其夹角).③证直线和平面平行定理:已知直线≠⊄a平面α,α∈⋅∈⋅DCaBA,,且CDE三点不共线,则a∥α的充要条件是存在有序实数对μλ⋅使CECDABμλ+=.(常设CECDABμλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB与平面相交).A B。
高考数学一轮复习 第五章 平面向量与复数5.3 平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积,记作a ·b投影|a |cos θ叫做向量a 在b 方向上的投影|b |cos θ叫做向量b 在a方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 符号表示 坐标表示模|a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b |a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a·b )·c =a·(b·c ).( × ) 教材改编题1.(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( )B .a·b =b·c ,则a =cC .a·b =0⇒a =0或b =0D .(a +b )·(a -b )=|a |2-|b |2 答案 D2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________. 答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0, 故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =______;a ·b =______. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·邹城模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →|=4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316 AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=__________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144=108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算; ②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b |a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b|=|a +b|(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73 B.23 C.79 D.29答案 B解析 方法一 设a =(1,0),b =(0,1), 则c =(7,2), ∴cos 〈a ,c 〉=a ·c |a ||c |=73, ∴sin 〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos 〈a ,c 〉=a ·c |a ||c |=71×3=73, ∴sin 〈a ,c 〉=23. (2)(2021·新高考全国Ⅰ改编)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则 ①|OP 1—→|=|OP 2—→|; ②|AP 1—→|=|AP 2—→|; ③OA →·OP 3—→=OP 1—→·OP 2—→; ④OA →·OP 1—→=OP 2—→·OP 3—→.以上结论正确的有________.(填序号) 答案 ①③解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故①正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故②错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故③正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA →·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故④错误.题型三 平面向量的实际应用例5 (2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论不正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 B解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝⎛⎭⎪⎫6+2222×1×1+3=32, ∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b , 则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线, 则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°,故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·四川乐山第一中学模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·宜昌模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+-32=±⎝⎛⎭⎫255,-55. 5.(2022·盐城模拟)下列关于向量a ,b ,c 的运算,不一定成立的是( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c )C.a·b≤|a||b|D.|a-b|≤|a|+|b|答案 B解析根据数量积的分配律可知A正确;选项B中,左边为c的共线向量,右边为a的共线向量,故B不正确;根据数量积的定义,可知a·b=|a||b|cos〈a,b〉≤|a||b|,故C正确;|a-b|2=|a|2+|b|2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉≤|a|2+|b|2+2|a||b|=(|a|+|b|)2,故|a-b|≤|a|+|b|,故D正确.6.已知向量a=(2,1),b=(1,-1),c=(m-2,-n),其中m,n均为正数,且(a-b)∥c,则下列说法正确的是()A.a与b的夹角为钝角B.向量a在b上的投影为-2 2C.2m+n=4D.mn的最小值为2答案 C解析对于A,向量a=(2,1),b=(1,-1),则a·b=2-1=1>0,又a,b不共线,所以a,b的夹角为锐角,故A错误;对于B,设向量a,b的夹角为θ,则cos θ=a·b|a||b|=15×2=1010,所以向量a在b上的投影为|a |cos θ=5×1010=22,故B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,故C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,故D 错误.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方, 得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b ,所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·南昌模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m ·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233, 在△BCE 中,BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·恩施质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( )A .12B .-12C .20D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD →=AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC=|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的角平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的角平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12, 所以cos ∠BAC =12,∠BAC =60°. 所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N ,∴|F 1+F 2|=102×2=20 N ,∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________.答案 1 1120 解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB ,∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( )A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≥|a |+1答案 A解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 错误.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 (1)m·n =sin A cos B +sin B cos A=sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π,所以sin(A +B )=sin C ,所以m·n =sin C ,又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12, 又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA →·(AB →-AC →)=18,所以CA →·CB →=18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
