( 高三一轮新课标)第二章 第八节 幂函数与二次函数
- 格式:ppt
- 大小:1.40 MB
- 文档页数:58
§2.5二次函数与幂函数考试要求 1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识梳理1.幂函数(1)幂函数的定义一般地,函数y=xα叫做幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;④当α为奇数时,y=xα为奇函数;当α为偶数时,y=xα为偶函数.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝⎛⎭⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝⎛⎦⎤-∞,-b 2a 上单调递减; 在⎣⎡⎭⎫-b2a ,+∞上单调递增 在⎝⎛⎦⎤-∞,-b 2a 上单调递增; 在⎣⎡⎭⎫-b2a ,+∞上单调递减思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =1212x 是幂函数.( × )(2)若幂函数y =x α是偶函数,则α为偶数.( × )(3)二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( √ )(4)若二次函数y =ax 2+bx +c 的两个零点确定,则二次函数的解析式确定.( × ) 教材改编题1.已知幂函数y =f (x )的图象过点(2,2),则f ⎝⎛⎭⎫14等于( ) A .-12B.12 C .±12D.22答案 B解析 设f (x )=x α, ∴2α=2,α=12,∴f (x )=12x , ∴f ⎝⎛⎭⎫14=12.2.若函数f (x )=4x 2-kx -8在[5,20]上单调,则实数k 的取值范围为________.答案 (-∞,40]∪[160,+∞) 解析 依题意知,k 8≥20或k8≤5,解得k ≥160或k ≤40.3.已知y =f (x )为二次函数,若y =f (x )在x =2处取得最小值-4,且y =f (x )的图象经过原点,则函数解析式为________. 答案 f (x )=x 2-4x解析 因为y =f (x )在x =2处取得最小值-4, 所以可设f (x )=a (x -2)2-4(a >0),又图象过原点,所以f (0)=4a -4=0,a =1, 所以f (x )=(x -2)2-4=x 2-4x .题型一 幂函数的图象与性质例1 (1)若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<m <12C .-1<m <0<n <12D .-1<n <0<m <1 答案 D解析 幂函数y =x α,当α>0时,y =x α在(0,+∞)上单调递增,且0<α<1时,图象上凸, ∴0<m <1.当α<0时,y =x α在(0,+∞)上单调递减. 不妨令x =2,由图象得2-1<2n ,则-1<n <0.综上可知,-1<n <0<m <1.(2)(2022·长沙质检)幂函数f (x )=(m 2-3m +3)x m 的图象关于y 轴对称,则实数m =________. 答案 2解析 由幂函数定义,知m 2-3m +3=1, 解得m =1或m =2,当m =1时,f (x )=x 的图象不关于y 轴对称,舍去, 当m =2时,f (x )=x 2的图象关于y 轴对称, 因此m =2. 教师备选1.若幂函数f (x )=()12255a a a x ---在(0,+∞)上单调递增,则a 等于( )A .1B .6C .2D .-1 答案 D解析 因为函数f (x )=()12255a a a x---是幂函数,所以a 2-5a -5=1,解得a =-1或a =6. 当a =-1时,f (x )=12x 在(0,+∞)上单调递增; 当a =6时,f (x )=x -3在(0,+∞)上单调递减, 所以a =-1.2.若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( ) A.⎣⎡⎭⎫2,167 B .(0,2] C.⎝⎛⎭⎫-∞,167 D .[2,+∞)答案 A解析 因为函数f (x )=12x 在定义域[0,+∞)内为增函数,且f (x )>f (8x -16),所以⎩⎪⎨⎪⎧x ≥0,8x -16≥0,x >8x -16,即2≤x <167,所以不等式的解集为⎣⎡⎭⎫2,167. 思维升华 (1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 跟踪训练1 (1)(2022·宝鸡检测)已知a =432,b =233,c =1225,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b答案 A解析 由题意得b =233<234=432=a , a =432=234<4<5=1225=c , 所以b <a <c .(2)已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0答案 D解析 因为函数y =p q x 的图象关于y 轴对称,于是函数y =p qx 为偶函数,即p 为偶数, 又函数y =p qx 的定义域为(-∞,0)∪(0,+∞),且在(0,+∞)上单调递减,则有pq <0,又因为p ,q 互质,则q 为奇数,所以只有选项D 正确. 题型二 二次函数的解析式例2 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解 方法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为 f (x )=-4x 2+4x +7.方法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8, 所以f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 (利用“零点式”解题)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍去).故所求函数的解析式为f(x)=-4x2+4x+7.教师备选若函数f(x)=(x+a)(bx+2a)(a,b∈R)满足条件f(-x)=f(x),定义域为R,值域为(-∞,4],则函数解析式f(x)=________.答案-2x2+4解析f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.∵f(-x)=f(x),∴2a+ab=0,∴f(x)=bx2+2a2.∵f(x)的定义域为R,值域为(-∞,4],∴b<0,且2a2=4,∴b=-2,∴f(x)=-2x2+4.思维升华求二次函数解析式的三个策略:(1)已知三个点的坐标,宜选用一般式;(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式;(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2(1)已知f(x)为二次函数,且f(x)=x2+f′(x)-1,则f(x)等于()A.x2-2x+1 B.x2+2x+1C.2x2-2x+1 D.2x2+2x-1答案 B解析设f(x)=ax2+bx+c(a≠0),则f ′(x )=2ax +b , 由f (x )=x 2+f ′(x )-1可得 ax 2+bx +c =x 2+2ax +(b -1), 所以⎩⎪⎨⎪⎧ a =1,b =2a ,c =b -1,解得⎩⎪⎨⎪⎧a =1,b =2,c =1,因此,f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),且图象被x 轴截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )的解析式为________. 答案 f (x )=x 2-4x +3解析 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )图象的对称轴为直线x =2, 又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3,设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), ∵f (x )的图象过点(4,3), ∴3a =3,∴a =1,∴所求函数的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.题型三 二次函数的图象与性质 命题点1 二次函数的图象例3 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )答案 D解析 因为abc >0,二次函数f (x )=ax 2+bx +c ,那么可知, 在A 中,a <0,b <0,c <0,不符合题意; B 中,a <0,b >0,c >0,不符合题意; C 中,a >0,c <0,b >0,不符合题意,故选D. 命题点2 二次函数的单调性与最值 例4 已知函数f (x )=x 2-tx -1.(1)若f (x )在区间(-1,2)上不单调,求实数t 的取值范围; (2)若x ∈[-1,2],求f (x )的最小值g (t ). 解f (x )=x 2-tx -1=⎝⎛⎭⎫x -t 22-1-t 24. (1)依题意,-1<t2<2,解得-2<t <4,∴实数t 的取值范围是(-2,4).(2)①当t2≥2,即t ≥4时,f (x )在[-1,2]上单调递减,∴f (x )min =f (2)=3-2t . ②当-1<t2<2,即-2<t <4时,f (x )min =f ⎝⎛⎭⎫t 2=-1-t24. ③当t2≤-1,即t ≤-2时,f (x )在[-1,2]上单调递增,∴f (x )min =f (-1)=t .综上有g (t )=⎩⎪⎨⎪⎧t ,t ≤-2,-1-t24,-2<t <4,3-2t ,t ≥4.延伸探究 本例条件不变,求当x ∈[-1,2]时,f (x )的最大值G (t ). 解 f (-1)=t ,f (2)=3-2t , f (2)-f (-1)=3-3t , 当t ≥1时,f (2)-f (-1)≤0, ∴f (2)≤f (-1), ∴f (x )max =f (-1)=t ; 当t <1时,f (2)-f (-1)>0, ∴f (2)>f (-1), ∴f (x )max =f (2)=3-2t ,综上有G (t )=⎩⎪⎨⎪⎧t ,t ≥1,3-2t ,t <1.教师备选1.(多选)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论正确的是( )A .当x >3时,y <0B .4a +2b +c =0C .-1≤a ≤-23D .3a +b >0答案 AC解析 依题意知,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0),顶点坐标为(1,n ), ∴函数与x 轴的另一交点为(3,0), ∴当x >3时,y <0,故A 正确;当x =2时,y =4a +2b +c >0,故B 错误;∵抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),且a <0, ∴a -b +c =0,∵b =-2a ,∴a +2a +c =0, ∴3a +b <0,c =-3a ,∵2≤c ≤3,∴2≤-3a ≤3,∴-1≤a ≤-23, 故C 正确,D 错误.2.(2022·沈阳模拟)已知f (x )=ax 2-2x +1.(1)若f (x )在[0,1]上单调,求实数a 的取值范围;(2)若x ∈[0,1],求f (x )的最小值g (a ).