【2019年中考数学】湖南省娄底市新化县2019年中考数学二模试卷(含答案)
- 格式:pdf
- 大小:446.54 KB
- 文档页数:16
2019年娄底市初中毕业数学学业考试质量检测参考答案一、选择题二、填空题(本大题共6个小题,每小题3分,共18分)13、x≤2且x≠-1 14、y= - 2(x+4)2−215、 116、62517、22π-18、②③④三、解答题(本大题共2小题,每小题6分,满分12分)19. 计算:(√2019 +1)0+ (−13)−2- |√2−2|-2sin450解:原式=1+9-(2-√2)-2×√22=820.先化简,再求值:a2−2ab+b22a−2b÷(1b−1a), 其中a=√5+1, b=√5-1 .解:原式=(a−b)22(a−b)2÷a−bab=ab2当a=√5+1, b=√5-1 时,原式=2四、解答题(本大题共2小题,每小题8分,满分16分)21、解:(1),40%;144(2)如图所示;(3)解:1000×10%=100(人)答:全校喜欢踢键子的大约有100人.22.23.24.六、解答题(本大题共2个小题,每小题10分,满分20分)25.证明:(1)连接OD的切线是∥又平分为直径,O PD DP OD ODP COD ODP DPBC COD COD BAC AD BC ⊙901809021=45=1∴⊥∴︒=∠∴︒=∠+∠∴︒=∠∴∠︒∠∴∠(2)O 22323ABCD PCD ABD BC DP P AB P ABD DCP∴∠=∠∴∠=∠∠∠∴∠=∠=∠∴∆∆四边形为的内接四边形又∥与所对弧都是∽(3)2139021695216916.9()10BC ABBDC BD CDBD CDABD DCPAB BDDC CPCPPCPC cm==∠=︒=∴==∆∆∴==∴=∴==∽且,26.解:34943343.3)30(),1(3,033)1(22-+=∴⎪⎩⎪⎨⎧-==++=-∴==xxycacaxaxyCBCOBOC得中代入,,把)为(点2272227)2(2321562342349433433521343,34341,434943.)34943,()2(2222122=-=∴++-=+--=∙+-----+⨯⨯=+=∴--∴--=-∴=-==-+=-+∆∆最大时,当)为(点直线为求得),为(点时,当于点轴的虚线交作过点坐标为设点ABCDACDABCABCDSxxxxxxxSSSxxExyACAxxxxyEACxDxxxD),为(点得中,代入的纵坐标为点为平行四边形四边形轴于点交∥作过,轴交抛物线于点∥作①过点333,0349433..)3(121211111111--∴-==-+=-∴∴P x x x x y P C P AE E x AC E P P P x CP C),),或(,)或(,为(点为平行四边形时,四边形当,得中代入的纵坐标为此时为平行四边形,时,四边形当(或,交抛物线于点或轴于点交②平移直线3241332413332413241334943.3).)(3333212222223232--+---∴=--=+-=-+==P P ACE E P AC x x x x y P P ACE E P AC P P E E x AC。
湖南省娄底市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为()A.0.334B.C.D.2.据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录.用科学记数法表示88000为()A.0.88×105B.8.8×104C.8.8×105D.8.8×1063.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)7 8 9 10次数 1 4 3 2A.8、8 B.8、8.5 C.8、9 D.8、104.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm25.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18πB.27πC.452πD.45π6.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )A.1074310⨯B.1174.310⨯C.107.4310⨯D.127.4310⨯7.如图所示的几何体的俯视图是()A.B.C.D.8.若函数2yx=与y=﹣2x﹣4的图象的交点坐标为(a,b),则12a b+的值是()A.﹣4 B.﹣2 C.1 D.29.下列运算正确的是()A.(a2)3 =a5B.23a a a=g C.(3ab)2=6a2b2D.a6÷a3 =a210.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°11.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体12.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是.14.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.15.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_________袋16.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.17.计算(﹣3)+(﹣9)的结果为______.18.已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)解方程:11122x x--+=0;(2)解不等式组32193(1)xx x->⎧⎨+<+⎩,并把所得解集表示在数轴上.20.(6分)图1 和图2 中,优弧»AB纸片所在⊙O 的半径为2,AB=23,点P为优弧»AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点 A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M,N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O 相切,当α=°时,点O′落在»NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.21.(6分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.22.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,210==,CE⊥AD于点E.BC CD(1)求证:AE=CE;(2)若tanD=3,求AB的长.23.(8分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.24.(10分)如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC 上运动,角的两边分别交边BC、CD于E、F.(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);②如图丙,在顶点G运动的过程中,若ACtGC,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=65,当t>2时,求EC的长度.25.(10分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.26.(12分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC 于点F,求证:AE=AF.27.(12分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:334亿=3.34×1010“点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵88000一共5位,∴88000=8.88×104. 故选B.考点:科学记数法.3.B【解析】【分析】根据众数和中位数的概念求解.【详解】由表可知,8环出现次数最多,有4次,所以众数为8环;这10个数据的中位数为第5、6个数据的平均数,即中位数为892=8.5(环),故选:B.【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.5.B【解析】【分析】先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可. 【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.6.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:74300亿=7.43×1012, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 7.D 【解析】 【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中. 【详解】从上往下看,该几何体的俯视图与选项D 所示视图一致. 故选D . 