§5.2 平面向量基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0. 知识拓展1.若a 与b 不共线,λa +μb =0,则λ=μ=0.2.设a =(x 1,y 1),b =(x 2,y 2),如果x 2≠0,y 2≠0,则a ∥b ⇔x 1x 2=y 1y 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( × )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( √ )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可用这组基底唯一表示.( √ )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( × )(5)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( √ ) (6)平面向量不论经过怎样的平移变换之后其坐标不变.( √ ) 题组二 教材改编2.[P97例5]已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. 答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧ 4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5. 3.[P119A 组T9]已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1). 由m a +n b 与a -2b 共线, 得2m -n 4=3m +2n -1,所以m n =-12. 题组三 易错自纠4.设e 1,e 2是平面内一组基底,若λ1e 1+λ2e 2=0,则λ1+λ2=________. 答案 05.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=________. 答案 (-7,-4)解析 根据题意得AB →=(3,1),∴BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4).6.(2016·全国Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. 答案 -6解析 因为a ∥b ,所以(-2)×m -4×3=0,解得m =-6.题型一 平面向量基本定理的应用1.在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 答案 B解析 方法一 设a =k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴⎩⎪⎨⎪⎧k 2=3,2k 2=2,无解;B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2),∴⎩⎪⎨⎪⎧ -k 1+5k 2=3,2k 1-2k 2=2,解得⎩⎪⎨⎪⎧k 1=2,k 2=1.故B 中的e 1,e 2可以把a 表示出来; 同理,C ,D 选项同A 选项,无解.方法二 只需判断e 1与e 2是否共线即可,不共线的就符合要求.2.(2017·济南模拟)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 ∵AN →=13NC →,∴AC →=4AN →,∵AD →=mAB →+211AC →=mAB →+811AN →,又P ,B ,N 三点共线,∴m +811=1,即m =311.思维升华 平面向量基本定理应用的实质和一般思路(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用平面向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决. 题型二 平面向量的坐标运算典例 (1)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( ) A.⎝⎛⎭⎫1,83 B.⎝⎛⎭⎫-133,83 C.⎝⎛⎭⎫133,43 D.⎝⎛⎭⎫-133,-43 答案 D解析 由已知3c =-a +2b=(-5,2)+(-8,-6)=(-13,-4). 所以c =⎝⎛⎭⎫-133,-43. (2)(2017·北京西城区模拟)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ等于( )A .1B .2C .3D .4 答案 D解析 以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2),即⎩⎪⎨⎪⎧-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4.引申探究在本例(2)中,试用a ,c 表示b .解 建立本例(2)解答中的平面直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),设b =x a +y c ,则(6,2)=x (-1,1)+y (-1,-3).即⎩⎪⎨⎪⎧ -x -y =6,x -3y =2,解得⎩⎪⎨⎪⎧x =-4,y =-2, 故b =-4a -2c .思维升华 向量的坐标运算主要是利用加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则. 跟踪训练 (1)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝⎛⎭⎫2,72 B.⎝⎛⎭⎫2,-12 C .(3,2) D .(1,3)答案 A解析 设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,∴⎩⎪⎨⎪⎧4=2x ,3=2(y -2),∴⎩⎪⎨⎪⎧x =2,y =72,故选A.(2)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)答案 D解析 12a =⎝⎛⎭⎫12,12,32b =⎝⎛⎭⎫32,-32, 故12a -32b =(-1,2).题型三 向量共线的坐标表示命题点1 利用向量共线求向量或点的坐标典例 已知点A (4,0),B (4,4),C (2,6),则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 方法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ). 又AC →=OC →-OA →=(-2,6),由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).方法二 设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y 4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3). 命题点2 利用向量共线求参数典例 已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ,若a ∥b ,则锐角θ=________. 答案 45°解析 由a ∥b ,得(1-sin θ)(1+sin θ)=12,∴cos 2θ=12,∴cos θ=22或cos θ=-22,又θ为锐角,∴θ=45°.思维升华 平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.跟踪训练 (1)(2017·北京海淀区模拟)已知向量a =(1,1),点A (3,0),点B 为直线y =2x 上的一个动点.若AB →∥a ,则点B 的坐标为________. 答案 (-3,-6)解析 设B (x,2x ),则AB →=(x -3,2x ). ∵AB →∥a ,∴x -3-2x =0,解得x =-3, ∴B (-3,-6).(2)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 答案 -54解析 AB →=(a -1,3),AC →=(-3,4), 根据题意AB →∥AC →,∴4(a -1)-3×(-3)=0,即4a =-5,∴a =-54.解析法(坐标法)在向量中的应用典例 (12分)给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.