解 (1)当a =0时,f (x )=-2x +1单调递减;当a >0时,f (x )的对称轴为x =1a ,且1a>0, ∴1a≥1,即0<a ≤1; 当a <0时,f (x )的对称轴为x =1a 且1a<0, ∴a <0符合题意.综上有,a ≤1.(2)①当a =0时,f (x )=-2x +1在[0,1]上单调递减,∴f (x )min =f (1)=-1.②当a >0时,f (x )=ax 2-2x +1的图象开口方向向上,且对称轴为x =1a. (ⅰ)当1a<1,即a >1时,f (x )=ax 2-2x +1图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增. ∴f (x )min =f ⎝⎛⎭⎫1a =1a -2a +1=-1a+1. (ⅱ)当1a≥1,即0<a ≤1时,f (x )在[0,1]上单调递减. ∴f (x )min =f (1)=a -1.③当a <0时,f (x )=ax 2-2x +1的图象的开口方向向下,且对称轴x =1a<0,在y 轴的左侧, ∴f (x )=ax 2-2x +1在[0,1]上单调递减.∴f (x )min =f (1)=a -1.综上所述,g (a )=⎩⎪⎨⎪⎧a -1,a ≤1,-1a +1,a >1.思维升华 二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均单调递增,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3] 答案 B解析 ∵f (x )为偶函数,∴f (x )在[1,2]上单调递减,在[3,+∞)上单调递增,当x >0时,f (x )=x 2+ax +2,对称轴为x =-a 2,∴2≤-a 2≤3, 解得-6≤a ≤-4.(2)(2022·抚顺模拟)已知函数f (x )=-x 2+2x +5在区间[0,m ]上有最大值6,最小值5,则实数m 的取值范围是________.答案 [1,2]解析 由题意知,f (x )=-(x -1)2+6,则f (0)=f (2)=5=f (x )min ,f (1)=6=f (x )max ,函数f (x )的图象如图所示,则1≤m ≤2.课时精练1.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3xB .g (x )=3x 2-2xC .g (x )=3x 2+2xD .g (x )=-3x 2-2x答案 B解析 二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,设二次函数为g (x )=ax 2+bx ,可得⎩⎪⎨⎪⎧ a +b =1,a -b =5,解得a =3,b =-2,所求的二次函数为g (x )=3x 2-2x .2.(2022·延吉检测)若函数y =()222433mm m m x +--+为幂函数,且在(0,+∞)上单调递减,则实数m 的值为( )A .0B .1或2C .1D .2答案 C解析 由于函数y =()222433m m m m x +--+为幂函数,所以m 2-3m +3=1,解得m =1或m =2,当m =1时,y =x -1=1x,在(0,+∞)上单调递减,符合题意. 当m =2时,y =x 4,在(0,+∞)上单调递增,不符合题意.3.(2022·长沙模拟)已知函数f (x )=x 2-2mx -m +2的值域为[0,+∞),则实数m 的值为( )A .-2或1B .-2C .1D .1或2答案 A解析 因为f (x )=x 2-2mx -m +2=(x -m )2-m 2-m +2≥-m 2-m +2,且函数f (x )=x 2-2mx -m +2的值域为[0,+∞),所以-m 2-m +2=0,解得m =-2或m =1.4.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是( )A .b 2<4acB .2a -b =1C .a -b +c =0D .5a <b 答案 D解析 因为二次函数y =ax 2+bx +c 的图象过点A (-3,0),对称轴为直线x =-1,所以⎩⎪⎨⎪⎧-b 2a =-1,9a -3b +c =0, 解得⎩⎪⎨⎪⎧b =2a ,c =-3a ,因为二次函数的图象开口方向向下,所以a <0,对于A ,因为二次函数的图象与x 轴有两个交点,所以b 2-4ac =4a 2+12a 2=16a 2>0, 所以b 2>4ac ,故选项A 不正确;对于B ,因为b =2a ,所以2a -b =0,故选项B 不正确;对于C ,因为a -b +c =a -2a -3a =-4a >0,故选项C 不正确;对于D ,因为a <0,所以5a <2a =b ,故选项D 正确.5.(多选)(2022·宜昌质检)已知函数f (x )=x 2-2x +a 有两个零点x 1,x 2,以下结论正确的是( )A .a <1B .若x 1x 2≠0,则1x 1+1x 2=2aC .f (-1)=f (3)D .函数y =f (|x |)有四个零点答案 ABC解析 二次函数对应二次方程根的判别式Δ=(-2)2-4a =4-4a >0,a <1,故A 正确; 由根与系数的关系得,x 1+x 2=2,x 1x 2=a ,1x 1+1x 2=x 1+x 2x 1x 2=2a,故B 正确; 因为f (x )的对称轴为x =1,点(-1,f (-1)),(3,f (3))关于对称轴对称,故C 正确; 当a <0时,y =f (|x |)只有两个零点,故D 不正确.6.(多选)已知幂函数f (x )=()2231m m m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( ) A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能答案 BC解析 因为f (x )=()2231mm m m x +---为幂函数,所以m 2-m -1=1,解得m =2或m =-1.依题意f (x )在(0,+∞)上单调递增,所以m =2,此时f (x )=x 3,因为f (-x )=(-x )3=-x 3=-f (x ),所以f (x )=x 3为奇函数.因为a ,b ∈R 且f (a )+f (b )<0,所以f (a )<f (-b ).因为y =f (x )为增函数,所以a <-b ,所以a +b <0.7.(2022·张家口检测)已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =________. 答案 0解析 因为f (x )是幂函数,所以m =1,k =0,又f (x )的图象过点⎝⎛⎭⎫116,14,所以⎝⎛⎭⎫116n =14,解得n =12, 所以m -2n +3k =0.8.(2022·江苏海安高级中学模拟)函数f (x )=x 2-4x +2在区间[a ,b ]上的值域为[-2,2],则b -a 的取值范围是________.答案 [2,4]解析 解方程f (x )=x 2-4x +2=2,解得x =0或x =4,解方程f (x )=x 2-4x +2=-2,解得x =2,由于函数f (x )在区间[a ,b ]上的值域为[-2,2].若函数f (x )在区间[a ,b ]上单调,则[a ,b ]=[0,2]或[a ,b ]=[2,4],此时b -a 取得最小值2;若函数f (x )在区间[a ,b ]上不单调,且当b -a 取最大值时,[a ,b ]=[0,4],所以b -a 的最大值为4.所以b -a 的取值范围是[2,4].9.已知二次函数f (x )=ax 2+(b -2)x +3,且-1,3是函数f (x )的零点.(1)求f (x )的解析式,并解不等式f (x )≤3;(2)若g (x )=f (sin x ),求函数g (x )的值域.解 (1)由题意得⎩⎪⎨⎪⎧ -1+3=-b -2a ,-1×3=3a ,解得⎩⎪⎨⎪⎧a =-1,b =4, ∴f (x )=-x 2+2x +3,∴当-x 2+2x +3≤3时,即x 2-2x ≥0,解得x ≥2或x ≤0,∴不等式的解集为(-∞,0]∪[2,+∞).(2)令t =sin x ,则g (t )=-t 2+2t +3=-(t -1)2+4,t ∈[-1,1],当t =-1时,g (t )有最小值0,当t =1时,g (t )有最大值4,故g (t )∈[0,4].所以g (x )的值域为[0,4].10.(2022·烟台模拟)已知二次函数f (x )=ax 2+bx +c ,且满足f (0)=2,f (x +1)-f (x )=2x +1.(1)求函数f (x )的解析式;(2)当x ∈[t ,t +2](t ∈R )时,求函数f (x )的最小值g (t )(用t 表示).解 (1)因为二次函数f (x )=ax 2+bx +c 满足f (0)=2,f (x +1)-f (x )=2x +1, 所以⎩⎪⎨⎪⎧c =2,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x +1,即⎩⎪⎨⎪⎧ c =2,2ax +b +a =2x +1, 所以⎩⎪⎨⎪⎧ c =2,2a =2,b +a =1,解得⎩⎪⎨⎪⎧ c =2,a =1,b =0,因此f (x )=x 2+2.(2)因为f (x )=x 2+2是图象的对称轴为直线x =0,且开口向上的二次函数,当t ≥0时,f (x )=x 2+2在x ∈[t ,t +2]上单调递增,则f (x )min =f (t )=t 2+2;当t +2≤0,即t ≤-2时,f (x )=x 2+2在x ∈[t ,t +2]上单调递减,则f (x )min =f (t +2)=(t +2)2+2=t 2+4t +6;当t <0<t +2,即-2<t <0时,f (x )min =f (0)=2,综上g (t )=⎩⎪⎨⎪⎧ t 2+2,t ≥0,2,-2<t <0,t 2+4t +6,t ≤-2.11.(2022·福州模拟)已知函数f (x )=2x 2-mx -3m ,则“m >2”是“f (x )<0对x ∈[1,3]恒成立”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 若f (x )<0对x ∈[1,3]恒成立,则⎩⎪⎨⎪⎧f (1)=2-4m <0,f (3)=18-6m <0, 解得m >3,{m |m >3}是{m |m >2}的真子集,所以“m >2”是“f (x )<0对x ∈[1,3]恒成立”的必要不充分条件.12. 幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b 等于( )A .0B .1 C.12D .2 答案 A解析 由BM =MN =NA ,点A (1,0),B (0,1),∴M ⎝⎛⎭⎫13,23,N ⎝⎛⎭⎫23,13, 将两点坐标分别代入y =x a ,y =x b ,得a =132log 3,b =231log 3, ∴a -1b =132log 3-2311log 3=0.13.(多选)关于x 的方程(x 2-2x )2-2(2x -x 2)+k =0,下列命题正确的有( )A .存在实数k ,使得方程无实根B .存在实数k ,使得方程恰有2个不同的实根C .存在实数k ,使得方程恰有3个不同的实根D .存在实数k ,使得方程恰有4个不同的实根答案 AB解析 设t =x 2-2x ,方程化为关于t 的二次方程t 2+2t +k =0.(*)当k >1时,方程(*)无实根,故原方程无实根;当k =1时,可得t =-1,则x 2-2x =-1,原方程有两个相等的实根x =1;当k <1时,方程(*)有两个实根t 1,t 2(t 1<t 2),由t 1+t 2=-2可知,t 1<-1,t 2>-1.因为t =x 2-2x =(x -1)2-1≥-1,所以x 2-2x =t 1无实根,x 2-2x =t 2有两个不同的实根.综上可知,A ,B 项正确,C ,D 项错误.14.设关于x 的方程x 2-2mx +2-m =0()m ∈R 的两个实数根分别是α,β,则α2+β2+5的最小值为________.