【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图. 8.B 【解析】 【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再代入12a b+求值即可. 【详解】解方程组224y xy x ⎧=⎪⎨⎪=--⎩①②, 把①代入②得:2x=﹣2x ﹣4, 整理得:x 2+2x+1=0, 解得:x=﹣1, ∴y=﹣2,交点坐标是(﹣1,﹣2), ∴a=﹣1,b=﹣2, ∴12a b+=﹣1﹣1=﹣2, 故选B . 【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a 、b 的值. 9.B【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法. 解析: ()326a a = ,故A 选项错误; a 3·a = a 4故B 选项正确;(3ab)2 = 9a 2b 2故C 选项错误; a 6÷a 3 = a 3故D 选项错误. 故选B. 10.B 【解析】 【分析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG 的度数. 【详解】(6﹣2)×180°÷6=120°, (5﹣2)×180°÷5=108°,∠APG =(6﹣2)×180°﹣120°×3﹣108°×2 =720°﹣360°﹣216° =144°, 故选B . 【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n ﹣2)•180 (n≥3)且n 为整数). 11.D 【解析】 【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞. 【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项. 故选D . 【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难. 12.A 【解析】 【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】根据平均数为10求出x的值,再由众数的定义可得出答案.解:由题意得,(2+3+1+1+x)=10,解得:x=31,这组数据中1出现的次数最多,则这组数据的众数为1.故答案为1.14.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。
2019年湖南省娄底市中考数学模拟试卷(二)姓名:得分:日期:一、选择题(本大题共 12 小题,共 36 分)1、(3分) -5的绝对值是()A.5B.-5C.15D.-152、(3分) 下列运算正确的是()A.x3•x3=x9B.(ab3)2=ab6C.x8÷x4=x2D.(2x)3=8x33、(3分) 下列生态环保标志中,是中心对称图形的是()A. B. C. D.4、(3分) 已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数D.方差5、(3分) 据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10-9mB.2.8×10-8mC.28×109mD.2.8×108m6、(3分) 在下列几何体中,主视图是圆的是()A. B.C.D.7、(3分) 如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACDB.∠ADBC.∠AEDD.∠ACB8、(3分) 将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=55°,则∠BAD′的大小是()A.30°B.35°C.45°D.60°9、(3分) 若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,则b+c的值是()A.-10B.10C.-6D.-110、(3分) 已知反比例函数y=1−2mx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m<0B.m>0C.m<12D.m>1211、(3分) 程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人12、(3分) 抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac-b2<0;②2a-b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共 6 小题,共 18 分)13、(3分) 函数y=√x−4中自变量x的取值范围是______.14、(3分) 已知点M(3,-2),将它先向左平移2个单位,再向上平移4个单位后得到点N,则点N的坐标是______.15、(3分) 如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=______°.16、(3分) 如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为______.17、(3分) 在-9,-6,-3,-1,2,3,6,8,11这九个数中,任取一个作为a值,能够使关于x 的一元二次方程x2+ax+9=0有两个不相等的实数根的概率是______.18、(3分) 记S n=a1,+a2+…a n,令T n=S1+S2+⋯+S n,则称T n为a1,a2,…,a n这列数的“凯森n和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为______.三、解答题(本大题共 5 小题,共 42 分))−1−3tan30∘19、(6分) 计算|√3−1|+20190−(−1320、(8分) 如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:√2≈1.41,结果精确到0.1米)21、(9分) 从甲市到乙市乘坐高铁列车的路程为180千米,乘坐普通列车的路程为240千米,高铁列车的平均速度是普通列车的平均速度的3倍,高铁列车的乘车时间比普通列车的乘车时间缩短了2小时.(1)求高铁列车的平均速度是每小时多少千米;(2)某日王老师要去距离甲市大约405m的某地参加14:00召开的会议,如果他买到当日10:40从甲市至该地的高铁票,而且从该地高铁站到会议地点最多需要1.5h,试问在高铁列车准点到达的情况下他能在开会之前到达吗?22、(9分) 如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于D点,交BC于E点,过点A作BC的平行线交直线ED于F点,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.23、(10分) 如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;AB;(2)求证:BC=12(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.四、计算题(本大题共 3 小题,共 24 分)24、(6分) 先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-6,b=1325、(8分) 为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a=______,b=______;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?26、(10分) 如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.2019年湖南省娄底市中考数学模拟试卷(二)【第 1 题】【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|-5|=5.故选:A.根据绝对值的性质求解.此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【第 2 题】【答案】D【解析】解:A、x3•x3=x6,故A错误;B、(ab3)2=a2b6,故B错误;C、x8÷x4=x4,故C错误;D、(2x)3=8x3,故D正确;故选:D.根据同底数幂的乘法、积的乘方和幂的乘方、同底数幂的除法进行计算即可.本题考查了同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,掌握运算法则是解题的关键.【第 3 题】【答案】B【解析】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.根据中心对称图形的定义对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【第 4 题】【答案】D【解析】解:∵=75,=75;甲的中位数为75,乙的中位数为75;甲的众数为90,60,乙的众数为80,70;∴通过平均数、中位数、众数不能区别两组成绩,∴应通过方差区别两组成绩更恰当,故选:D.根据平均数、中位数、众数以及方差的意义进行选择即可.