思想方法指导 建立平面直角坐标系,将向量坐标化,将向量问题转化为函数问题更加凸显向量的代数特征. 规范解答解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝⎛⎭⎫-12,32.[4分]设∠AOC =α⎝⎛⎭⎫α∈⎣⎡⎦⎤0,2π3,则C (cos α,sin α), 由OC →=xOA →+yOB →,得⎩⎨⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,[8分] 所以x +y =cos α+3sin α=2sin ⎝⎛⎭⎫α+π6,[10分] 又α∈⎣⎡⎦⎤0,2π3, 所以当α=π3时,x +y 取得最大值2.[12分]1.如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( ) A .e 1与e 1+e 2 B .e 1-2e 2与e 1+2e 2 C .e 1+e 2与e 1-e 2 D .e 1-2e 2与-e 1+2e 2 答案 D2.(2018·郑州质检)设平面向量a =(-1,0),b =(0,2),则2a -3b 等于( ) A .(6,3) B .(-2,-6) C .(2,1) D .(7,2)答案 B解析 2a -3b =(-2,0)-(0,6)=(-2,-6).3.(2018·河南中原名校联考)如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A.58B.14 C .1 D.516答案 A解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58,故选A.4.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .5.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是( ) A .(-∞,2) B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)答案 D解析 由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.6.(2018·厦门调研)已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则m n 的值为( )A .2 B.52 C .3 D .4答案 C解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角坐标系(图略), OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ). ∵tan 30°=3n m =33,∴m =3n ,即mn=3,故选C. 7.在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________. 答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).8.(2018·雅安模拟)已知向量a =(3,1),b =(0,-1),c =(k ,3),若a -2b 与c 共线,则k =________. 答案 1解析 ∵a -2b =(3,3),且a -2b ∥c , ∴3×3-3k =0,解得k =1.9.(2017·福建四地六校联考)已知A (1,0),B (4,0),C (3,4),O 为坐标原点,且OD →=12(OA →+OB→-CB →),则|BD →|=________. 答案 2 2解析 由OD →=12(OA →+OB →-CB →)=12(OA →+OC →)知,点D 是线段AC 的中点,故D (2,2),所以BD→=(-2,2),故|BD →|=(-2)2+22=2 2.10.(2018·洛阳质检)在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN→=____________.(用e 1,e 2表示) 答案 -23e 1+512e 2解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.11.已知A (1,1),B (3,-1),C (a ,b ),若A ,B ,C 三点共线,则a ,b 的关系式为________. 答案 a +b =2解析 由已知得AB →=(2,-2),AC →=(a -1,b -1), ∵A ,B ,C 三点共线,∴AB →∥AC →. ∴2(b -1)+2(a -1)=0,即a +b =2.12.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ;(3)求M ,N 的坐标及向量MN →的坐标.解 (1)由已知得a =(5,-5),b =(-6,-3),c =(1,8).∴3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n )=(5,-5),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5, 解得⎩⎪⎨⎪⎧m =-1,n =-1. (3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20),∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).13.(2018·河南三市联考)已知点A (1,3),B (4,-1),则与AB →同方向的单位向量是__________.答案 ⎝⎛⎭⎫35,-45 解析 AB →=OB →-OA →=(4,-1)-(1,3)=(3,-4),∴与AB →同方向的单位向量为AB →|AB →|=⎝⎛⎭⎫35,-45. 14.(2017·杭州五校联盟一诊)在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则5λ+3μ的最大值为______. 答案102 解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵AP =52,∴x 2+y 2=54. 点P 满足的约束条件为⎩⎪⎨⎪⎧ 0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ. ∵x +y ≤2(x 2+y 2)= 2×54=102, 当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.15.(2018·河北石家庄一模)如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.答案 (-1,0)解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0. 又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).16.(2018·开封调研)已知正三角形ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.答案 494解析 建立平面直角坐标系如图所示,则易知B (-3,0),C (3,0),A (0,3).设M (x ,y ),P (a ,b ),∵PM →=MC →,∴⎩⎨⎧ x -a =3-x ,y -b =0-y ,解得⎩⎨⎧ a =2x -3,b =2y ,即P (2x -3,2y ),又∵|AP →|=1.∴P 点在圆①x 2+(y -3)2=1上,即(2x -3)2+(2y -3)2=1,整理得⎝⎛⎭⎫x -322+⎝⎛⎭⎫y -322=14(记为圆②), 即M 点在该圆上,求|BM →|的最大值转化为B 点到该圆②上的一点的最大距离,即B 到圆心的距离再加上该圆的半径:|BM →|2=⎝ ⎛⎭⎪⎫⎝⎛⎭⎫32+32+⎝⎛⎭⎫322+122=494.。
高考数学一轮复习 第五章 平面向量与复数5.5 复 数考试要求 1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数的四则运算,了解复数加、减运算的几何意义.知识梳理1.复数的有关概念(1)复数的定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 是实部,b 是虚部,i 为虚数单位. (2)复数的分类: 复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数b =0,虚数b ≠0其中,当a =0时为纯虚数.(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 互为共轭复数⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (5)复数的模:向量OZ →的模叫做复数z =a +b i 的模或绝对值,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ).2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )一一对应复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R )一一对应平面向量OZ →.3.复数的四则运算(1)复数的加、减、乘、除运算法则: 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =a +b ic -d i c +d ic -d i =ac +bd c 2+d 2+bc -adc 2+d2i(c +d i≠0).