答案 7解析 由题意有⎩⎪⎨⎪⎧α+β=2m ,αβ=2-m , 且Δ=4m 2-4(2-m )≥0,解得m ≤-2或m ≥1,α2+β2+5=(α+β)2-2αβ+5=4m 2+2m +1,令f (m )=4m 2+2m +1,而f (m )图象的对称轴为m =-14, 且m ≤-2或m ≥1,所以f (m )min =f (1)=7.15.(2022·台州模拟)已知函数f (x )=(x 2-2x -3)(x 2+ax +b )是偶函数,则f (x )的值域是________.答案 [-16,+∞)解析 因为f (x )=(x 2-2x -3)(x 2+ax +b )=(x -3)(x +1)(x 2+ax +b )是偶函数,所以有⎩⎪⎨⎪⎧ f (-3)=f (3)=0,f (1)=f (-1)=0, 代入得⎩⎪⎨⎪⎧ 9-3a +b =0,1+a +b =0, 解得⎩⎪⎨⎪⎧a =2,b =-3. 所以f (x )=(x 2-2x -3)(x 2+2x -3)=(x 2-3)2-4x 2=x 4-10x 2+9=(x 2-5)2-16≥-16.16.已知a ,b 是常数且a ≠0,f (x )=ax 2+bx 且f (2)=0,且使方程f (x )=x 有等根.(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n ),使得f (x )的定义域和值域分别为[m ,n ]和[2m,2n ]? 解 (1)由f (x )=ax 2+bx ,且f (2)=0,则4a +2b =0,又方程f (x )=x ,即ax 2+(b -1)x =0有等根,得b =1,从而a =-12, 所以f (x )=-12x 2+x . (2)假定存在符合条件的m ,n ,由(1)知f (x )=-12x 2+x =-12(x -1)2+12≤12, 则有2n ≤12,即n ≤14. 又f (x )图象的对称轴为直线x =1,则f (x )在[m ,n ]上单调递增,于是得⎩⎪⎨⎪⎧ m <n ≤14,f (m )=2m ,f (n )=2n ,即⎩⎪⎨⎪⎧ m <n ≤14,-12m 2+m =2m ,-12n 2+n =2n , 解方程组得m =-2,n =0,所以存在m =-2,n =0,使函数f (x )在[-2,0]上的值域为[-4,0].。
幂函数与二次函数-重难点题型精讲1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较R R R {x |x ≥0} {x |x ≠0}2.二次函数的图象和性质R R【题型1 幂函数的图象及性质】【例1】(2021•宜春模拟)已知幂函数f(x)=(m﹣1)x n的图象过点(m,8).设a=f(20.3),b=f (0.32),c=f(log20.3),则a,b,c的大小关系是()A.b<c<a B.a<c<b C.a<b<c D.c<b<a【解题思路】利用幂函数的定义,先求出f(x)的解析式,可得a、b、c的值,从而判断a,b,c的大小关系.【解答过程】解:∵幂函数f(x)=(m﹣1)x n的图象过点(m,8),∴m﹣1=1,且m n=8,求得m =2,n =3,故f (x )=x 3.∵a =f (20.3)=20.9>1,b =f (0.32)=0.36∈(0,1),c =f (log 20.3)=(log 20.3)3<0, ∴a >b >c , 故选:D .【变式1-1】(2021•阳泉三模)已知点(2,8)在幂函数f (x )=x n 图象上, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .b >c >a【解题思路】推导出f (x )=x 3,从而45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0,由此能判断a ,b ,c 的大小关系.【解答过程】解:点(2,8)在幂函数f (x )=x n 图象上, ∴f (2)=2n =8,解得n =3,∴f (x )=x 3, 设a =f((45)0.3),b =f((54)0.2),c =f(log 1254), ∴45<a =[(45)0.3]3=(45)0.9<(45)0=1,54>b =[(54)0.2]3=(54)0.6>(54)0=1,c =(log 1254)3<(log121)3=0, ∴a ,b ,c 的大小关系是b >a >c . 故选:A .【变式1-2】(2020•金安区校级模拟)已知幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数,设a =f (sin2π7),b =f (cos2π7),c =f (tan2π7),则( ) A .b <a <c B .c <b <aC .b <c <aD .a <b <c【解题思路】根据幂函数的定义与奇函数的定义,求出m 、n 的值,写出f (x ),判断其单调性,再根据cos2π7、sin2π7和tan2π7的大小比较f (cos2π7)与f (sin2π7)、f (tan2π7)的大小.【解答过程】解:根据幂函数f (x )=mx 1+n 是定义在区间[﹣2,n ]上的奇函数, 得m =1,且﹣2+n =0,解得n =2;∴f (x )=x 3,且在定义域R 上是单调增函数; 又0<π4<2π7<π2,∴cos2π7<sin2π7<1<tan2π7,∴f (cos 2π7)<f (sin 2π7)<f (tan 2π7),即b <a <c . 故选:A .【变式1-3】(2020•三明模拟)已知幂函数f(x)=(m −1)2x m2−4m+2在(0,+∞)上单调递增,函数g (x )=2x ﹣t ,对于任意x 1∈[1,5)时,总存在x 2∈[1,5)使得f (x 1)=g (x 2),则t 的取值范围是( ) A .∅B .t ≥7或t ≤1C .t >7或t <1D .1≤t ≤7【解题思路】先利用幂函数的定义和单调性,求出m 的值,得到函数f (x )的解析式,设函数f (x )在[1,5)的值域为集合A ,函数g (x )在[1,5)的值域为集合B ,利用函数的单调性分别求出集合A ,集合B ,由题意可得A ⊆B ,利用集合间的包含关系列出不等式组,即可求出t 的取值范围. 【解答过程】解:∵幂函数f(x)=(m −1)2x m 2−4m+2在(0,+∞)上单调递增,∴{(m −1)2=1m 2−4m +2>0,解得m =0,∴f (x )=x 2,当x 1∈[1,5)时,f (x 1)∈[1,25),设集合A =[1,25),又当x 2∈[1,5)时,g (x 2)∈[2﹣t ,32﹣t ),设集合B =[2﹣t ,32﹣t ), 由题意得:A ⊆B ,∴{2−t ≤132−t ≥25,解得:1≤t ≤7, 故选:D .【题型2 二次函数的图象及性质】【例2】(2020•西湖区校级模拟)已知函数f (x )=mx 2+(m ﹣3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( ) A .[0,1]B .(0,1)C .(﹣∞,1)D .(﹣∞,1]【解题思路】本题考查的是函数的图象问题.在解答时,应先结合m 是否为零对函数是否为二次函数进行区别,对于二次函数情况下充分结合图形的特点利用判别式和对称轴即可获得问题解答. 【解答过程】解:由题意可知:当m =0时,由f (x )=0 知,﹣3x +1=0,∴x =13>0,符合题意;当m>0时,由f(0)=1可知:{△=(m−3)2−4m≥0−m−32m>0,解得0<m≤1;当m<0时,由f(0)=1可知,函数图象恒与X轴正半轴有一个交点综上可知,m的取值范围是:(﹣∞,1].故选:D.【变式2-1】(2020秋•龙岩期中)已知二次函数f(x)=ax2+(a﹣5)x+a2﹣6(a≠0)的图象与x轴交于M(x1,0),N(x2,0)两点,且﹣1<x1<1<x2<2,则a的取值范围是()A.(2,1+2√3)B.(2,2√3−1)C.(1+2√3,+∞)D.(−∞,2−2√3)【解题思路】由已知结合二次函数的实根分布中特殊点函数值的符号建立关于a的不等式,可求.【解答过程】解:若a>0,则{f(−1)=a2−1>0f(1)=a2+2a−11<0 f(2)=a2+6a−11>0,解得2<a<2√3−1;若a<0,则{f(−1)=a2−1<0f(1)=a2+2a−11>0f(2)=a2+6a−16<0,不等式组无解.故a的取值范围是(2,2√3−1).故选:B.【变式2-2】(2020秋•咸阳期末)已知二次函数f(x)=x2﹣2ax+3,a∈R.(Ⅰ)若函数f(x)在(﹣∞,﹣2)上单调递减,求a的取值范围;(Ⅱ)若a=1时,函数f(x)的图象恰好在函数g(x)=2x+b的图象上方(f(x)≥g(x)且恰好能取到等号),求实数b的值.【解题思路】(Ⅰ)求出函数的对称轴,根据函数的单调性求出a的范围即可;(Ⅱ)问题转化为x2﹣4x+3﹣b≥0恒成立,根据判别式△≤0,求出b的值即可.【解答过程】解:(Ⅰ)f(x)=x2﹣2ax+3=(x﹣a)2+3﹣a2,对称轴是x=a,若函数f(x)在(﹣∞,﹣2)上单调递减,则a≥﹣2,即a的取值范围是[﹣2,+∞);(Ⅱ)a=1时,f(x)=(x﹣1)2+2,f(x)﹣g(x)=x2﹣4x+3﹣b,由题意得f(x)﹣g(x)≥0,即x2﹣4x+3﹣b≥0恒成立,故△=16﹣12+4b ≤0,解得:b ≤﹣1, 当f (x )≥g (x )且恰好能取到等号, 即f (x )=g (x )时,b =﹣1.【变式2-3】(2020秋•越秀区期末)问题:是否存在二次函数f (x )=ax 2+bx +c (a ≠0,b ,c ∈R )同时满足下列条件:f (0)=3,f (x )的最大值为4,____?若存在,求出f (x )的解析式;若不存在,请说明理由.在①f (1+x )=f (1﹣x )对任意x ∈R 都成立,②函数y =f (x +2)的图象关于y 轴对称,③函数f (x )的单调递减区间是[12,+∞)这三个条件中任选一个,补充在上面问题中作答.【解题思路】由f (0)=3,可求得c =3,由条件可得函数的对称轴,又f (x )的最大值为4,可得关于a ,b 的方程组,求解即可.【解答过程】解:由f (0)=3,可得c =3,则f (x )=ax 2+bx +3, 若选择①f (1+x )=f (1﹣x )对任意x ∈R 都成立, 可得f (x )的对称轴为x =1,所以−b2a =1,又f (x )的最大值为4,可得a <0且f (1)=4,即a +b +3=4, 解得a =﹣1,b =2, 此时f (x )=﹣x 2+2x +3;若选择②函数y =f (x +2)的图象关于y 轴对称, 可得f (x )关于x =2对称,则−b2a =2,又f (x )的最大值为4,可得a <0且f (2)=4,即4a +2b +3=4, 解得a =−14,b =1, 此时f (x )=−14x 2+x +3;若选择③函数f (x )的单调递减区间是[12,+∞), 可得f (x )关于x =12对称,则−b2a =12,又f (x )的最大值为4,可得a <0且f (12)=4,即14a +12b +3=4,解得a =﹣4,b =﹣4, 此时f (x )=﹣4x 2﹣4x +3.【题型3 二次函数的最值问题】【例3】(2020春•滨海新区期末)已知函数f (x )=x 2+2ax +a 2在x ∈[﹣1,2].上有最大值是4,则实数a 的值为( ) A .﹣1或3B .﹣4或0C .﹣1或0D .﹣4或3【解题思路】由函数f (x )=x 2+2ax +a 2的图象开口向上知函数f (x )在|﹣1,2]上的最大值在﹣1或2上取得.从而分类讨论求解.【解答过程】解:由函数f (x )=x 2+2ax +a 2的图象开口向上知, 函数f (x )=x 2+2ax +a 2在|﹣1,2]上的最大值在﹣1或2上取得. 