本题考查了统计量的选择,掌握平均数、中位数、众数以及方差的意义是解题的关键.【第 5 题】【答案】B【解析】解:28nm=28×10-9m=2.8×10-8m.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【第 6 题】【答案】D【解析】解:A、主视图是三角形,错误;B、主视图是矩形,错误;C、主视图是等腰梯形,错误;D、主视图是圆,正确.故选:D.找到从正面看所得到的图形比较即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.【第 7 题】【答案】A【解析】解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,∴∠ABD=∠ACD,故A选项正确;B、∵∠ABD对的弧是弧AD,∠ADB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACD不相等,故B选项错误;C、∠AED>∠ABD,故C选项错误;D、∵∠ABD对的弧是弧AD,∠ACB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACB不相等,故D选项错误;故选:A.根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C.本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等圆中,同弧或等弧所对的圆周角相等.【第 8 题】B【解析】解:∵如图所示△EDA≌△ED′A,∴∠D=∠D′=∠DAE=90°,∵∠CED′=55°,∴∠DED′=125°,∴∠DAD′=55°,∴∠BAD′=35°.故选:B.由题意推出∠DED′=125°,得∠DAD′=55°,所以∠BAD′=35°.本题主要考查翻折变换的性质、正方形的性质、四边形内角和定理,解题的关键在于求出∠DAD′的度数.【第 9 题】【答案】A【解析】解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,∴根据根与系数的关系,可得-2+4=-b,-2×4=c,解得b=-2,c=-8∴b+c=-10.故选:A.根据根与系数的关系得到-2+4=-b,-2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.,此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=-bax1x2=c.a【第 10 题】【答案】C解:∵反比例函数y=1−2m的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<xy2,∴反比例函数的图象在一三象限,∴1-2m>0,解得m<1.2故选:C.先根据当x1<0<x2时,有y1<y2,判断出1-2m的符号,求出m的取值范围即可.的图象在本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数y=1−2mx一、三象限是解答此题的关键.【第 11 题】【答案】A【解析】解:设大和尚有x人,则小和尚有(100-x)人,=100,根据题意得:3x+100−x3解得x=25则100-x=100-25=75(人)所以,大和尚25人,小和尚75人.故选:A.根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.【第 12 题】【答案】C【解析】解:函数与x轴有两个交点,则b2-4ac>0,即4ac-b2<0,故①正确;=-1,则b=2a,2a-b=0,故②正确;函数的对称轴是x=-1,即-b2a当x=1时,函数对应的点在x轴下方,则a+b+c<0,则③正确;则y1和y2的大小无法判断,则④错误.故选:C.根据函数与x中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.本题考查了二次函数的性质,主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.【第 13 题】【答案】x>4【解析】解:根据题意得:x-4>0,解得x>4.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.本题考查的知识点为:分式有意义,分母不为0.二次根式有意义,被开方数是非负数.【第 14 题】【答案】(1,2)【解析】解:∵点M(3,-2),将它先向左平移2个单位,再向上平移4个单位后得到点N,∴点N的坐标是(3-2,-2+4),即(1,2),故答案为(1,2).将点M的横坐标减去2,纵坐标加上4即可得到点N的坐标.本题考查了坐标与图形变化-平移:解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【第 15 题】【答案】120【解析】解:∵∠CDE=150°,∴∠CDB=180-∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°-60°=120°.故答案为:120.本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.【第 16 题】【答案】π【解析】解:如图,连接OA、OB,∵ABCDEF为正六边形,=60°,∴∠AOB=360°×16的长为=π.故答案为:π.求出圆心角∠AOB的度数,再利用弧长公式解答即可.本题主要考查正多边形的性质和弧长公式,熟练掌握正多边形的性质是解题的关键.【第 17 题】【答案】13【解析】解:在-9,-6,-3,-1,2,3,6,8,11这九个数中,任取一个作为a值每个数被抽到的机会相同,因而是列举法求概率的问题,方程x2+ax+9=0有两个不相等的实数根的条件是a2-36>0,就是要看一下在-9,-6,-3,-1,2,3,6,8,11中有3个满足a2-36>0.∴P(能够使关于x的一元二次方程x2+ax+9=0有两个不相等的实数根)=1.3列举出所有情况,让能够使关于x的一元二次方程x2+ax+9=0有两个不相等的实数根的情况数除以总情况数即为所求的概率.正确理解列举法求概率的条件以及一元二次方程根的判定方法是解决问题的关键.用到的知识点为:概率=所求情况数与总情况数之比.【第 18 题】【答案】2001【解析】,解:∵Tn=S1+S2+⋯+S n2∴T500=2004,设新的“凯森和”为Tx,501×Tx=1×501+500×T500,Tx=(1×501+500×T500)÷501=(1×501+500×2004)÷501=1+500×4=2001.故答案为:2001.先根据已知求出T500的值,再设出新的凯森和T x,列出式子,把得数代入,即可求出结果.此题考查了数字的变化类,解题的关键是掌握“凯森和”这个新概念,找出其中的规律,再根据新概念对要求的式子进行变形整理即可.【第 19 题】【答案】解:原式=√3-1+1+3-3×√33=√3-1+1+3-√3=3.【解析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.【第 20 题】【答案】解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°-45°-15°=30°,∴EF=1CE=135米,2∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=135√2≈190.4米【解析】根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,作辅助线EF⊥AC,通过平角减去其他角从而得到∠AEF=45°即可求出AE的长度.本题考查了解直角三角形的应用,解答本题的关键是作辅助线EF⊥AC,以及坡度和坡角的关系.【第 21 题】【答案】解:(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米,根据题意得,240x -1803x =2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米;(2)405÷270=1.5,则坐车共需要1.5+1.5=3(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.【 解析 】(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.【 第 22 题 】【 答 案 】(1)证明:∵EF 垂直平分AC ,∴FA=FC ,EA=EC ,∵AF∥BC ,∴∠1=∠2.∵AE=CE ,∴∠2=∠3.∴∠1=∠3.∵EF⊥AC ,∴∠ADF=∠ADE=90°.∵∠1+∠4=90°,∠3+∠5=90°.∴∠4=∠5.∴AF=AE,∴AF=FC=CE=EA,∴四边形AECF是菱形.(2)解:∵∠BAC=∠ADF=90°,∴AB∥FE,∵AF∥BE,∴四边形ABEF为平行四边形,∵AB=10,∴FE=AB=10,∵∠ACB=30°,=10√3,.∴AC=ABtan∠ACB∴.【解析】(1)只要证明AF=FC=CE=EA,即可判断四边形AECF是菱形;(2)求出菱形的对角线的长,根据菱形的面积等于对角线乘积的一半计算即可.