(2)几何意义:复数加、减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加、减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.常用结论1.(1±i)2=±2i ;1+i 1-i =i ;1-i1+i =-i.2.-b +a i =i(a +b i)(a ,b ∈R ).3.i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ). 4.i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N ). 5.复数z 的方程在复平面上表示的图形(1)a ≤|z |≤b 表示以原点O 为圆心,以a 和b 为半径的两圆所夹的圆环; (2)|z -(a +b i)|=r (r >0)表示以(a ,b )为圆心,r 为半径的圆. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)复数z =a -b i(a ,b ∈R )中,虚部为b .( × ) (2)复数可以比较大小.( × )(3)已知z =a +b i(a ,b ∈R ),当a =0时,复数z 为纯虚数.( × )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ ) 教材改编题1.已知复数z 满足(2+i)z =1-i ,其中i 是虚数单位,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 D2.复数z =(3+i)(1-4i),则复数z 的实部与虚部之和是________. 答案 -4解析 z =(3+i)(1-4i)=3-12i +i +4=7-11i ,故实部和虚部之和为7-11=-4. 3.若z =(m 2+m -6)+(m -2)i 为纯虚数,则实数m 的值为________. 答案 -3题型一 复数的概念例1 (1)(2021·浙江)已知a ∈R ,(1+a i)i =3+i(i 为虚数单位),则a 等于( ) A .-1 B .1 C .-3 D .3 答案 C解析 方法一 因为(1+a i)i =-a +i =3+i ,所以-a =3,解得a =-3. 方法二 因为(1+a i)i =3+i ,所以1+a i =3+i i =1-3i ,所以a =-3.(2)(2022·新余模拟)若复数z 满足z 1+i i 32-i =1-i ,则复数z 的虚部为( )A .iB .-iC .1D .-1 答案 C解析 ∵z 1+i i 32-i=1-i ,∴z (1+i)(-i)=(2-i)(1-i), ∴z (1-i)=(2-i)(1-i),∴z =2-i , ∴z =2+i ,∴z 的虚部为1. 教师备选1.(2020·全国Ⅲ)若z (1+i)=1-i ,则z 等于( ) A .1-i B .1+i C .-i D .i 答案 D解析 因为z =1-i 1+i =1-i 21+i 1-i=-i ,所以z =i.2.(2020·全国Ⅰ)若z =1+i ,则|z 2-2z |等于( ) A .0 B .1 C. 2 D .2 答案 D解析 方法一 z 2-2z =(1+i)2-2(1+i)=-2, |z 2-2z |=|-2|=2.方法二 |z 2-2z |=|(1+i)2-2(1+i)| =|(1+i)(-1+i)|=|1+i|·|-1+i|=2.思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. (2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.跟踪训练1 (1)(2022·衡水中学模拟)已知x 1+i =1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为( ) A .2+i B .2-i C .1+2iD .1-2i答案 B解析 由x1+i =1-y i ,得x 1-i 1+i 1-i =1-y i ,即x 2-x2i =1-y i , ∴⎩⎨⎧x2=1,x2=y ,解得x =2,y =1,∴x +y i =2+i , ∴其共轭复数为2-i.(2)已知z =1-3i ,则|z -i|=________. 答案5解析 ∵z =1-3i ,∴z =1+3i , ∴z -i =1+3i -i =1+2i , ∴|z -i|=12+22= 5. 题型二 复数的四则运算例2 (1)(2021·新高考全国Ⅰ)已知z =2-i ,则z (z +i)等于( ) A .6-2i B .4-2i C .6+2i D .4+2i答案 C解析 因为z =2-i ,所以z (z +i)=(2-i)(2+2i)=6+2i.(2)设z 1,z 2,z 3为复数,z 1≠0.给出下列命题: ①若|z 2|=|z 3|,则z 2=±z 3; ②若z 1z 2=z 1z 3,则z 2=z 3;③若z 2=z 3,则|z 1z 2|=|z 1z 3|; ④若z 1z 2=|z 1|2,则z 1=z 2. 其中所有正确命题的序号是( ) A .①③ B .②③ C .②④ D .③④ 答案 B解析 由|i|=|1|,知①错误;z 1z 2=z 1z 3,则z 1(z 2-z 3)=0,又z 1≠0,所以z 2=z 3,故②正确; |z 1z 2|=|z 1||z 2|,|z 1z 3|=|z 1||z 3|,又z 2=z 3,所以|z 2|=|z 2|=|z 3|,故③正确,令z 1=i ,z 2=-i ,满足z 1z 2=|z 1|2,不满足z 1=z 2,故④错误. 教师备选1.(2020·新高考全国Ⅰ)2-i1+2i 等于( )A .1B .-1C .iD .-i 答案 D 解析2-i 1+2i =2-i1-2i 1+2i1-2i=-5i5=-i.2.在数学中,记表达式ad -bc 为由⎪⎪⎪⎪⎪⎪a b cd 所确定的二阶行列式.若在复数域内,z 1=1+i ,z 2=2+i 1-i ,z 3=z 2,则当⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=12-i 时,z 4的虚部为________. 答案 -2 解析 依题意知,⎪⎪⎪⎪⎪⎪z 1 z 2z 3 z 4=z 1z 4-z 2z 3,因为z 3=z 2, 且z 2=2+i 1-i=2+i1+i2=1+3i 2,所以z 2z 3=|z 2|2=52,因此有(1+i)z 4-52=12-i ,即(1+i)z 4=3-i , 故z 4=3-i 1+i=3-i1-i2=1-2i.所以z 4的虚部是-2.思维升华 (1)复数的乘法:复数乘法类似于多项式的乘法运算. (2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数. 跟踪训练2 (1)(2021·全国乙卷)设i z =4+3i ,则z 等于( ) A .-3-4i B .-3+4i C .3-4i D .3+4i答案 C解析 方法一 (转化为复数除法运算) 因为i z =4+3i , 所以z =4+3i i =4+3i -i i -i =-4i -3i 2-i 2=3-4i.方法二 (利用复数的代数形式) 设z =a +b i(a ,b ∈R ),则由i z =4+3i ,可得i(a +b i)=4+3i ,即-b +a i =4+3i ,所以⎩⎪⎨⎪⎧-b =4,a =3,即⎩⎪⎨⎪⎧a =3,b =-4,所以z =3-4i. 方法三 (巧用同乘技巧)因为i z =4+3i ,所以i z ·i =(4+3i)·i ,所以-z =4i -3, 所以z =3-4i.(2)若z =i 2 0231-i ,则|z |=________;z +z =________.答案221 解析 z =i2 0231-i =-i 1-i =1-i2,|z |=⎝⎛⎭⎫122+⎝⎛⎭⎫-122=22,z +z =12-12i +12+12i =1.题型三 复数的几何意义例3 (1)(2021·新高考全国Ⅱ)复数2-i1-3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A 解析2-i 1-3i=2-i 1+3i 10=5+5i 10=1+i 2,所以该复数在复平面内对应的点为⎝⎛⎭⎫12,12,该点在第一象限.(2)(2020·全国Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________. 答案 2 3解析 方法一 设z 1-z 2=a +b i ,a ,b ∈R , 因为z 1+z 2=3+i , 所以2z 1=(3+a )+(1+b )i , 2z 2=(3-a )+(1-b )i.因为|z 1|=|z 2|=2,所以|2z 1|=|2z 2|=4, 所以3+a 2+1+b 2=4, ①3-a2+1-b 2=4,②①2+②2,得a 2+b 2=12.所以|z 1-z 2|=a 2+b 2=2 3.方法二 设复数z 1,z 2在复平面内分别对应向量OA →,OB →, 则z 1+z 2对应向量OA →+OB →.由题意知|OA →|=|OB →|=|OA →+OB →|=2,如图所示,以OA ,OB 为邻边作平行四边形OACB ,则z 1-z 2对应向量BA →, 且|OA →|=|AC →|=|OC →|=2, 可得|BA →|=2|OA →|sin 60°=2 3. 故|z 1-z 2|=|BA →|=2 3. 教师备选1.(2020·北京)在复平面内,复数z 对应的点的坐标是(1,2),则i·z 等于( ) A .1+2i B .-2+i C .1-2i D .-2-i答案 B解析 由题意知,z =1+2i , ∴i·z =i(1+2i)=-2+i.2.(2019·全国Ⅰ)设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( ) A .