若函数f (x )在﹣1上取得最大值4,则 {−a ≥121−2a +a 2=4,解得a =﹣1,若函数f (x )在2上取得最大值4,则 {−a ≤124+4a +a 2=4,解得a =0,故选:C .【变式3-1】(2020秋•仓山区校级期中)如果函数y =4x 2﹣4ax +a 2﹣2a +3在区间[0,2]上有最小值3,那么实数a 的值为 .【解题思路】由二次函数对称轴结合定义域进行讨论即可解决此题. 【解答过程】解:函数y =4x 2﹣4ax +a 2﹣2a +3的对称轴是:x =a2.当a2≤0,即a ≤0时,f (x )在[0,2]上的最小值a 2﹣2a +3=3,解得:a =0或2(舍去);当0<a2<2,即0<a <4时,f (x )的最小值是f (a2)=﹣2a +3=3,解得:a =0(舍去);a 2≥2,即a ≥4时,f (x )的最小值是f (2)=4×22﹣4a ×2+a 2﹣2a +3=a 2﹣8a +19=3,解得:a 1=a 2=4.综上,a 的值是0或4. 故答案为:0或4.【变式3-2】(2020•浙江模拟)已知函数f (x )=ax 2+bx +c (a ≠0),对一切x ∈[﹣1,1],都有|f (x )|≤1,则当x ∈[﹣2,2]时,f (x )的最大值为 .【解题思路】由题知{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,进而求出a ,b ,c ,所以f (x )=f (1)(x 2+x 2)+f (﹣1)(x 2−x2)+f(0)(1﹣x 2)再由题知对一切x ∈[﹣1,1],都有|f (x )|≤1分别再讨论﹣2≤x ≤﹣1与1≤x ≤2区间最值,最后得出最值. 【解答过程】解:由题意{f(1)=a +b +cf(−1)=a −b +c f(0)=c ,有得{a =12[f(1)+f(−1)−2f(0)]b =12[f(1)−f(−1)]c =f(0)所以f (x )=f (1)(x 2+x2)+f (﹣1)(x 2−x2)+f (0)(1﹣x 2) 对一切x ∈[﹣1,1],都有|f (x )|≤1所以当﹣2≤x <﹣1时,|f (x )|≤||||+||||+||||)|≤||+||+|| =(x 2+x2)+(x 2−x2)+(x 2−1)=2x 2−1≤7当1<x ≤2时,|f (x )|≤||||+||||+||||)|≤||+||+||=(x 2+x 2)+(x 2−x 2)+(x 2−1)=2x 2−1≤7综上所述,当x ∈[﹣2,2]时,f (x )的最大值为7.【变式3-3】(2021春•浦东新区校级期末)已知函数f (x )=x 2﹣(a ﹣2)x +a ﹣3. (1)若f (a +1)=f (2a ),求a 的值;(2)若函数y =f (x )在x ∈[2,3]的最小值为5﹣a ,求实数a 的取值范围;(3)是否存在整数m 、n 使得关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ]?若存在,请求出m 、n 的值;若不存在,请说明理由.【解题思路】(1)根据已知条件,得到(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3解方程即可求出结果; (2)由于f (x )的对称轴为x =a−22,根据对称轴与区间的位置关系进行分类讨论,判断单调性求出最小值即可;(3)根据题意转化为 m ,n 是方程 x 2﹣(a ﹣2)x +a ﹣3=x 的两个根,结合韦达定理得到 m +n =2+mn ,分离常数,根据m ,n 为整数即可求解.【解答过程】解:(1)因为f (x )=x 2﹣(a ﹣2)x +a ﹣3,且 f (a +1)=f (2a ), 所以(a +1)2﹣(a ﹣2)(a +1)+a ﹣3=(2a )2﹣2a (a ﹣2)+a ﹣3, 整理得2a 2+a ﹣3=0,解得a =1或−32;(2)f (x )=x 2﹣(a ﹣2)x +a ﹣3 的对称轴为 x =a−22, 因为 x ∈[2,3], ①当a−22≤2,即 a ≤6,则f (x )在x ∈[2,3]上单调递增,所以f (x )min =f (2)=22﹣2(a ﹣2)+a ﹣3=5﹣a ,符合题意;②当2<a−22<3,即6<a <8,则f (x )在(2,a−22)上单调递减,在(a−22,3)单调递增, 所以f(x)min =f(a−22)=(a−22)2−a−22(a −2)+a −3=−a 2+8a−164=5﹣a , 则a =6,与6<a <8矛盾,不符合题意; ③a−22≥3,即a ≥8,则f (x )在x ∈[2,3]上单调递减,所以f(x)min =f(3)=32−3(a −2)+a −3=12−2a =5−a , 则a =7,与a ≥8矛盾,不符合题意,综上a ≤6,因此实数a 的取值范围为(﹣∞,6];(3)因为关于x 的不等式m ≤f (x )≤n 的解集恰为[m ,n ], ①若a−22≤m ,则f (x )在[m ,n ]上单调递增,所以{f(m)=mf(n)=n,即m ,n 是方程x 2﹣(a ﹣2)x +a ﹣3=x ,即x 2﹣(a ﹣1)x +a ﹣3=0的两个根, 由韦达定理得{m +n =a −1mn =a −3,所以 m +n =2+mn ,所以m (1﹣n )=2﹣n ,当n =1时,m 不存在,舍去, 当n ≠1时,m =2−n 1−n =11−n +1,所以当n =0时,m =2;当n =2时,m =0,又因为m <n ,所以n =2,m =0,经检验,此时a =3,关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;②若m <a−22≤n ,则f (x )在(m ,a−22)上单调递减,在(a−22,n +1)上单调递增,所以{f(a−22)≥m f(n)=n f(m)=n ,即{(a−22)2−(a −2)⋅a−22+a −3≥m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n,所以{−a 2+8a −16≥4m n 2−(a −2)⋅n +a −3=n m 2−(a −2)⋅m +a −3=n ,即x 2﹣(a ﹣2)x +a ﹣3﹣n =0有两个不相等的实数根,且m +n =2﹣a ,由于m ,n 为整数,则a 为整数,则a =n 2+n−3n−1=n +2−1n−1,当n =0时,a =3,m =﹣1,经检验关于x 的不等式m ≤f (x )≤n 的解集不是[m ,n ],故不符合题意舍去;当n =2时,a =3,m =﹣1,经检验符合题意; 故m =﹣1,n =2; ③若a−22≥n ,则f (x )在[m ,n ]上单调递减,所以{f(m)=nf(n)=m,即{m 2−(a −2)⋅m +a −3=n n 2−(a −2)⋅n +a −3=m ,则m =n ,不合题意舍去. 综上:存在这样的m ,n 为整数,且m =﹣1,n =2. 【题型4 二次函数的恒成立问题】【例4】(2021•4月份模拟)对于任意a ∈[﹣1,1],函数f (x )=x 2+(a ﹣4)x +4﹣2a 的值恒大于零,那么x 的取值范围是( ) A .(1,3) B .(﹣∞,1)∪(3,+∞)C .(1,2)D .(3,+∞)【解题思路】把二次函数的恒成立问题转化为y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x 的取值范围.【解答过程】解:原问题可转化为关于a 的一次函数y =a (x ﹣2)+x 2﹣4x +4>0在a ∈[﹣1,1]上恒成立,只需{(−1)⋅(x −2)+x 2−4x +4>01×(x −2)+x 2−4x +4>0, ∴{x >3,或x <2x <1,或x >2, ∴x <1或x >3.故选:B .【变式4-1】(2020春•玉林期末)已知函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,则k 的取值范围为( )A .(﹣∞,72)B .(72,+∞)C .(﹣∞,143)D .(143,+∞)【解题思路】由题意可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,结合y =g (x )的图象,只需g (1)<0,且g (2)<0,解不等式可得所求范围.【解答过程】解:函数f (x )=x 2+(4﹣k )x ,若f (x )<k ﹣2对x ∈[1,2]恒成立,可得x 2+(4﹣k )x ﹣k +2<0在x ∈[1,2]恒成立,可设g (x )=x 2+(4﹣k )x ﹣k +2,由于y =g (x )的图象为开口向上的抛物线,只需g (1)<0且g (2)<0,所以{1+4−k −k +2<04+2(4−k)−k +2<0,即{k >72k >143, 可得k >143. 故选:D .【变式4-2】(2020春•浙江期中)已知f (x )=x 2﹣|x ﹣a |+a ,若f (x )≤0对任意x ∈[﹣1,1]恒成立,则a 的取值范围是( )A .(﹣∞,﹣1]B .(﹣∞,0]C .[0,+∞)D .[﹣1,0]【解题思路】利用分段思想,分类讨论,结合二次函数性质即可求解.【解答过程】解:f (x )=x 2﹣|x ﹣a |+a ={x 2−x +2a ,x ≥a x 2+x ,x <a ,∵f (x )≤0对任意x ∈[﹣1,1]恒成立,∴①{x 2−x ≤−2a x ≥a 恒成立, 此时a ≤﹣1;②{x 2+x ≤0x <a在x ∈[﹣1,1]恒成立, 此时a ≤0;综上核对a ≤0,故选:B .【变式4-3】(2021春•虹口区期末)已知函数f (x )=x 2+2ax ﹣a +2.(1)若对于任意x ∈R ,f (x )≥0恒成立,求实数a 的取值范围;(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,求实数a 的取值范围;(3)若对于任意a ∈[﹣1,1],f (x )>0成立,求实数x 的取值范围.【解题思路】(1)利用二次函数的图象与性质可得△≤0,从而可求得a 的取值范围;(2)f (x )≥0恒成立等价于f (x )min ≥0,利用二次函数的图象与性质对a 分类讨论,求出f (x )的最小值,结合题意即可求解a 的取值范围;(3)将函数f (x )看作关于a 的函数g (a ),结合题意可得关于x 的不等式组即可求解x 的取值范围.【解答过程】解:(1)f (x )=x 2+2ax ﹣a +2≥0恒成立,可得△=4a 2﹣4(2﹣a )≤0,解得﹣2≤a ≤1,即实数a 的取值范围是[﹣2,1].(2)若对于任意x ∈[﹣1,1],f (x )≥0恒成立,则f (x )min ≥0,函数f (x )=x 2+2ax ﹣a +2的对称轴为x =﹣a ,当﹣a <﹣1,即a >1时,f (x )min =f (﹣1)=3﹣3a ≥0,解得a ≤1,矛盾,舍去;当﹣a >1,即a <﹣1时,f (x )min =f (1)=3+a ≥0,可得﹣3≤a <﹣1,当﹣1≤﹣a ≤1,即﹣1≤a ≤1时,f (x )min =f (﹣a )=﹣a 2﹣a +2≥0,可得﹣1≤a ≤1,综上所述,求实数a 的取值范围是[﹣3,1].(3)对于任意a ∈[﹣1,1],f (x )>0成立,等价于对于任意a ∈[﹣1,1],g (a )=(2x ﹣1)a +x 2+2>0,所以{g(−1)=x 2−2x +3>0g(1)=x 2+2x +1>0,解得x ≠1, 所以实数x 的取值范围是{x |x ≠﹣1}.。