本题考查菱形的判定和性质、相等的垂直平分线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定,属于基础题,中考常考题型.【第 23 题】【答案】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=12AB.(3)解:连接MA,MB,∵点M是的中点,∴,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴BM MC =MNBM.∴BM2=MN•MC.又∵AB是⊙O的直径,,∴∠AMB=90°,AM=BM.∵AB=4,∴BM=2√2.∴MN•MC=BM2=8.【解析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8.此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用.【第 24 题】【答案】解:原式=a2-4b2-a2+4ab-4b2+8b2=4ab,时,原式=-8.当a=-6,b=13【解析】原式利用平方差公式,完全平方公式计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.【第 25 题】【答案】解:(1)根据题意得:2÷0.04=50(人),则a=50-(2+3+15+5)=25;b=5÷50=0.10;故答案为:25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【解析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.【 第 26 题 】【 答 案 】解:(1)依题意,设抛物线的解析式为y=a (x-2)2-1,代入C (O ,3)后,得:a (0-2)2-1=3,a=1∴抛物线的解析式:y=(x-2)2-1=x 2-4x+3.(2)由(1)知,A (1,0)、B (3,0);设直线BC 的解析式为:y=kx+3,代入点B 的坐标后,得:3k+3=0,k=-1∴直线BC :y=-x+3;由(1)知:抛物线的对称轴:x=2,则 D (2,1); ∴AD=√AG 2+DG 2=√2,AC=√OC 2+OA 2=√10,CD=√(3−1)2+22=2√2,即:AC 2=AD 2+CD 2,△ACD 是直角三角形,且AD⊥CD ;∴S △ACD =12AD•CD=12×√2×2√2=2.(3)由题意知:EF∥y 轴,则∠FED=∠OCB ,若△OCB 与△FED 相似,则有:①∠DFE=90°,即 DF∥x 轴;将点D 纵坐标代入抛物线的解析式中,得:x 2-4x+3=1,解得x=2±√2; 当x=2+√2时,y=-x+3=1-√2;当x=2-√2时,y=-x+3=1+√2;∴E 1(2+√2,1-√2)、E 2(2-√2,1+√2).②∠EDF=90°;易知,直线AD :y=x-1,联立抛物线的解析式有:x2-4x+3=x-1,x2-5x+4=0,解得x1=1、x2=4;当x=1时,y=-x+3=2;当x=4时,y=-x+3=-1;∴E3(1,2)、E4(4,-1).综上,存在符合条件的点E,且坐标为:(2+√2,1-√2)、(2-√2,1+√2)、(1,2)或(4,-1).【解析】(1)已知抛物线的顶点,可先将抛物线的解析式设为顶点式,再将点C的坐标代入上面的解析式中,即可确定待定系数的值,由此得解.(2)可先求出A、C、D三点坐标,求出△ACD的三边长后,可判断出该三角形的形状,进而得到该三角形的面积.(也可将△ACD的面积视为梯形与两个小直角三角形的面积差)(3)由于直线EF与y轴平行,那么∠OCB=∠FED,若△OBC和△EFD相似,则△EFD中,∠EDF和∠EFD中必有一角是直角,可据此求出点F的横坐标,再代入直线BC的解析式中,即可求出点E的坐标.此题主要考查了函数解析式的确定、图形面积的解法以及相似三角形的判定和性质等知识;需要注意的是,已知两个三角形相似时,若对应边不相同,那么得到的结果就不一定相同,所以一定要进行分类讨论.。
娄底地区中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(满分16分,每小题2分) (共8题;共16分)1. (2分) (2019九上·泰山期末) 在中,,则的度数是()A.30° B.45° C.60° D.90°A . 30°B . 45°C . 60°D . 90°2. (2分) 12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A . 0.26×103B . 2.6×103C . 0.26×104D . 2.6×1043. (2分)(2019·东城模拟) 实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A . a﹣bB . a+bC . ﹣a+bD . ﹣a﹣b4. (2分)(2019·东城模拟) 如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E 不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A . ①②③B . ①②④C . ①③④D . ①②③④5. (2分)(2019·东城模拟) 若一个多边形的内角和与外角和总共是900°,则此多边形是()A . 四边形B . 五边形C . 六边形D . 七边形6. (2分)(2019·东城模拟) 若a2+2a﹣3=0,则代数式(a﹣)• 的值是()A . 4B . 3C . ﹣3D . ﹣47. (2分)(2019·东城模拟) 一年期定期储蓄的年利率是2.25%,国家对存款利息征收20%的个人所得税.设某人以定期一年的形式存入人民币x元,到期本息全部取出,交纳税金后共取出人民币y元,则y关于x的函数表达式是()A . y=B . y=C . y=D . y=8. (2分)(2019·东城模拟) 如图,是某厂2018年各季度产值统计图(单位:万元),则下列说法中正确是()A . 四季度中,每季度生产总值有增有减B . 四季度中,前三季度生产总值增长较快C . 四季度中,各季度的生产总值变化一样D . 第四季度生产总值增长最快二、填空题(满分16分,每小题2分) (共8题;共16分)9. (2分)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10﹣9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为________米.10. (2分) (2019九上·新蔡期末) 将根式,,,化成最简二次根式后,随机抽取其中一个根式,能与的被开方数相同的概率是________.11. (2分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.12. (2分) (2019七下·呼和浩特期末) 以下四个命题:① 的立方根是②要调查一批灯泡的使用寿命适宜用抽样调查③两条直线被第三条直线所截同旁内角互补④已知与其内部一点 ,过点作 ,作 ,则 .其中假命题的序号为________.13. (2分) (2019八上·锦州期末) 2018年6月14日,第21届世界杯足球赛在俄罗斯举行.小李在网上预定了小组赛和决赛两个阶段的门票共10张,总价为15800元,其中小组赛门票每张850元,决赛门票每张4500元,若设小李预定了小组赛门票x张,决赛门票y张,根据题意,可列方程组为________.14. (2分)(2019·江海模拟) 如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD 于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°;②S▱ABCD=AC•BC;③OE:AC=:6;④S▱OEF= S▱ABCD ,成立的是________.15. (2分) (2019八上·连云港期末) 如图,A、B两地相距200km,一列火车从B地出发沿BC方向以的速度行驶,在行驶过程中,这列火车离A地的路程与行驶时间之间的函数关系式是________.16. (2分)(2019·东城模拟) 如图,点P为矩形ABCD边AD上一点,点E、F分别为PB、PC的中点,若矩形ABCD的面积为5,那么△PEF的面积为________.三、解答题 (共12题;共57分)17. (5.0分)画出如图多边形的全部对角线.18. (5分)(2019·光明模拟) 计算:﹣24﹣ +|1﹣4sin60°|+(2015π)0.19. (2分)解不等式组:并将解集在数轴上表示.20. (5.0分) (2019九上·句容期末) 关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.21. (5.0分)(2019·东城模拟) 如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=60°,∠C=45°,DE=2 ,求BC的长.22. (2分)如图,在矩形OABC中,OA=3,OC=4,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,作直线DE.