(x +1)2+y 2=1 B .(x -1)2+y 2=1 C .x 2+(y -1)2=1 D .x 2+(y +1)2=1 答案 C解析 ∵z 在复平面内对应的点为(x ,y ), ∴z =x +y i(x ,y ∈R ).∵|z -i|=1,∴|x +(y -1)i|=1, ∴x 2+(y -1)2=1.思维升华 由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观. 跟踪训练3 (1)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A .1+3iB .-3-iC .3-iD .3+i答案 D解析 由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +41+i 1-i 1+i =1-i +4+4i2=1-i +2+2i =3+i.(2)设复数z 满足条件|z |=1,那么|z +22+i|的最大值是( ) A .3 B .2 3 C .1+2 2 D .4 答案 D解析 |z |=1表示单位圆上的点,那么|z +22+i|表示单位圆上的点到点(-22,-1)的距离,求最大值转化为点(-22,-1)到原点的距离加上圆的半径.因为点(-22,-1)到原点的距离为3,所以所求最大值为4.在如图的复平面中,r =a 2+b 2,cos θ=a r ,sin θ=b r ,tan θ=ba(a ≠0).任何一个复数z =a +b i 都可以表示成z =r (cos θ+isin θ)的形式.其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ →所在射线(射线OZ )为终边的角,叫做复数z =a +b i 的辐角.我们把r (cos θ+isin θ)叫做复数的三角形式.对应于复数的三角形式,把z =a +b i 叫做复数的代数形式.复数乘、除运算的三角表示:已知复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),则z 1·z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)].z 1z 2=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)]. 例1 (1)⎝⎛⎭⎫cos π2+isin π2×3⎝⎛⎭⎫cos π6+isin π6 等于( )A.32+332iB.32-332i C .-32+332i D .-32-332i 答案 C解析 ⎝⎛⎭⎫cos π2+isin π2×3⎝⎛⎭⎫cos π6+isin π6 =3⎣⎡⎦⎤cos ⎝⎛⎭⎫π2+π6+isin ⎝⎛⎭⎫π2+π6 =3⎝⎛⎭⎫cos 2π3+isin 2π3=-32+332i. (2)复数cos π3+isin π3经过n 次乘方后,所得的幂等于它的共轭复数,则n 的值等于( ) A .3B .12C .6k -1(k ∈Z )D .6k +1(k ∈Z )答案 C解析 由题意,得⎝⎛⎭⎫cos π3+isin π3n =cos n π3+isin n π3=cos π3-isin π3, 由复数相等的定义,得 ⎩⎨⎧ cos n π3=cos π3=12,sin n π3=-sin π3=-32.解得n π3=2k π-π3(k ∈Z ), ∴n =6k -1(k ∈Z ).(3)复数z =cosπ15+isin π15是方程x 5-α=0的一个根,那么α的值等于( ) A.32+12i B.12+32i C.32-12i D .-12-32i 答案 B解析 由题意得,α=⎝⎛⎭⎫cos π15+isin π155 =cos π3+isin π3=12+32i. 例2 已知i 为虚数单位,z 1=2(cos 60°+isin 60°),z 2=22(sin 30°-icos 30°),则z 1·z 2的三角形式是( )A .4(cos 90°+isin 90°)B .4(cos 30°+isin 30°)C.4(cos 30°-isin 30°)D.4(cos 0°+isin 0°)答案 D解析∵z2=22(sin 30°-icos 30°)=22(cos 300°+isin 300°),∴z1·z2=2(cos 60°+isin 60°)·22(cos 300°+isin 300°)=4(cos 360°+isin 360°)=4(cos 0°+isin 0°).课时精练1.(2022·福州模拟)已知i是虚数单位,则“a=i”是“a2=-1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析i是虚数单位,则i2=-1,“a=i”是“a2=-1”的充分条件;由a2=-1,得a=±i,故“a=i”是“a2=-1”的不必要条件;故“a=i”是“a2=-1”的充分不必要条件.2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=3-i,则z1z2等于() A.-10 B.10 C.-8 D.8答案 A解析∵z1=3-i,z1,z2在复平面内所对应的点关于虚轴对称,∴z2=-3-i,∴z 1z 2=-9-1=-10.3.(2022·长春实验中学模拟)若复数z 的共轭复数为z 且满足z ·(1+2i)=1-i ,则复数z 的虚部为( )A.35B .-35i C.35i D .-35 答案 A解析 z ·(1+2i)=1-i ,∴z =1-i 1+2i =1-i 1-2i 1+2i 1-2i =-1-3i 5=-15-35i , ∴z =-15+35i , ∴复数z 的虚部为35. 4.已知i 是虚数单位,则复数z =i 2 023+i(i -1)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 因为z =i 2 023+i(i -1)=-i -1-i =-1-2i ,所以复数z 在复平面内对应的点是(-1,-2),位于第三象限.5.(2022·潍坊模拟)在复数范围内,已知p ,q 为实数,1-i 是关于x 的方程x 2+px +q =0的一个根,则p +q 等于( )A .2B .1C .0D .-1答案 C解析 因为1-i 是关于x 的方程x 2+px +q =0的一个根,则1+i 是方程x 2+px +q =0的另一根,由根与系数的关系可得⎩⎪⎨⎪⎧ 1+i +1-i =-p ,1+i 1-i =q ,解得p =-2,q =2,所以p +q =0.6.(2022·苏州模拟)若复数z 满足(1+i)·z =5+3i(其中i 是虚数单位),则下列结论正确的是( )A .z 的虚部为-iB .z 的模为17C .z 的共轭复数为4-iD .z 在复平面内对应的点位于第二象限 答案 B解析 由(1+i)·z =5+3i 得z =5+3i 1+i =5+3i 1-i 1+i 1-i=8-2i 2=4-i , 所以z 的虚部为-1,A 错误;z 的模为42+-12=17,B 正确;z 的共轭复数为4+i ,C 错误;z 在复平面内对应的点为(4,-1),位于第四象限,D 错误.7.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=________. 答案 -i解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i =-3i 3=-i.8.(2022·温州模拟)已知复数z =a +b i(a ,b ∈R ,i 为虚数单位),且z 1-i =3+2i ,则a =________,b =________.答案 5 1解析 由z =a +b i(a ,b ∈R ,i 为虚数单位),则z =a -b i ,所以z 1-i=1+i 2(a -b i) =a +b 2+a -b 2i =3+2i , 故a +b 2=3,a -b 2=2,所以a =5,b =1. 9.当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为①实数;②虚数;③纯虚数. 解 ①当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0, 即m =2时,复数z 是实数.②当m 2-2m ≠0,且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.③当⎩⎪⎨⎪⎧ m 2+m -6m =0,m ≠0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.10. 如图所示,在平行四边形OABC 中,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1)AO →,BC →所表示的复数;(2)对角线CA →所表示的复数;(3)B 点对应的复数.解 (1)∵AO →=-OA →,∴AO →所表示的复数为-3-2i ,∵BC →=AO →,∴BC →所表示的复数为-3-2i.(2)∵CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.(3)OB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,∴B 所对应的复数为1+6i.11.欧拉公式e x i =cos x +isin x 是由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项不正确的是( )A .复数e 2i 对应的点位于第二象限B .i 2e π为纯虚数C .