专题08 幂函数与二次函数【考点预测】 1.幂函数的定义一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.2.幂函数的特征:同时满足一下三个条件才是幂函数 ①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质 3.常见的幂函数图像及性质:R RR {|0}x x ≥ (1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 5.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1)单调性与最值①当0a >时,如图所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;②当0a <时,如图所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,;2max 4()4ac b f x a -=.(2)与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 6.二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p qx +=: (1)若2bp a-≤,则(),()m f p M f q ==; (2)若02b p x a <-<,则(),()2bm f M f q a =-=; (3)若02b x q a ≤-<,则(),()2bm f M f p a=-=; (4)若2bq a-≥,则(),()m f q M f p ==. 【方法技巧与总结】1.幂函数()a y x a R =∈在第一象限内图象的画法如下: ①当0a <时,其图象可类似1y x -=画出; ②当01a <<时,其图象可类似12y x =画出; ③当1a >时,其图象可类似2y x =画出.2.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 3.一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.n (1)要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2)对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.【题型归纳目录】题型一:幂函数的定义及其图像 题型二:幂函数性质的综合应用题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件 题型四:二次函数“动轴定区间”、“定轴动区间”问题【典例例题】题型一:幂函数的定义及其图像例1.(2022·全国·高三专题练习)幂函数()()22121m f x m m x -=-+在()0,∞+上为增函数,则实数m 的值为( ) A .2- B .0或2 C .0 D .2【答案】D 【解析】 【分析】根据函数为幂函数求出m ,再验证单调性可得. 【详解】因为()f x 是幂函数,所以2211m m -+=,解得0m =或2m =,当0m =时,()1f x x -=在()0,∞+上为减函数,不符合题意, 当2m =时,()3f x x =在()0,∞+上为增函数,符合题意,所以2m =. 故选:D.例2.(2022·全国·高三专题练习)已知幂函数pqy x =(p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且0p q> B .q 为偶数,p 为奇数,且0p q < C .q 为奇数,p 为偶数,且0p q > D .q 为奇数,p 为偶数,且0p q< 【答案】D 【解析】 【分析】根据给定函数的图象分析函数的性质,即可得出p 、q 的取值情况. 【详解】因函数p q y x =的图象关于y 轴对称,于是得函数pq y x =为偶函数,即p 为偶数, 又函数p qy x =的定义域为(,0)(0,)-∞+∞,且在(0,)+∞上单调递减,则有pq<0, 又因p 、q 互质,则q 为奇数,所以只有选项D 正确. 故选:D例3.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12##0.5 【解析】 【分析】点A 坐标代入幂函数解析式,求得a ,然后计算函数值. 【详解】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭ 故答案为:12.例4.(2022·黑龙江·哈九中高三开学考试(文))已知幂函数()f x 的图象过点()8,2--,且()()13f a f a +≤--,则a 的取值范围是______. 【答案】(],1-∞ 【解析】 【分析】先求得幂函数()f x 的解析式,根据函数()f x 的奇偶性、单调性来求得a 的取值范围. 【详解】设()f x x α=,则()1823αα-=-⇒=,所以()13f x x =,()f x 在R 上递增,且为奇函数,所以()()()311313f a f a a a f a a =-+≤--+-⇒≤⇒≤. 故答案为:(],1-∞例5.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快 【解析】 【分析】根据幂函数的图象与性质确定结论. 【详解】解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.例6.(2022·全国·高三专题练习)已知幂函数223()m m y f x x --==(m ∈Z )在(0,)+∞是严格减函数,且为偶函数.(1)求()y f x =的解析式;(2)讨论函数5()(2)()y af x a x f x =+-⋅的奇偶性,并说明理由.【答案】(1)4()y f x x -==;(2)当2a =时,为偶函数;当0a =时,为奇函数;当2a ≠且0a ≠时,为非奇非偶函数.理由见解析. 【解析】(1)由题意可得:2230m m --<,解不等式结合m ∈Z 即可求解;(2)由(1)可得4(2)y ax a x -=+-,分别讨论0a =、2a =、0a ≠且2a ≠时奇偶性即可求解. 【详解】(1)因为幂函数223()mm y f x x --==(m Z ∈)在(0,)+∞是严格减函数,所以2230m m --<,即()()310m m -+< ,解得:13x , 因为m Z ∈,所以0,1,2m =,当0m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意;当1m =时,4()y f x x -==,此时()y f x =为偶函数,符合题意; 当2m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意; 所以4()y f x x -==,(2)4544(2)(2)y ax a x x ax a x ---=+-⋅=+-,令()4(2)F x ax a x -=+-当0a =时,()2F x x =-,()()()22F x x x F x -=-⨯-==-,此时是奇函数, 当2a =时()4422F x x x -==,()()()444222F x x x x --=-==-,此时是偶函数, 当0a ≠且2a ≠时,()1(2)22F a a a =+-=-,()1(2)2F a a -=--=,()()11F F ≠-,()()11F F -≠-,此时是非奇非偶函数函数.【方法技巧与总结】确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.题型二:幂函数性质的综合应用例7.(2022·河北石家庄·高三期末)已知实数a ,b 满足3e e 1a a a -+=+,3e e 1b b b -+=-,则a b +=( ) A .-2 B .0 C .1 D .2【答案】B 【解析】 【分析】由已知构造函数()3e e x xf x x -=+-,利用()1f a =,()1f b =-,及函数的单调性、奇偶性即可得出结果.【详解】构建函数()3e e x xf x x -=+-,则()f x 为奇函数,且在R 上单调递增.由3e e 1a a a -+=+,3e e 1b b b -+=-,得()1f a =,()()()()1f b f a f b f b a b =-⇒=-=-⇒=-,所以0a b +=. 故选:B.例8.(2022·四川眉山·三模(文))下列结论正确的是( )A .2<B .2<C .2log <D .2<【答案】A 【解析】 【分析】对于A 、B :作出2x y =和2yx 在第一象限的图像判断出:在()0,2上,有22x x >,在()2,4上,有22x x <,在()4,+∞上,有22x x >.即可判断A 、B ;对于C:判断出2>, log 1,即可判断;对于D:判断出2>,2=,即可判断.【详解】 对于A 、B : 作出2x y =和2yx 在第一象限的图像如图所示:其中2x y =的图像用虚线表示,2yx 的图像用虚线表示.可得,在()0,2上,有22x x >,在()2,4上,有22x x <,在()4,+∞上,有22x x >.因为24<,所以2<,故A 正确;4,所以2>,故B 错误;对于C:2>,而22log log 21<=,所以log >故C 错误;对于D:2>,而2=,所以>.故D 错误.故选:A例9.(2022·广西·高三阶段练习(理))已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根, 则实数k 的取值范围为( ) A .()0,1B .(),1-∞C .(]0,1D .()0,∞+ 【答案】A 【解析】 【分析】分析函数()f x 的性质,作出图象,数形结合即可求解作答. 【详解】当2x <时,函数3()(1)f x x =-是增函数,函数值集合是(,1)-∞,当2x ≥时,2()f x x=是减函数,函数值集合是(]0,1,关于x 的方程()f x k =有两个不同的实根,即函数()y f x =的图象与直线y k =有两个交点, 在坐标系内作出直线y k =和函数()y f x =的图象,如图,观察图象知,当01k <<时,直线y k =和函数()y f x =的图象有两个交点,即方程()f x k =有两个不同的实根,所以实数k 的取值范围为(0,1). 故选:A例10.(2022·浙江·模拟预测)已知0a >,函数()(0)xa f x x a x =->的图象不可能是( )A .B .C .D .【答案】C 【解析】 【分析】分类讨论1a =,01a <<与1a >三种情况下函数的单调性情况,从而判断. 【详解】当1a =时,()1(0)=-=>-a xx f x x x a ,此时函数()f x 为一条射线,且函数()1f x x =-在()0,∞+上为增函数,B 选项符合;当01a <<时,函数a y x =在()0,∞+上为增函数,x y a =在()0,∞+上为减函数,所以函数()=-a x f x x a 在()0,∞+上为增函数,此时函数在()0,∞+上只有一个零点,A 选项符合;当1a >时,x →+∞时,函数a y x =的增长速度远小于函数x y a =的增长速度,所以x →+∞时,函数()=-a xf x x a 一定为减函数,选项D 符合,C 不符合. 故选:C例11.(2022·全国·高三专题练习)不等式()10112200221210x x x -++-≤的解集为:_________.【答案】⎡⎢⎣⎦ 【解析】 【分析】 将不等式化为()()10111011222211x x x x +≤-+-,构造()1011f x x x =+根据其单调性可得221x x ≤-,求解即可.【详解】不等式变形为()()101110112222110x x x x -+-++≤,所以()()10111011222211x x x x +≤-+-,令()1011f x x x =+,则有()()221f x f x ≤-,显然()f x 在R 上单调递增,则221x x ≤-,可得212x ≤,解得x ≤≤故不等式的解集为⎡⎢⎣⎦.故答案为:⎡⎢⎣⎦例12.(2022·上海市实验学校高三阶段练习)若函数()()()3,af x m x m a =+∈R 是幂函数,且其图象过点(,则函数()()2log 3ag x xmx =+-的单调递增区间为___________.