(1)当点D运动到BC中点时,求k的值;(2)求的值;(3)连接DA,当△DAE的面积为时,求k值.23. (6分)(2019·东城模拟) 如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且BC是⊙O的切线,(1)求证:CE=CB;(2)连接AF,BF,求tan∠ABF;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.24. (6.0分)(2019·东城模拟) 为了深入贯彻党的十九大精神,我县某中学开展了十九大精神进校园知识气赛活动,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A,B,C,E五个组,x表示测试成绩),通过对测试成绩的分析得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:A组:90≤x≤100B组:80≤x<90C组:70≤x<80D组:60≤x<70E组:x<60(1)参加调查测试的学生共有________人,扇形C的圆心角的度数是;________.(2)请将两幅统计图补充完整;(3)本次调查测试成绩的中位数落在哪个小组内,说明理由;(4)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?25. (6分)(2019·东城模拟) 如图,是直径AB所对的半圆弧,C 上一定点,D是上一动点,连接DA,DB,DC.已知AB=5cm,设D,A两点间的距离为xcm,D,B两点间的距离为y1cm,D,C两点间的距离为y2cm.小腾根据学习函数的经验.分别对函数y1 , y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1 , y2与x的几组对应值;x/cm012345y1cm5 4.9430y2cm4 3.32 2.47 1.403(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数位所对应的点(x,y1),(x,y2)并画出函数y1 , y2的图象;(3)结合函数图象,解决问题:连接BC,当△BCD是以CD为腰的等腰三角形时,DA的长度约为________cm.26. (6分)(2019·东城模拟) 已知二次函数y=x2+(a﹣5)x+5.(1)该抛物线与y轴交点的坐标为________;(2)当a=﹣1时,求该抛物线与x轴的交点坐标;(3)已知两点A(2,0)、B(3,0),抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点,求a的取值范围.27. (2分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC________∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.28. (7.0分)(2019·东城模拟) 定义:两个三角形有两组对应边和一对对应角分别对应相等的两个三角形称为兄弟三角形.显然,兄弟三角形不一定是全等三角形(这里可能是边角边,也可能是边边角)①如图1,△ABC中,CA=CB,D是AB上任意一点,则△ACD与△BCD是兄弟三角形;②如图2,⊙O中,点D是弧BC的中点,则△ABD与△ACD是兄弟三角形;(1)对于上述两个判断,下来说法正确是A . ①符合题意②不符合题意B . ①符合题意②符合题意C . ①不符合题意②不符合题意D . ①不符合题意②符合题意(2)如图3,以点A(3,3)为圆心,OA为半径的圆,△OBC是圆A的内接三角形,点B(6,0),∠COB=30°,①求∠C的度数和OC的长;②若点D在⊙A上,并使得△OCD与△OBC是兄弟三角形时,求由O、B、C、D四点所围的四边形的面积.参考答案一、选择题(满分16分,每小题2分) (共8题;共16分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题(满分16分,每小题2分) (共8题;共16分) 9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共12题;共57分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、24-4、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、28-1、第21 页共21 页。
2019年湖南省娄底市中考模拟试卷(4月份)数学一.选择题(共12小题,满分36分)1.下列说法正确的是()A.﹣1的相反数是﹣1B.﹣1的倒数是1C.1的算术平方根是1D.1的立方根是±12.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°4.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为()A.28B.26C.25D.225.下列计算正确的是()A.2a2﹣a2=1B.(a+b)2=a2+b2C.(3b3)2=6b6D.(﹣a)5÷(﹣a)3=a26.不等式组的解集在数轴上表示为( )A .B .C .D .7.下列关于概率的描述属于“等可能性事件”的是( ) A .交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B .掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C .小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D .小明用随机抽签的方式选择以上三种答案,则A 、B 、C 被选中的概率8.已知方程2x 2﹣x ﹣3=0的两根为x 1,x 2,那么+=( )A .﹣B .C .3D .﹣39.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A .B .C .D .10.如图,点B ,C ,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°11.如图,在△ABC中,AB=AC,AE平分∠BAC,DE垂直平分AB,连接CE,∠B=70°.则∠BCE 的度数为()A.55°B.50°C.40°D.35°12.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2二.填空题(共6小题,满分18分,每小题3分)13.方程组的解满足方程x+y﹣a=0,那么a的值是.14.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.15.唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:名学生的数学成绩的中位数是分.16.按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.17.正比例函数y=k1x的图象与反比例函数y=的图象相交于A、B两点,其中点A的横坐标为2,当y1<y2时,x的取值范围是.18.如图所示,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△BDE :S四边形DECA的值为.三.解答题(共2小题,满分12分,每小题6分)19.(6分)计算:()﹣2﹣+(﹣4)0﹣cos45°.20.(6分)化简求值:(+)÷,其中x=3.四.解答题(共2小题,满分16分,每小题8分)21.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.22.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)五.解答题(共2小题,满分18分,每小题9分)23.(9分)某校为了准备“迎新活动”,用700元购买了甲、乙两种小礼品260个,其中购买甲种礼品比乙种礼品少用了100元.(1)购买乙种礼品花了元;(2)如果甲种礼品的单价比乙种礼品的单价高20%,求乙种礼品的单价.(列分式方程解应用题)24.(9分)如图,已知▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于E.(1)求证:△AOD≌△EOC;(2)连接AC、DE,当∠B=∠AEB=时,四边形ACED是正方形,请说明理由.六.解答题(共2小题,满分10分)25.(10分)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.26.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,当MN的值最大时,求△BMN的周长.(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=4S2,求点P的坐标.参考答案一.选择题1.C2.A.3.B.4.A.5.D.6.A.7.D.8.A.9.B.10.D.11.B.12.C.二.填空题13.【解答】解:,把①代入②得:6﹣4y+y=6,解得:y=0,把y=0代入①得:x=3,把x=3,y=0代入x+y﹣a=0中得:3﹣a=0,解得:a=3,故答案为:314.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.15.