复数e x i 3+i的模长等于12 D .i 6e π的共轭复数为12-32i 答案 D解析 对于A ,e 2i =cos 2+isin 2, 因为π2<2<π, 即cos 2<0,sin 2>0,复数e 2i 对应的点位于第二象限,A 正确;对于B ,i 2e π=cos π2+isin π2=i ,i 2e π为纯虚数, B 正确;对于C ,e x i3+i =cos x +isin x 3+i=cos x +isin x 3-i 3+i 3-i =3cos x +sin x 4+3sin x -cos x 4i , 于是得⎪⎪⎪⎪⎪⎪e x i 3+i =⎝ ⎛⎭⎪⎫3cos x +sin x 42+⎝ ⎛⎭⎪⎫3sin x -cos x 42 =12, C 正确; 对于D ,i 6e π=cos π6+isin π6=32+12i , 其共轭复数为32-12i ,D 不正确. 12.(2022·武汉模拟)下列说法中,正确的个数有( )①若|z |=2,则z ·z =4;②若复数z 1,z 2满足|z 1+z 2|=|z 1-z 2|,则z 1z 2=0;③若复数z 的平方是纯虚数,则复数z 的实部和虚部相等;④“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件.A .1个B .2个C .3个D .4个答案 B解析 若|z |=2,则z ·z =|z |2=4,故①正确;设z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ),由|z 1+z 2|=|z 1-z 2|,可得|z 1+z 2|2=(a 1+a 2)2+(b 1+b 2)2=|z 1-z 2|2=(a 1-a 2)2+(b 1-b 2)2则a 1a 2+b 1b 2=0,而z 1z 2=(a 1+b 1i)(a 2+b 2i)=a 1a 2-b 1b 2+a 1b 2i +b 1a 2i=2a 1a 2+a 1b 2i +b 1a 2i 不一定为0,故②错误;当z =1-i 时,z 2=-2i 为纯虚数,其实部和虚部不相等,故③错误;若复数z =(a -1)+(a 2-1)i(a ∈R )是虚数,则a 2-1≠0,即a ≠±1,所以“a ≠1”是“复数z =(a -1)+(a 2-1)i(a ∈R )是虚数”的必要不充分条件,故④正确.13.(2022·上外浦东附中模拟)若⎪⎪⎪⎪a -i 1 b -2i 1+i =0(a ,b ∈R ),则a 2+b 2=________. 答案 1解析 ∵⎪⎪⎪⎪a -i 1 b -2i 1+i =(a -i)(1+i)-(b -2i) =a +a i -i +1-b +2i=(a +1-b )+(a +1)i ,由已知可得⎩⎪⎨⎪⎧ a +1-b =0,a +1=0,解得⎩⎪⎨⎪⎧b =0,a =-1, ∴a 2+b 2=1.14.(2022·上海市静安区模拟)投掷两颗六个面上分别刻有1到6的点数的均匀的骰子,得到其向上的点数分别为m 和n ,则复数m +n i n +m i为虚数的概率为________.答案 56 解析 ∵复数m +n i n +m i =m +n i n -m i n +m in -m i =2mn +n 2-m 2i m 2+n 2, 故复数m +n i n +m i为虚数需满足n 2-m 2≠0, 即m ≠n ,故有6×6-6=30(种)情况,∴复数m +n i n +m i 为虚数的概率为306×6=56.15.(2022·青岛模拟)已知复数z 满足|z -1-i|≤1,则|z |的最小值为( )A .1 B.2-1 C. 2 D.2+1答案 B解析 令z =x +y i(x ,y ∈R ),则由题意有(x -1)2+(y -1)2≤1,∴|z |的最小值即为圆(x -1)2+(y -1)2=1上的动点到原点的最小距离,∴|z |的最小值为2-1.16.(2022·张家口调研)已知复数z 满足z 2=3+4i ,且z 在复平面内对应的点位于第三象限.(1)求复数z ;(2)设a ∈R ,且⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫1+z 1+z 2 023+a =2,求实数a 的值. 解 (1)设z =c +d i(c <0,d <0),则z 2=(c +d i)2=c 2-d 2+2cd i =3+4i ,∴⎩⎪⎨⎪⎧ c 2-d 2=3,2cd =4,解得⎩⎪⎨⎪⎧ c =-2,d =-1或⎩⎪⎨⎪⎧ c =2,d =1(舍去). ∴z =-2-i.(2)∵z =-2+i , ∴1+z 1+z =-1-i -1+i =1+i 1-i =1+i 22=i , ∴⎝ ⎛⎭⎪⎫1+z 1+z 2 023=i 2 023=i 2 020+3=i 505×4+3=-i , ∴|a -i|=a 2+1=2, ∴a =±3.。
§5.4 平面向量的综合应用1.向量在平面几何中的应用(1)用向量解决常见平面几何问题的技巧:(2)用向量方法解决平面几何问题的步骤:平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题. 2.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.3.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法和减法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,是力F 与位移s 的数量积,即W =F·s =|F||s |cos θ(θ为F 与s 的夹角).4.向量与相关知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题. 知识拓展1.若G 是△ABC 的重心,则GA →+GB →+GC →=0.2.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若AB →∥AC →,则A ,B ,C 三点共线.( √ )(2)在△ABC 中,若AB →·BC →<0,则△ABC 为钝角三角形.( × )(3)若平面四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是菱形.( √ ) (4)作用于同一点的两个力F 1和F 2的夹角为2π3,且|F 1|=3,|F 2|=5,则F 1+F 2的大小为19.( √ )(5)设定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则点P 的轨迹方程是x +2y -4=0.( √ ) (6)已知平面直角坐标系内有三个定点A (-2,-1),B (0,10),C (8,0),若动点P 满足:OP →=OA →+t (AB →+AC →),t ∈R ,则点P 的轨迹方程是x -y +1=0.( √ ) 题组二 教材改编2.[P108A 组T5]已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形答案 B解析 AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6),∴|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62, ∴|AB →|2+|BC →|2=|AC →|2, ∴△ABC 为直角三角形.3.[P103定义]已知一个物体在大小为6 N 的力F 的作用下产生的位移s 的大小为100 m ,且F 与s 的夹角为60°,则力F 所做的功W =________ J. 答案 300解析 W =F ·s =|F ||s |cos 〈F ,s 〉 =6×100×cos 60°=300(J). 题组三 易错自纠4.在△ABC 中,已知AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,则实数k 的值为________________. 答案 -23或113或3±132解析 ①若A =90°,则有AB →·AC →=0,即2+3k =0, 解得k =-23;②若B =90°,则有AB →·BC →=0, 因为BC →=AC →-AB →=(-1,k -3), 所以-2+3(k -3)=0,解得k =113;③若C =90°,则有AC →·BC →=0,即-1+k (k -3)=0, 解得k =3±132.综上所述,k =-23或113或3±132.5.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为________. 答案 5解析 依题意得AC →·BD →=1×(-4)+2×2=0, 所以AC →⊥BD →,所以四边形ABCD 的面积为 12|AC →|·|BD →|=12×5×20=5. 6.抛物线M 的顶点是坐标原点O ,焦点F 在x 轴的正半轴上,准线与曲线E :x 2+y 2-6x +4y -3=0只有一个公共点,设A 是抛物线M 上一点,若OA →·AF →=-4,则点A 的坐标是________________. 答案 (1,2)或(1,-2)解析 设抛物线M 的方程为y 2=2px (p >0),则其准线方程为x =-p 2.曲线E 的方程可化为(x -3)2+(y +2)2=16,则有3+p 2=4,解得p =2,所以抛物线M 的方程为y 2=4x ,F (1,0).设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0,所以OA →·AF →=y 204⎝⎛⎭⎫1-y 204-y 20=-4,解得y 0=±2.所以点A 的坐标为(1,2)或(1,-2).题型一 向量在平面几何中的应用典例 (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________. 