【答案】(),1-∞- 【解析】 【分析】根据幂函数的定义及所过的点求出,a m ,再根据对数型复合函数的单调性即可得出答案. 【详解】解:因为函数()()()3,af x m x m a =+∈R 是幂函数,所以31m +=,解得2m =-,又其图象过点(,所以2a 12a =, 则()()212log 23g x x x =--, 则2230x x -->,解得3x >或1x <-, 令223x x μ=--,则函数223x x μ=--在()3,+∞上递增,在(),1-∞-上递减, 又因函数12log y μ=为减函数,所以函数()g x 的单调递增区间为(),1-∞-. 故答案为:(),1-∞-.例13.(2020·四川·泸州老窖天府中学高二期中(理))已知函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若方程2()()20f x bf x ++=有8个相异的实数根,则实数b 的取值范围是_________________________ .【答案】(3,-- 【解析】 【分析】根据题意,作出函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图像,进而数形结合,将问题转化为方程220t bt ++=在区间()1,2上有两个不相等的实数根12,t t ,再结合二次函数零点分布求解即可. 【详解】解:根据题意,作出函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图像,如图:令()t f x =,因为方程2()()20f x bf x ++=有8个相异的实数根, 所以方程220t bt ++=在区间()1,2上有两个不相等的实数根12,t t ,故令()22g t t bt =++,则函数()22g t t bt =++在区间()1,2上有两个不相等的零点.所以()()100220g b g g ⎧>⎪⎪⎛⎫-<⎨ ⎪⎝⎭⎪⎪>⎩,即230204620b b b +>⎧⎪⎪-<⎨⎪+>⎪⎩,解得3b -<<-所以实数b的取值范围是(3,--.故答案为:(3,--例14.(2022·全国·高三专题练习)已知幂函数()()224222mm f x m m x-+=--在()0,∞+上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()()()211ag x a x f x =--+在(]0,2上的值域为(]1,11?若存在,求出a 的值;若不存在,请说明理由.【答案】(1)3m =,()1f x x -=;(2)存在,6a =.【解析】 【分析】(1)根据幂函数的定义及单调性,令幂的系数为1及指数为负,列出方程求出m 的值,将m 的值代入()f x 即可;(2)求出()g x 的解析式,按照1a -与0的大小关系进行分类讨论,利用()g x 的单调性列出方程组,求解即可. 【详解】(1)(1)因为幂函数()2242()22mm f x m m x-+=--在(0,)+∞上单调递减,所以22221420m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=;(2)由(1)可得,1()f x x -=,所以()(21)1(1)1g x a x ax a x =--+=-+, 假设存在0a >,使得()g x 在(]0,2上的值域为(]1,11,①当01a <<时,10a -<,此时()g x 在(]0,2上单调递减,不符合题意; ②当1a =时,()1g x =,显然不成立;③当1a >时,10a ->,()g x 在和(]0,2上单调递增, 故(2)2(1)111g a =-+=,解得6a =.综上所述,存在6a =使得()g x 在(]0,2上的值域为(]1,11.【方法技巧与总结】紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件例15.(2022·河南·焦作市第一中学高二期中(文))设p :二次函数()()210f x ax ax a =++≠的图象恒在x轴的上方,q :关于x 的方程22210x ax a -+-=的两根都大于-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由p 可得20Δ40a a a >⎧⎨=-<⎩,由q 可得1111a a ->-⎧⎨+>-⎩,进而判断两集合关系,即可得到答案. 【详解】由p ,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<; 由q ,方程22210x ax a -+-=的两根为11x a =-,21x a =+,则1111a a ->-⎧⎨+>-⎩,解得0a >, 因为{}04a a << {}0a a > ,所以p 是q 的充分不必要条件, 故选:A例16.(2022·重庆·模拟预测)已知二次函数24y x x a =-+的两个零点都在区间()1,+∞内,则a 的取值范围是( ) A .(),4-∞ B .()3,+∞C .()3,4D .(),3-∞【答案】C 【解析】 【分析】根据二次函数的对称轴与单调区间,结合已知可得到关于a 的不等式,进而求解. 【详解】二次函数24y x x a =-+,对称轴为2x =,开口向上, 在(),2-∞上单调递减,在()2,+∞上单调递增,要使二次函数2()4f x x x a =-+的两个零点都在区间()1,+∞内,需(1)140(2)480f a f a =-+>⎧⎨=-+<⎩,解得34a << 故实数a 的取值范围是()3,4 故选:C例17.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax xg x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围. 【答案】(1)()24x xg x =-;(2)1,124⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)根据()218f a +=求出a 即可;(2)方程()80xg x m -⋅=参变分离得222x x m --=-,换元法求值域即可.(1)由()218f a +=,可得:2318a +=,解得:32a =,∴()24x xg x =-;(2)由()80xg x m -⋅=,可得222x x m --=-,令12,44xt -⎡⎤=∈⎢⎥⎣⎦,则221124m t t t ⎛⎫=-=-- ⎪⎝⎭, 则原问题等价于y =m 与y =h (t )=2t t -在1,44t ⎡⎤∈⎢⎥⎣⎦上有交点,数形结合可知m ∈[h (12),h (4)]=1,124⎡⎤-⎢⎥⎣⎦.故实数m 的取值范围为:1,124⎡⎤-⎢⎥⎣⎦.例18.(2022·湖北·高一期末)已知函数()2sin 1f x x =-,[0,]x π∈. (1)求()f x 的最大值及()f x 取最大值时x 的值;(2)设实数a R ∈,求方程23[()]2()10f x af x -+=存在8个不等的实数根时a 的取值范围. 【答案】(1)当0x =,π2,π时, max ()1f x =(2))2a ∈【解析】 【分析】(1)去掉绝对值,化为分段函数,求出每一段上的最大值;(2)令()t f x =,问题转化为23210t at -+=在(0,1)t ∈上存在两个相异的实根,进而列出不等式组,求出a 的取值范围.(1)∵()521,66512,066sinx x f x sinx x x πππππ⎧-≤≤⎪⎪=⎨⎪-≤<<≤⎪⎩或,∴当5[,]66x ππ∈时, ()max 12f x f π⎛⎫== ⎪⎝⎭;∴当5[0,)(,]66x πππ∈时, max ()(0)(π)1f x f f ===.故当02x ππ=,,时, max ()1f x =. (2)令()t f x =,则[0,1]t ∈,使方程23[()]2()10f x af x -+=存在8个不等的实数根,则方程23210t at -+=在(0,1)t ∈上存在两个相异的实根,令2()321g t t at =-+,则()()()201013210Δ24310012g g a a a ⎧=>⎪=-+>⎪⎪⎨=--⨯⨯>⎪⎪<<⎪⎩2a <<.故所求的a的取值范围是)2.【方法技巧与总结】结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.题型四:二次函数“动轴定区间”、“定轴动区间”问题例19.(2022·全国·高三专题练习)已知2()(0)f x ax bx c a =++>,()(())g x f f x =,若()g x 的值域为[2,)+∞,()f x 的值域为[k ,)+∞,则实数k 的最大值为( )A .0B .1C .2D .4【答案】C 【解析】 【分析】设()t f x =,即有()()g x f t =,t k ,可得函数2y at bt c =++,t k 的图象为()y f x =的图象的部分,即有()g x 的值域为()f x 的值域的子集,即有k 的范围,可得最大值为2. 【详解】解:设()t f x =,由题意可得2()()g x f t at bt c ==++,t k , 函数2y at bt c =++,t k 的图象为()y f x =的图象的部分, 即有()g x 的值域为()f x 的值域的子集, 即[2,)[k +∞⊆,)+∞, 可得2k ,即有k 的最大值为2. 故选:C .例20.(2022·全国·高三专题练习)已知值域为[1,)-+∞的二次函数()f x 满足(1)(1)f x f x -+=--,且方程()0f x =的两个实根12,x x 满足122x x -=.(1)求()f x 的表达式;(2)函数()()g x f x kx =-在区间[2,2]-上的最大值为(2)f ,最小值为(2)f -,求实数k 的取值范围.【答案】(1)()22f x x x =+;(2)(],2-∞-. 【解析】 【分析】(1)根据(1)(1)f x f x -+=--可以判断函数的对称轴,再根据函数的值域可以确定二次函数的顶点坐标,则可设22()(1)121f x a x ax ax a =+-=++-,根据一元二次方程根与系数的关系,结合已知122x x -=进行求解,求出a 的值,即可得出()f x 的表达式;(2)根据题意,可以判断出函数()g x 在区间[2,2]-上的单调性,由()()g x f x kx =-,求得()2(2)g x x k x =+-,进而可知()g x 的对称轴方程为22k x -=,结合二次函数的图象与性质以及单调性,得出222k -≤-,即可求出k 的取值范围. (1)解:由(1)(1)f x f x -+=--,可得()f x 的图象关于直线1x =-对称, 函数()f x 的值域为[1,)-+∞,所以二次函数的顶点坐标为(1,1)--, 所以设22()(1)121f x a x ax ax a =+-=++-, 根据根与系数的关系,可得122x x +=-,121a x x a-=, 因为方程()0f x =的两个实根12,x x 满足122x x -=则122x x -===, 解得:1a =,所以()22f x x x =+.(2)解:由于函数()g x 在区间[2,2]-上的最大值为(2)f ,最小值为(2)f -, 则函数()g x 在区间[2,2]-上单调递增,又2())2(g x f x kx x x kx =-=+-,即()2(2)g x x k x =+-,所以()g x 的对称轴方程为22k x -=,则222k -≤-,即2k ≤-, 故k 的取值范围为(],2-∞-.例21.