【解答】解:这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100,则中位数为:=85.故答案为:85.16.【解答】解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.17.【解答】解:∵正比例函数y=k1x的图象与反比例函数y=的图象相交于A、B两点∴A,B两点坐标关于原点对称∴B点的横坐标为﹣2∵y 1<y 2∴在第一和第三象限,正比例函数y=k 1x 的图象在反比例函数y=的图象的下方∴x <﹣2或0<x <218.【解答】解:∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3, ∵DE ∥AC , ∴△BED ∽△BCA ,∴S △BDE :S △BCA =()2=1:16,∴S △BDE :S 四边形DECA =1:15, 故答案为:1:15.三.解答题(共2小题,满分12分,每小题6分) 19.【解答】解:原式=4﹣3+1﹣×=2﹣1 =1. 20.【解答】解:(+)÷====,当x=3时,原式=.四.解答题(共2小题,满分16分,每小题8分)21.【解答】解:(1)这次抽样调查中共调查了330÷22%=1500(人);(2)12﹣17岁的人数为1500﹣450﹣420﹣330=300(人)补充完整,如图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是×360°=108°;(4)其中12﹣23岁的人数2000×50%=1000(万人).22.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,∴DF=AF=70m.在Rt△CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(70﹣10)m...答:障碍物B,C两点间的距离为(70﹣10)m.五.解答题(共2小题,满分18分,每小题9分)23.【解答】解:(1)设买甲种礼品花了x元,则买乙种礼品花了(x+100)个,根据题意,得:x+x+100=700,解得:x=300,所以买乙种礼品花了400元,故答案为:400;(2)设乙种礼品的单价为a元,则甲种礼品的单价为(1+20%)a元,根据题意,得: +=260,解得:a=2.5,经检验:a=2.5是原分式方程的解,答:乙种礼品的单价为2.5元/个.24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADC=∠DCE,在△AOD和△EOC中,,∴△AOD≌△EOC(ASA);(2)解:当∠B=∠AEB=45°时,四边形ACED是正方形,理由:∵∠B=∠AEB=45°,∴AB=AE,∵△AOD≌△EOC,∴AD=EC,∠DAE=∠AEC=45°,又∵AD∥EC,.. ∴四边形ACED是平行四边形,则AD=BC=EC,∴AC⊥EC,∵△ABE是等腰直角三角形,∴AC=EC,∠ACE=90°,∴平行四边形ACED是正方形.故答案为:45°.六.解答题(共2小题,满分10分)25.【解答】(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.26.【解答】解:(1)设直线BC的解析式为y=mx+n,将B(4,0),C(0,4)两点的坐标代入,得,,∴所以直线BC的解析式为y=﹣x+4;将B(4,0),C(0,4)两点的坐标代入y=x2+bx+c,得,,∴所以抛物线的解析式为y=x2﹣5x+4;(2)如图1,设M(x,x2﹣5x+4)(1<x<4),则N(x,﹣x+4),∵MN=(﹣x+4)﹣(x2﹣5x+4)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,MN有最大值4;∵MN取得最大值时,x=2,∴﹣x+4=﹣2+4=2,即N(2,2).x2﹣5x+4=4﹣5×2+4=﹣2,即M(2,﹣2),∵B(4.0)可得BN=2,BM=2∴△BMN的周长=4+2+2=4+4(3)令y=0,解方程x2﹣5x+4=0,得x=1或4,∴A(1,0),B(4,0),∴AB=4﹣1=3,∴△ABN的面积S2=×3×2=3,∴平行四边形CBPQ的面积S1=4S2=12.如图2,设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=4,∴BC•BD=12,∴BD=.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,连接CQ,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,由勾股定理可得BE=BD=3,∵B(4,0),∴E(1,0),设直线PQ的解析式为y=﹣x+t,将E(1,0),代入,得﹣1+t=0,解得t=1∴直线PQ的解析式为y=﹣x+1.解方程组,,得,或,∵点P是抛物线在x轴下方图象上任意一点,∴点P的坐标为P(3,﹣2)。
2019年湖南省娄底市中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)2019的相反数是()A.﹣2019 B.2019 C.D.﹣2.(3分)下列计算正确的是()A.(﹣2)3=8 B.(a2)3=a6C.a2•a3=a6D.4x2﹣2x=2x3.(3分)顺次连接菱形四边中点得到的四边形是()A.平行四边形B.菱形C.矩形D.正方形4.(3分)一组数据﹣2、1、1、0、2、1.这组数据的众数和中位数分别是()A.﹣2、0 B.1、0 C.1、1 D.2、15.(3分)2018年8月31日,华为正式发布了全新一代自研手机SoC麒麟980,这款号称六项全球第一的芯片,随着华为Mate20系列、荣耀Magic2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗7nm(1nm=10﹣9m)手机芯片.7nm用科学记数法表示为()A.7×10﹣8m B.7×10﹣9m C.0.7×10﹣8m D.7×10﹣10m6.(3分)下列命题是假命题的是()A.到线段两端点距离相等的点在线段的垂直平分线上B.等边三角形既是轴对称图形,又是中心对称图形C.n边形(n≥3)的内角和是180°n﹣360°D.旋转不改变图形的形状和大小7.(3分)如图,⊙O的半径为2,双曲线的解析式分别为y=,则阴影部分的面积是()A.4πB.3πC.2πD.π8.(3分)如图,边长为2的等边△ABC的内切圆的半径为()A.1 B.C.2 D.29.(3分)将y=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为()A.y=+1 B.y=﹣1 C.y=+1 D.y=﹣110.(3分)如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2 B.x>3 C.x<﹣2或x>3 D.﹣2<x<311.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()①abc<0②b2﹣4ac<0③2a>b④(a+c)2<b2A.1个B.2个C.3个D.4个12.(3分)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2 B.﹣1 C.0 D.1二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)函数的自变量x的取值范围是.14.(3分)如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是.15.(3分)如图,AB∥CD,AC∥BD,∠1=28°,则∠2的度数为.16.(3分)如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=.17.(3分)已知方程x2+bx+3=0的一根为+,则方程的另一根为.18.(3分)已知点P(x0,y0)到直线y=kx+b的距离可表示为d=,例如:点(0,1)到直线y=2x+6的距离d==.据此进一步可得两条平行线y=x和y=x﹣4之间的距离为.三、解答题(本大题共2小题,每小题6分,共12分)19.(6分)计算:(﹣1)0﹣()﹣1+|﹣|﹣2sin60°20.(6分)先化简,再求值:÷(﹣).其中a=﹣1,b=+1.四、解答题(本大题共2小题,每小题8分,共16分)21.(8分)湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制做了如统计图表:(1)根据上述统计图表,可得此次采访的人数为,m=,n=.(2)根据以上信息补全图中的条形统计图.(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?22.(8分)如图,某建筑物CD高96米,它的前面有一座小山,其斜坡AB的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α、β.已知tanα=2,tanβ=4,求山顶A的高度AE(C、B、E在同一水平面上).五、解答题(本大题共2小题,每小题9分,共18分)23.(9分)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?24.