答案 12解析 在平行四边形ABCD 中,取AB 的中点F , 则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·⎝⎛⎭⎫AD →-12AB → =AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究本例(2)中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC的内心.思维升华 向量与平面几何综合问题的解法 (1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决. (2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解. 跟踪训练 (1)在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰非等边三角形 D .三边均不相等的三角形 答案 A解析 AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC的平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC . 又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形.(2)(2017·湖南长沙长郡中学临考冲刺训练)如图,在平行四边形ABCD 中,AB =1,AD =2,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 边上的中点,则EF →·FG →+GH →·HE →等于( )A.32 B .-32C.34 D .-34答案 A解析 取HF 中点O , 则EF →·FG →=EF →·EH →=EO →2-OH →2 =1-⎝⎛⎭⎫122=34,GH →·HE →=GH →·GF →=GO →2-OH →2 =1-⎝⎛⎭⎫122=34,因此EF →·FG →+GH →·HE →=32,故选A.题型二 向量在解析几何中的应用典例 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________________. 答案 2x +y -3=0解析 ∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 答案 6解析 由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204, 因为FP →=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP →·FP →取得最大值224+2+3=6.思维升华 向量在解析几何中的“两个”作用(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较简捷的方法.跟踪训练 (1)在平面直角坐标系中,O 为坐标原点,直线l :x -ky +1=0与圆C :x 2+y 2=4相交于A ,B 两点,OM →=OA →+OB →,若点M 在圆C 上,则实数k =________. 答案 0解析 设AB 的中点为D ,则有OM →=OA →+OB →=2OD →, ∴|OM →|=2|OD →|=R =2(R 为圆C 的半径), ∴|OD →|=1.由点到直线的距离公式,得1=|0-0+1|k 2+1,解得k =0.(2)(2017·安徽省安师大附中、马鞍山二中阶段性测试)已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP →=72,则线段OP 在x 轴上的投影长度的最大值为________. 答案 15解析 因为AP →=(λ-1)OA →,所以OP →=λOA →, 即O ,A ,P 三点共线,因为OA →·OP →=72, 所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.题型三 向量的其他应用命题点1 向量在不等式中的应用典例 已知O 是坐标原点,点A (-1,2),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是( ) A .[-1,0] B .[0,1] C .[1,3] D .[1,4]答案 D解析 作出点M (x ,y )满足的平面区域,如图阴影部分所示,设z =OA →·OM →,因为A (-1,2),M (x ,y ),所以z =OA →·OM →=-x +2y ,即y =12x +12z .平移直线y =12x ,由图象可知,当直线y=12x +12z 经过点C (0,2)时,截距最大,此时z 最大,最大值为4,当直线y =12x +12z 经过点B 时,截距最小,此时z 最小,最小值为1,故1≤z ≤4,即1≤OA →·OM →≤4.命题点2 向量在解三角形中的应用典例 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若20aBC →+15bCA →+12cAB →=0,则△ABC 最小角的正弦值等于( ) A.45 B.34 C.35 D.74答案 C解析 ∵20aBC →+15bCA →+12cAB →=0, ∴20a (AC →-AB →)+15bCA →+12cAB →=0,∴(20a -15b )AC →+(12c -20a )AB →=0, ∵AC →与AB →不共线,∴⎩⎪⎨⎪⎧20a -15b =0,12c -20a =0,解得⎩⎨⎧b =43a ,c =53a ,∴△ABC 最小角为角A ,∴cos A =b 2+c 2-a 22bc =169a 2+259a 2-a 22×43a ×53a =45,∴sin A =35,故选C.命题点3 向量在物理中的应用典例 如图,一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态.已知F 1,F 2成60°角,且F 1,F 2的大小分别为2和4,则F 3的大小为()A .27B .2 5C .2D .6答案 A解析 如题图所示,由已知得F 1+F 2+F 3=0,则F 3=-(F 1+F 2),即F 23=F 21+F 22+2F 1·F 2=F 21+F 22+2|F 1|·|F 2|·cos 60°=28.故|F 3|=27. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.跟踪训练 (1)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M ,N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是______.答案 3解析 由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. (2)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是________. 答案 18解析 因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示(含边界), 观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18.三审图形抓特点典例 已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2 一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,由CD →在x 轴上的投影为π12,则ω,φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6E 为函数图象的对称中心,C 为图象最低点———――———————――————————――→作出点C 的对称点MD ,B 两点对称 CD 和MB 对称————――——――→→CD 在x 轴上的投影是π12BM 在x 轴上的投影OF=π12―――――→A (-π6,0)AF =π4―→T =π―→ω=2——————————————————————――→y =sin (2x +φ)和y =sin 2x 图象比较φ2=π6―→φ=π3解析 由E 为该函数图象的一个对称中心,作点C 的对称点M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,由CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A1.(2018·株州模拟)在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形答案 C解析 由(BC →+BA →)·AC →=|AC →|2, 得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.2.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线答案 D解析 ∵P A →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴P A →·PB →=(-2-x )(3-x )+y 2=x 2, ∴y 2=x +6,即点P 的轨迹是抛物线.3.已知向量m =(1,cos θ),n =(sin θ,-2),且m ⊥n ,则sin 2θ+6cos 2θ的值为( ) A.12 B .2 C .2 2 D .-2答案 B解析 由题意可得m·n =sin θ-2cos θ=0,则tan θ=2,所以sin 2θ+6cos 2θ=2sin θcos θ+6cos 2θsin 2θ+cos 2θ=2tan θ+6tan 2θ+1=2.