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【答案】(1)(1,1)(5,7)-⋃ (2)0,2t a ==或2,2t a ==【解析】 【分析】(1)代入3a =解不等式组226756⎧-<⎪⎨-<-⎪⎩x x x x 可得答案; (2)由题意(0)(2)0f f a ==,结合最大值为0最小值是4-分0=t 、22t a +=数形结合可得答案. (1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.例22.(2022·全国·高三专题练习)问题:是否存在二次函数2()(0,,)f x ax bx c a b c R =++≠∈同时满足下列条件:(0)3f =,()f x 的最大值为4,____?若存在,求出()f x 的解析式;若不存在,请说明理由.在①(1)(1)f x f x +=-对任意x ∈R 都成立,② 函数(2)y f x =+的图像关于y 轴对称,③ 函数()f x 的单调递减区间是1,2⎡⎫+∞⎪⎢⎣⎭这三个条件中任选一个,补充在上面问题中作答.【答案】答案见解析 【解析】 【分析】由(0)3f =,可求得3c =,由条件可得函数的对称轴,又()f x 的最大值为4,可得关于,a b 的方程组,求解即可. 【详解】解:由(0)3f =,可求得3c =,则2()3f x ax bx =++ 若选择① (1)(1)f x f x +=-对任意x ∈R 都成立 可得()f x 的对称轴为1x =,所以2ba-=1,又()f x 的最大值为4,可得0a <且(1)4f =,即34a b ++=,解得1,2a b =-=,此时2()23f x x x =-++; 若选择函数(2)y f x =+的图像关于y 轴对称 可得()f x 的对称轴为2x =,则2ba-=2, 又f (x )的最大值为4,可得0a <且(2)4f =,即4234a b ++=,解得a 14=-,1b =,此时21()34f x x x =-++若选择③ 函数f (x )的单调递减区间是1[2+∞,), 可得f (x )关于x 12=对称,则122b a -=,又()f x 的最大值为4,可得0a <且142f ⎛⎫= ⎪⎝⎭,即113442a b ++=解得4a b ==-,此时2()434f x x x -=-+例23.(2022·全国·高三专题练习)已知二次函数()f x 满足(1)(3)3,(1)1f f f -===-. (1)求()f x 的解析式;(2)若()f x 在[1,1]a a -+上有最小值1-,最大值(1)f a +,求a 的取值范围. 【答案】(1)2()2f x x x =-;(2)[1,2]. 【解析】 【分析】(1)利用待定系数法求函数的解析式,设2()f x ax bx c =++(0)a ≠,根据已知条件建立方程组,从而可求出解析式;(2)根据()f x 在[1,1]a a -+上有最小值1-,最大值(1)f a +,(1)1f =-,从而函数()f x 的对称轴在区间[1,1]a a -+上,1a +离对称轴远,建立关系式,从而求出a 的范围【详解】(1)设2()f x ax bx c =++(0)a ≠,则 (1)3(3)933(1)1f a b c f a b c f a b c -=-+=⎧⎪=++=⎨⎪=++=-⎩解之得:1,2,0a b c ==-=2()2f x x x ∴=- (2)根据题意:111(1)11(1)a a a a -≤≤+⎧⎨+-≥--⎩解之得:12a ≤≤a ∴的取值范围为[]1,2例24.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围.【答案】(1)2(1)2f x x x =++ (2)913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)根据0∆≤,结合(1)0f -=可解;(2)结合图形,对对称轴和端点函数值进行分类讨论可得. (1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =,所以2(1)2f x x x =++. (2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦.【方法技巧与总结】“动轴定区间 ”、“定轴动区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.【过关测试】一、单选题1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( ) A .()0,1x ∀∈,都有()0f x > B .()0,1x ∀∈,都有()0f x < C .()00,1x ∃∈,使得()00f x = D .()00,1x ∃∈,使得()00f x >【答案】B 【解析】 【分析】根据题目条件,画出函数草图,即可判断. 【详解】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x =【答案】D 【解析】 【分析】根据指对函数的性质判断A 、B ,由正弦函数性质判断C ,对于D 有22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,即可判断奇偶性和()0,+∞单调性. 【详解】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足.故选:D3.(2022·全国·高三专题练习)已知幂函数()()()222nf x n n x n Z =+-∈在()0,∞+上是减函数,则n 的值为( ) A .1或3- B .1 C .1- D .3-【答案】D 【解析】 【分析】根据幂函数的定义和单调性求得n 的值. 【详解】依题意()f x 是幂函数,所以22221230n n n n +-=⇒+-=,解得1n =或3n =-. 当1n =时,()f x x =在()0,∞+递增,不符合题意.当3n =-时,()3f x x -=在()0,∞+递减,符合题意.故选:D4.(2022·全国·高三专题练习(理))设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R ,且该函数为奇函数的α值为( ) A .1或3 B .1-或1C .1-或3D .1-、1或3【答案】A 【解析】 【分析】由幂函数的相关性质依次验证得解. 【详解】因为定义域为R ,所以0α>,12α≠, 又函数为奇函数,所以2α≠,则满足条件的1α=或3. 故选:A5.(2022·全国·高三专题练习(理))已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( ) A .(),0-∞ B .()(),00,-∞⋃+∞ C .()0,∞+ D .[)0,+∞【答案】D 【解析】先求出幂函数解析式,根据解析式即可求出值域. 【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,23(0)f x x ∴==,∴()f x 的值域是[)0,+∞.故选:D.6.(2022·北京·高三专题练习)设x R ∈,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是A .3B .4C .5D .6【答案】B 【解析】 【详解】因为[]x 表示不超过x 的最大整数.由得,由得, 由得,所以,所以,由得, 所以,由得,与矛盾,故正整数n 的最大值是4.考点:函数的值域,不等式的性质.7.(2022·全国·高三专题练习)若幂函数()mn f x x = (m ,n ∈N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】 【分析】根据幂函数的图像和性质利用排除法求解 【详解】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.8.(2022·全国·高三专题练习)已知3,0()3,0x xx f x e x x x ⎧⎪=⎨⎪-<⎩,若关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,则实数k 的取值范围为( ) A .72(,)2e e-- B .72](,2e e--C .72(,)(,)2e e -∞--+∞D .72(,(,2])e e-∞--+∞【答案】A 【解析】 【分析】利用导数研究分段函数()f x 的性质,作出函数图形,数形结合得到124010t t e -<<⎧⎪⎨<<⎪⎩,然后结合一元二次方程根的分布即可求出结果. 【详解】 因为0x ≥时,()xx f x e =,则1()x xf x e-'=,令()0f x '=,则1x =,所以()0,1x ∈时,()0f x '>,则()f x 单调递增;()1,x ∈+∞时,()0f x '<,则()f x 单调递减;且(0)0f =,1(1)f e=,x →+∞时,()0f x →;0x <时,3()3f x x x =-,则2()33f x x =-',令()0f x '=,则1x =-,所以()1,0x ∈-时,()0f x '>,则()f x 单调递增;(),1x ∈-∞-时,()0f x '<,则()f x 单调递减;且(0)0f =,(1)4f -=-,x →-∞时,()f x →+∞; 作出()f x 在R 上的图象,如图:关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,令()f x t =,则2210t kt --=有两个不同的实根12121,02t t t t =-<,,所以124010t t e-<<⎧⎪⎨<<⎪⎩,令()221g t t kt =--,则()()280400010k g g g e ⎧∆=+>⎪->⎪⎪<⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩,解得722k e e -<<-,故选:A. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 二、多选题9.(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( ) A .2 B .3C .4D .5【答案】BC 【解析】 【分析】画出函数244y x x =--的图象,结合值域可得实数a 的取值范围,从而可得正确的选项. 【详解】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确. 故选: BC.10.(2022·全国·高三专题练习)已知函数2()3232x x f x =-⋅+,定义域为M ,值域为[1,2],则下列说法中一定正确的是( ) A .[]30,log 2M = B .(]3,log 2M ⊆-∞ C .3log 2M ∈ D .0M ∈【答案】BCD 【解析】 【分析】根据题意,令3x t =,则()222g t t t =-+,结合()g t 的值域为[1,2],求出t 的取值范围,进而区间M 的特征,即可得到正确选项. 【详解】令3x t =(0)t >,则222()323222(1)1()x x f x t t t g t =-⋅+=-+=-+=, 由()1g t =,得1t =,即31x =,得0x =; 由()2g t =,得0=t (舍)或2,即3log 2x =;根据()g t 的图象特征,知0M ∈,3log 2M ∈,(]3log 2M ⊆-∞,. 故选:BCD .11.(2022·广东揭阳·高三期末)已知函数()3f x x x =+,实数,m n 满足不等式()()2320f m n f n -+->,则( ) A .e e m n > B .11n n m m +>+ C .()ln 0m n -> D .20212021m n <【答案】AC 【解析】 【分析】先判断函数()f x 的奇偶性及单调性结合不等式()()2320f m n f n -+->可得,m n 所满足的关系式,再利用指数函数、对数函数和幂函数的单调性以及特殊值法逐项判断. 