(9分)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.六、综合题(本大题共2小题,每小题10分,共20分)25.(10分)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.26.(10分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.2019年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的)1.【解答】解:2019的相反数是:﹣2019.故选:A.2.【解答】解:A.(﹣2)3=﹣8,故选项A不合题意;B.(a2)3=a6,故选项B符合题意;C.a2•a3=a5,故选项C不合题意;D.4x2与x不是同类项,故不能合并,所以选项D不合题意.故选:B.3.【解答】解:如图,∵E、F分别是AB、BC的中点,∴EF∥AC且EF=AC,同理,GH∥AC且GH=AC,∴EF∥GH且EF=GH,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,又根据三角形的中位线定理,EF∥AC,FG∥BD,∴EF⊥FG,∴平行四边形EFGH是矩形.故选:C.4.【解答】解:这组数据的众数为1,从小到大排列:﹣2,0,1,1,1,2,中位数是1,故选:C.5.【解答】解:7nm用科学记数法表示为7×10﹣9m.故选:B.6.【解答】解:A、到线段两端点距离相等的点在线段的垂直平分线上,正确,是真命题;B、等边三角形是轴对称图形,但不是中心对称图形,错误,是假命题;C、n边形(n≥3)的内角和是180°n﹣360°,正确,是真命题;D、旋转不改变图形的形状和大小,正确,是真命题,故选:C.7.【解答】解:双曲线y=的图象关于x轴对称,根据图形的对称性,把第二象限和第四象限的阴影部分的面积拼到第一和第三象限中的阴影中,可以得到阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以:S阴影==2π.故选:C.8.【解答】解:设△ABC的内心为O,连接AO、BO,CO的延长线交AB于H,如图,∵△ABC为等边三角形,∴CH平分∠BCA,AO平分∠BAC,∵△ABC为等边三角形,∴∠CAB=60°,CH⊥AB,∴∠OAH=30°,AH=BH=AB=,在Rt△AOH中,∵tan∠OAH==tan30°,∴OH=×=1,即△ABC内切圆的半径为1.故选:A.9.【解答】解:由“左加右减”的原则可知,y=的图象向右平移1个单位所得函数图象的关系式是:y=;由“上加下减”的原则可知,函数y=的图象向上平移1个单位长度所得函数图象的关系式是:y=+1.故选:C.10.【解答】解:∵直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),∴解集为﹣2<x<3,故选:D.11.【解答】解:由函数图象可知a<0,对称轴﹣1<x<0,图象与y轴的交点c>0,函数与x轴有两个不同的交点,∴b﹣2a>0,b<0;△=b2﹣4ac>0;abc>0;当x=1时,y<0,即a+b+c<0;当x=﹣1时,y>0,即a﹣b+c>0;∴(a+b+c)(a﹣b+c)<0,即(a+c)2<b2;∴只有④是正确的;故选:A.12.【解答】解:点运动一个用时为÷π=2秒.如图,作CD⊥AB于D,与交于点E.在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,∴∠CAD=30°,∴CD=AC=×2=1,∴DE=CE﹣CD=2﹣1=1,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为﹣1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;…,∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,∵2019÷4=504…3,∴第2019秒时点P的纵坐标为是﹣1.故选:B.二、填空题(本大题共6小题,每小题3分,满分18分)13.【解答】解:根据题意得,x﹣3≥0,解得x≥3.故答案为:x≥3.14.【解答】解:用树状图表示所有可能出现的结果有:∴能让灯泡发光的概率:P=,故答案为:.15.【解答】解:∵AC∥BD,∴∠1=∠A,∵AB∥CD,∴∠2=∠A,∴∠2=∠1=28°,故答案为:28°.16.【解答】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.17.【解答】解:设方程的另一个根为c,∵(+)c=3,∴c=﹣.故答案为:﹣.18.【解答】解:当x=0时,y=x=0,即点(0,0)在直线y=x上,因为点(0,0)到直线y=x﹣4的距离为:d===2,因为直线y=x和y=x﹣4平行,所以这两条平行线之间的距离为2.故答案为2.三、解答题(本大题共2小题,每小题6分,共12分)19.【解答】解:原式=1﹣2+﹣2×=1﹣2+﹣=﹣1.20.【解答】解:÷(﹣)===ab,当a=﹣1,b=+1时,原式=(﹣1)×(+1)=1.四、解答题(本大题共2小题,每小题8分,共16分)21.【解答】解:(1)根据上述统计图表,可得此次采访的人数为100÷0.5=200(人),m=200×0.4=80(人),n=1﹣0.4﹣0.5=0.1;故答案为200,80,0.4;(2)补全图中的条形统计图(3)高度关注新高考政策的人数:1500×0.4=600(人),答:高度关注新高考政策的约有600人.22.【解答】解:如图,作AF⊥CD于F.设AE=x米.∵斜坡AB的坡度为i=1:1,∴BE=AE=x米.在Rt△BDC中,∵∠C=90°,CD=96米,∠DBC=∠β,∴BC===24(米),∴EC=EB+BC=(x+24)米,∴AF=EC=(x+24)米.在Rt△ADF中,∵∠AFD=90°,∠DAF=∠α,∴DF=AF•tanα=2(x+24)米,∵DF=DC﹣CF=DC﹣AE=(96﹣x)米,∴2(x+24)=96﹣x,解得x=16.故山顶A的高度AE为16米.五、解答题(本大题共2小题,每小题9分,共18分)23.【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.24.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OB,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴=,∴CD•BE=AD•DE.六、综合题(本大题共2小题,每小题10分,共20分)25.【解答】证明:(1)∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵由(1)知,△AEH≌△CGF,则EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(3)四边形EFGH的周长一半等于矩形ABCD一条对角线长度.理由如下:如图,连接AC,BD.∵四边形ABCD是矩形,∴AC=BD.∵E、H分别是边AB,AD的中点,∴EH是△ABD的中位线,∴EH=BD.同理,FG=BD,EF=HG=AC.∴(EH+HG+GF+EF)=(AC+BD)=AC.∴四边形EFGH的周长一半等于矩形ABCD一条对角线长度.26.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB =4,BC=3,AC=,过点A作AH⊥BC与点H,S=×AH×BC=AB×OC,解得:AH=2,△ABC则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=(舍去负值),故点Q(,﹣2)②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,);综上,点Q(,﹣2)或(,).。