故选B.4.(2017·长春质量监测)在△ABC 中,D 为△ABC 所在平面内一点,且AD →=13AB →+12AC →,则S △BCD S △ABD 等于( ) A.16 B.13 C.12 D.23答案 B解析 如图,由已知得点D 在△ABC 中与AB 平行的中位线上,且在靠近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =⎝⎛⎭⎫1-12-13S △ABC =16S △ABC , 所以S △BCD S △ABD =13.5.已知F 1,F 2分别为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,则EF 1→·EF 2→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8答案 B解析 由题意可知椭圆的左、右焦点坐标分别为F 1(-1,0),F 2(1,0),设E (x ,y )(-3≤x ≤3),则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),所以EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=x 29+7,所以当x =0时,EF 1→·EF 2→有最小值7,当x =±3时,EF 1→·EF 2→有最大值8,故选B.6.(2018·四川凉山州一诊)若直线ax -y =0(a ≠0)与函数f (x )=2cos 2x +1ln 2+x 2-x 的图象交于不同的两点A ,B ,且点C (6,0),若点D (m ,n )满足DA →+DB →=CD →,则m +n 等于( ) A .1 B .2 C .3 D .4答案 B解析 因为f (-x )=2cos 2(-x )+1ln 2-x 2+x =2cos 2x +1-ln 2+x 2-x =-f (x ),且直线ax -y =0过坐标原点,所以直线与函数f (x )=2cos 2x +1ln 2+x 2-x 的图象的两个交点A ,B 关于原点对称,即x A +x B =0,y A +y B =0,又DA →=(x A -m ,y A -n ),DB →=(x B -m ,y B -n ),CD →=(m -6,n ),由DA →+DB →=CD →,得x A -m +x B -m =m -6,y A -n +y B -n =n ,解得m =2,n =0,所以m +n =2,故选B. 7.在菱形ABCD 中,若AC =4,则CA →·AB →=________. 答案 -8解析 设∠CAB =θ,AB =BC =a ,由余弦定理得a 2=16+a 2-8a cos θ,∴a cos θ=2, ∴CA →·AB →=4×a ×cos(π-θ)=-4a cos θ=-8.8.已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是________. 答案2π3解析 由已知可得Δ=|a |2+4a·b =0, 即4|b |2+4×2|b |2cos θ=0,∴cos θ=-12.又∵θ∈[0,π],∴θ=2π3.9.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________. 答案 1∶2解析 如图所示,取AC 的中点D , ∴OA →+OC →=2OD →, ∴OD →=BO →, ∴O 为BD 的中点, ∴面积比为高之比. 即S △AOC S △ABC =DO BD =12. 10.如图所示,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________.答案 -92解析 ∵圆心O 是直径AB 的中点,∴P A →+PB →=2PO →,∴(P A →+PB →)·PC →=2PO →·PC →, ∵|PO →|+|PC →|=3≥2|PO →|·|PC →|,∴|PO →|·|PC →|≤94,即(P A →+PB →)·PC →=2PO →·PC →=-2|PO →|·|PC →|≥-92,当且仅当|PO →|=|PC →|=32时,等号成立,故最小值为-92.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足P A →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程. 解 设M (x ,y )为所求轨迹上任一点, 设A (a,0),Q (0,b )(b >0),则P A →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ), 由P A →·AM →=0,得a (x -a )+3y =0.① 由AM →=-32MQ →,得(x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32(y -b ), ∴⎩⎨⎧x -a =32x ,y =32y -32b ,∴⎩⎨⎧a =-x 2,b =y3.∵b >0,∴y >0,把a =-x 2代入到①中,得-x2⎝⎛⎭⎫x +x 2+3y =0, 整理得y =14x 2(x ≠0).∴动点M 的轨迹方程为y =14x 2(x ≠0).12.(2018·酒泉质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )BA →·BC →=cCB →·CA →. (1)求角B 的大小;(2)若|BA →-BC →|=6,求△ABC 面积的最大值. 解 (1)由题意得(2a -c )cos B =b cos C . 根据正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin(C +B ), 即2sin A cos B =sin A , 因为A ∈(0,π),所以sin A >0. 所以cos B =22,又B ∈(0,π),所以B =π4. (2)因为|BA →-BC →|=6,所以|CA →|= 6. 即b =6,根据余弦定理及基本不等式,得6=a 2+c 2-2ac ≥2ac -2ac =(2-2)ac (当且仅当a =c 时取等号),即ac ≤3(2+2), 故△ABC 的面积S =12ac sin B ≤3(2+1)2,即△ABC 的面积的最大值为32+32.13.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , λ∈(0,+∞),则( ) A .动点P 的轨迹一定通过△ABC 的重心 B .动点P 的轨迹一定通过△ABC 的内心 C .动点P 的轨迹一定通过△ABC 的外心 D .动点P 的轨迹一定通过△ABC 的垂心 答案 D解析 由条件,得AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , 从而AP →·BC →=λ⎝ ⎛⎭⎪⎫AB →·BC →|AB →|cos B +AC →·BC →|AC →|cos C =λ·|AB →||BC →|cos (180°-B )|AB →|cos B +λ·|AC →||BC →|cos C |AC →|cos C=0,所以AP →⊥BC →,则动点P 的轨迹一定通过△ABC 的垂心.14.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是________. 答案 6解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆外离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →的最小值是HE →·HF →,HC =CM -1=5-1=4,HF =HE =HC 2-CE 2 =16-4=23,sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,∴HE →·HF →=|HE →|·|HF →|·cos ∠EHF =23×23×12=6.∴PE →·PF →的最小值是6.15.(2018·大庆一模)已知共面向量a ,b ,c 满足|a |=3,b +c =2a ,且|b |=|b -c |.若对每一个确定的向量b ,记|b -t a |(t ∈R )的最小值为d min ,则当b 变化时,d min 的最大值为( ) A.43 B .2 C .4 D .6答案 B 解析固定向量a =(3,0),则b ,c 向量分别在以(3,0)为圆心,r 为半径的圆上的直径两端运动,其中,OA →=a ,OB →=b ,OC →=c ,如图,易得点B 的坐标 B (r cos θ+3,r sin θ), 因为|b |=|b -c |,所以OB =BC ,即(r cos θ+3)2+r 2sin 2θ=4r 2, 整理为r 2-2r cos θ-3=0,可得cos θ=r 2-32r,而|b -t a |(t ∈R )的最小值为d min , 即d min =r sin θ=-r 4+10r 2-94=4-(r 2-5)24≤2,所以d min 的最大值是2,故选B.16.(2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( ) A .3 B .2 2 C. 5 D .2 答案 A解析 建立如图所示的直角坐标系,则C 点坐标为(2,1). 设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5, EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0). ∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A.。