【详解】因为()()()()()33f x x x x x f x -=-+-=-+=-,所以()f x 为奇函数,因为()2310f x x '=+>,所以()f x R 上单调递增, 由()()2320f m n f n -+->, 得()()()2322f m n f n f n ->--=-, 所以232m n n ->-, 即1m n ->,m n >,因为x y e =在R 上是增函数,所以m n e e >,故A 正确;因为ln y x =在()0,∞+上是增函数,所以ln()0m n ->,故C 正确; 因为2021y x =在R 上是增函数,所以20212021m n >,故D 错误; 令2,0m n ==,可验证B 错误. 故选:AC12.(2022·全国·高三专题练习)设点(),x y 满足()55340x y x x y ++++=.则点(),x y ( ) A .只有有限个 B .有无限多个C .位于同一条直线上D .位于同一条抛物线上【答案】BC 【解析】 【分析】由已知得()()()()5533x y x y x x +++=-+-,根据5y x x =+的单调性有3x y x +=-,即可知(),x y 的性质.【详解】由题意,可得()()()()5533x y x y x x +++=-+-, 又5y x x =+单调递增,得3x y x +=-,则40x y +=, 故满足条件的点(),x y 有无穷多个,且都在直线40x y +=上. 故选:BC 三、填空题13.(2022·内蒙古赤峰·模拟预测(文))写出一个同时具有下列性质①②③的函数()f x =______. ①()()f x f x -=;②当()0,x ∞∈+时,()0f x >; ③()()()1212f x x f x f x =⋅;【答案】2x (答案不唯一); 【解析】 【分析】根据给定函数的性质,结合偶数次幂函数即可写出符合要求的解析式. 【详解】由所给性质:()f x 在(,0),(0,)-∞+∞上恒正的偶函数,且()()()1212f x x f x f x =⋅,结合偶数次幂函数的性质,如:2()f x x =满足条件. 故答案为:2x (答案不唯一)14.(2022·全国·高三专题练习(文))已知α∈112,1,,,1,2,322⎧⎫---⎨⎬⎩⎭.若幂函数f (x )=xα为奇函数,且在(0,+∞)上递减,则α=______. 【答案】-1 【解析】 【分析】根据幂函数()f x x α=,当α为奇数时,函数为奇函数,0α<时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f (x )=xα为奇函数,∴α可取-1,1,3, 又f (x )=xα在(0,+∞)上递减,∴α<0,故α=-1. 故答案为:-1.15.(2022·广东肇庆·模拟预测)已知函数21()2f x x ax =++,()lng x x =-,用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}(0)h x f x g x x =>,若()h x 恰有3个零点,则实数a 的取值范围是___________.【答案】3,2⎛- ⎝【解析】 【分析】分析函数21()2f x x ax =++的零点情况,可确定符合题意的情况,从而得到不等式组,解得答案.【详解】函数21()2f x x ax =++恒过点1(0,)2,且其图象开口向上,()ln g x x =-的零点为1,当21()2f x x ax =++的零点至少有一个大于或等于1时,如图示:函数()min{(),()}(0)h x f x g x x =>的零点至多有两个,不符合题意,故要使()h x 恰有3个零点,则函数()f x 在区间(0,1)上存在两个零点,如图示,故20121(1)1021Δ402a f a a ⎧<-<⎪⎪⎪=++>⎨⎪⎪=-⨯>⎪⎩解得32a -<<故答案为:3,2⎛- ⎝16.(2022·全国·高三专题练习)93,42M ⎛⎫⎪⎝⎭是幂函数()a f x x 图象上的点,将()f x 的图象向上平移32个单位长度,得到函数()y g x =的图象,若点(,)n T n m (*n ∈N ,且2n )在()g x 的图象上,则239MT MT MT +++=______. 【答案】30 【解析】 【分析】先求出函数()y g x =的解析式,得到23()2m n -=,从而得到()724n MT n n =-≥,对239MT MT MT +++利用分组求和法求和即可. 【详解】由39()24α=,得12α=,()12f x x =,123()2g x x =+.因为点(,)n m 在函数()g x 上,所以1232m n -=,即23()2m n -=.所以n MT ==7(2)4n n =-≥, 所以239777(2)(3)(9)444MT MT MT +++=-+-+⋯+-7(239)84=+++-⨯811142⨯=- 30=.故答案为:30. 四、解答题17.(2022·全国·高三专题练习)解不等式3381050(1)1x x x x +-->++. 【答案】()()211-∞--,,. 【解析】 【分析】不等式变形为33225511x x x x ⎛⎫+⋅>+ ⎪++⎝⎭,将21x +视为一个整体,方程两边具有相同的结构,于是构造函数()35f x x x =+,然后由函数的单调性解不等式.【详解】令()35f x x x =+,易知()f x 在R 上单调递增.原不等式变形为33225511x x x x ⎛⎫+⋅>+ ⎪++⎝⎭,即()21f f x x ⎛⎫> ⎪+⎝⎭. 由()f x 在R 上单调递增得21x x >+,解得2x <-或11x -<<. 所以原不等式的解集为()()211-∞--,,. 18.(2022·全国·高三专题练习)已知幂函数()()2144m f x m m x+=+-在区间0,上单调递增.(1)求()f x 的解析式;(2)用定义法证明函数()()()43m g x f x x+=+在区间()0,2上单调递减. 【答案】(1)()2f x x =;(2)证明见解析.【解析】 【分析】(1)由幂函数的系数为1得2441+-=m m ,再根据函数为0,增函数得1m =;(2)由(1)得()216g x x x=+,再根据函数单调性的定义证明即可. 【详解】(1)解:由题可知:2441+-=m m ,解得1m =或5m =-. 若1m =,则()2f x x =在区间0,上单调递增,符合条件;若5m =-,则()4f x x -=在区间0,上单调递减,不符合条件.故()2f x x =.(2)证明:由(1)可知,()216g x x x=+. 任取1x ,()20,2x ∈,且12x x <,则()()()()22121212121212161616g x g x x x x x x x x x x x ⎡⎤-=+--=-+-⎢⎥⎣⎦. 因为1202x x <<<, 所以120x x -<,124x x +<,12164x x >, 所以()()121212160x x x x x x ⎡⎤-+->⎢⎥⎣⎦, 即()()12gx g x >,故()g x 在区间()0,2上单调递减.【点睛】。
教学内容幂函数与二次函数教学目标了解幂函数与二次函数的形式重点幂函数与二次函数难点幂函数与二次函数教学准备教学过程幂函数与二次函数知识梳理1.幂函数(1)幂函数的定义形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象2.二次函数(1)二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.(2)二次函数的三种常见解析式①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-m)2+n(a≠0),(m,n)为顶点坐标;③两根式:f(x)=a(x-x1)(x-x2)(a≠0)其中x1,x2分别是f(x)=0的两实根.教学效果分析教学过程(3)二次函数的图象和性质函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0定义域R R值域y∈⎣⎢⎡⎭⎪⎫4ac-b24a,+∞y∈⎝⎛⎦⎥⎤-∞,4ac-b24a对称轴x=-b2a顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a奇偶性b=0⇔y=ax2+bx+c(a≠0)是偶函数递增区间⎝⎛⎭⎪⎫-b2a,+∞⎝⎛⎭⎪⎫-∞,-b2a递减区间⎝⎛⎭⎪⎫-∞,-b2a⎝⎛⎭⎪⎫-b2a,+∞最值当x=-b2a时,y有最小值y min=4ac-b24a当x=-b2a时,y有最大值y max=4ac-b24a辨析感悟1.对幂函数的认识(1)函数f(x)=x2与函数f(x)=2x2都是幂函数.( )(2)幂函数的图象都经过点(1,1)和(0,0).( )(3)幂函数的图象不经过第四象限.( )2.对二次函数的理解(4)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.( )(5)(教材习题改编)函数f(x)=12x2+4x+6,x∈[0,2]的最大值为16,最小值为-2.( )教学效果分析教学过程[感悟·提升]三个防范一是幂函数的图象最多出现在两个象限内,一定会经过第一象限,一定不经过第四象限,若与坐标轴相交,则交点一定是原点,但并不是都经过(0,0)点,如(2)、(3).二是二次函数的最值一定要注意区间的限制,不要盲目配方求得结论,如(5)中的最小值就忽略了函数的定义域.考点一幂函数的图象与性质的应用【例1】(1)(2014·济南模拟)已知幂函数y=f(x)的图象过点⎝⎛⎭⎪⎫12,22,则log4f(2)的值为________.(2)函数y=13x的图象是________.规律方法(1)幂函数解析式一定要设为y=xα(α为常数)的形式;(2)可以借助幂函数的图象理解函数的对称性、单调性;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.【训练1】比较下列各组数的大小:⑴121.1,120.9,1;⑵2322⎛⎫- ⎪⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1-.教学效果分析教学过程考点二二次函数的图象与性质【例2】(2013·浙江七校模拟)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是________.规律方法解决二次函数的图象问题有以下两种方法:(1)排除法,抓住函数的特殊性质或特殊点;(2)讨论函数图象,依据图象特征,得到参数间的关系.【训练2】(2012·山东卷改编)设函数f(x)=1x,g(x)=-x2+bx,若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则x1+x2________0,y1+y2________0(比较大小).教学效果分析教学过程1.对于幂函数的图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.二次函数的综合应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想.3.对于与二次函数有关的不等式恒成立或存在问题注意等价转化思想的运用.答题模板2——二次函数在闭区间上的最值问题【典例】(12分)(经典题)求函数f(x)=-x(x-a)在x∈[-1,1]上的最大值.[反思感悟] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)部分学生易出现两点错误:①找不到分类的标准,无从入手;②书写格式不规范,漏掉结论答题模板第一步:配方,求对称轴.第二步:分类,将对称轴是否在给定区间上分类讨论.第三步:求最值.第四步:下结论.【自主体验】已知函数f(x)=-4x2+4ax-4a-a2在区间[0,1]内有一个最大值-5,求a的值.教学效果分析。