2019年湖南省娄底市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.2019的相反数是()A. −2019B. 2019C. 12009D. −120092.下列计算正确的是()A. (−2)3=8B. (a2)3=a6C. a2⋅a3=a6D. 4x2−2x=2x3.顺次连接菱形四边中点得到的四边形是()A. 平行四边形B. 菱形C. 矩形D. 正方形4.一组数据-2、1、1、0、2、1.这组数据的众数和中位数分别是()A. −2、0B. 1、0C. 1、1D. 2、15.2018年8月31日,华为正式发布了全新一代自研手机SoC麒麟980,这款号称六项全球第一的芯片,随着华为Mate20系列、荣耀Magic2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗7nm (1nm=10-9m)手机芯片.7nm用科学记数法表示为()A. 7×10−8mB. 7×10−9mC. 0.7×10−8mD. 7×10−10m6.下列命题是假命题的是()A. 到线段两端点距离相等的点在线段的垂直平分线上B. 等边三角形既是轴对称图形,又是中心对称图形C. n边形(n≥3)的内角和是180∘n−360∘D. 旋转不改变图形的形状和大小7.如图,⊙O的半径为2,双曲线的解析式分别为y=1x和y=−1x,则阴影部分的面积是()A. 4πB. 3πC. 2πD. π8.如图,边长为2√3的等边△ABC的内切圆的半径为()A. 1B. √3C. 2D. 2√39.将y=1x的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为()A. y=1x+1+1 B. y=1x+1−1 C. y=1x−1+1 D. y=1x−1−110.如图,直线y=x+b和y=kx+2与x轴分别交于点A(-2,0),点B(3,0),则{x+b>0kx+2>0解集为()A. x<−2B. x>3C. x<−2或x>3D. −2<x<311.二次函数y=ax2+bx+c的图象如图所示,下列结论中正确的是()①abc<0②b2-4ac<0③2a>b④(a+c)2<b2A. 1个B. 2个C. 3个D. 4个12.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的AB⏜多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒23π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A. −2B. −1C. 0D. 1二、填空题(本大题共6小题,共18.0分)13.函数y=√x−3的自变量x的取值范围是______.14.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡发光的概率是______.15.如图,AB∥CD,AC∥BD,∠1=28°,则∠2的度数为______.16.如图,C、D两点在以AB为直径的圆上,AB=2,∠ACD=30°,则AD=______.17.已知方程x2+bx+3=0的一根为√5+√2,则方程的另一根为______.18.已知点P(x0,y0)到直线y=kx+b的距离可表示为d=|kx0+b−y0|√1+k2,例如:点(0,1)到直线y=2x+6的距离d=|2×0+6−1|√1+22=√5.据此进一步可得两条平行线y=x和y=x-4之间的距离为______.三、计算题(本大题共1小题,共6.0分)19.先化简,再求值:a2−2ab+b2a−b ÷(1b-1a).其中a=√2-1,b=√2+1.四、解答题(本大题共7小题,共60.0分)20.计算:(√2019-1)0-(12)-1+|-√3|-2sin60°21.湖南省作为全国第三批启动高考综合改革的省市之一,从2018年秋季入学的高中一年级学生开始实施高考综合改革.深化高考综合改革,承载着广大考生的美好期盼,事关千家万户的切身利益,社会关注度高.为了了解我市某小区居民对此政策的关注程度,某数学兴趣小组随机采访了该小区部分居民,根据采访情况制做了如统计图表:关注程度频数频率A.高度关注m0.4B.一般关注1000.5C.没有关注20n(1)根据上述统计图表,可得此次采访的人数为______,m=______,n=______.(2)根据以上信息补全图中的条形统计图.(3)请估计在该小区1500名居民中,高度关注新高考政策的约有多少人?22.如图,某建筑物CD高96米,它的前面有一座小山,其斜坡AB的坡度为i=1:1.为了测量山顶A的高度,在建筑物顶端D处测得山顶A和坡底B的俯角分别为α、β.已知tanα=2,tanβ=4,求山顶A的高度AE(C、B、E在同一水平面上).23.某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?24.如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.25.如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.26.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,且过点D(2,-3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.答案和解析1.【答案】A【解析】解:2019的相反数是:-2019.故选:A.直接利用相反数的定义分析得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.【答案】B【解析】解:A.(-2)3=-8,故选项A不合题意;B.(a2)3=a6,故选项B符合题意;C.a2•a3=a5,故选项C不合题意;D.4x2与x不是同类项,故不能合并,所以选项D不合题意.故选:B.分别根据幂的定义、幂的乘方、同底数幂的乘法法则以及合并同类项的法则逐一判断即可.本题主要考查了幂的运算以及合并同类项的法则,熟练掌握幂的运算性质是解答本题的关键.3.【答案】C【解析】解:如图,∵E、F分别是AB、BC的中点,∴EF∥AC且EF=AC,同理,GH∥AC且GH=AC,∴EF∥GH且EF=GH,∴四边形EFGH是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,又根据三角形的中位线定理,EF∥AC,FG∥BD,∴EF⊥FG,∴平行四边形EFGH是矩形.故选:C.作出图形,根据三角形的中位线平行于第三边并且等于第三边的一半判定出四边形EFGH是平行四边形,再根据菱形的对角线互相垂直可得EF⊥FG,然后根据有一个角是直角的平行四边形是矩形判断.本题主要考查了三角形的中位线定理,菱形的性质,以及矩形的判定,连接四边形的中点得到的四边形的形状主要与原四边形的对角线的关系有关,原四边形的对角线相等,则得到的四边形是菱形,原四边形对角线互相垂直,则得到的四边形是矩形,连接任意四边形的四条边的中点得到的四边形都是平行四边形.4.【答案】C【解析】解:这组数据的众数为1,从小到大排列:-2,0,1,1,1,2,中位数是1,故选:C.根据一组数据中出现次数最多的数据叫做众数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数进行分析即可.此题主要考查了众数和中位数,关键是掌握两种数的定义.5.【答案】B【解析】解:7nm用科学记数法表示为7×10-9m.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.【答案】C【解析】解:A、到线段两端点距离相等的点在线段的垂直平分线上,正确,是真命题;B、等边三角形是轴对称图形,但不是中心对称图形,错误,是假命题;C、n边形(n≥3)的内角和是180°n-360°,正确,是真命题;D、旋转不改变图形的形状和大小,正确,是真命题,故选:C.利用垂直平分线的判定、等边三角形的性质、多边形的内角和及旋转的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解垂直平分线的判定、等边三角形的性质、多边形的内角和及旋转的性质,难度不大.7.【答案】C【解析】解:双曲线y=的图象关于x轴对称,根据图形的对称性,把第二象限和第四象限的阴影部分的面积拼到第一和第三象限中的阴影中,可以得到阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以:S阴影==2π.故选:C.根据反比例函数的对称性得出图中阴影部分的面积为半圆面积,进而求出即可.本题考查的是反比例函数,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,用扇形面积公式计算可以求出阴影部分的面积.8.【答案】A【解析】解:设△ABC的内心为O,连接AO、BO,CO的延长线交AB于H,如图,∵△ABC为等边三角形,∴CH平分∠BCA,AO平分∠BAC,∵△ABC为等边三角形,∴∠CAB=60°,CH⊥AB,∴∠OAH=30°,AH=BH=AB=,在Rt△AOH中,∵tan∠OAH==tan30°,∴OH=×=1,即△ABC内切圆的半径为1.故选:A.连接AO、CO,CO的延长线交AB于H,如图,利用内心的性质得CH平分∠BCA,AO平分∠BAC,再根据等边三角形的性质得∠CAB=60°,CH⊥AB,则∠OAH=30°,AH=BH=AB=3,然后利用正切的定义计算出OH即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等边三角形的性质.9.【答案】C【解析】解:由“左加右减”的原则可知,y=的图象向右平移1个单位所得函数图象的关系式是:y=;由“上加下减”的原则可知,函数y=的图象向上平移1个单位长度所得函数图象的关系式是:y= +1.故选:C.直接根据函数图象的变换规律进行解答即可.本题考查的是反比例函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.【答案】D【解析】解:∵直线y=x+b和y=kx+2与x轴分别交于点A(-2,0),点B(3,0),∴解集为-2<x<3,故选:D.根据两条直线与x轴的交点坐标及直线的位置确定不等式组的解集即可.本题考查了一次函数与一元一次不等式的知识,解题的关键是能够结合图象作出判断,难度不大.11.【答案】A【解析】解:由函数图象可知a<0,对称轴-1<x<0,图象与y轴的交点c>0,函数与x 轴有两个不同的交点,∴b-2a>0,b<0;△=b2-4ac>0;abc>0;当x=1时,y<0,即a+b+c<0;当x=-1时,y>0,即a-b+c>0;∴(a+b+c)(a-b+c)<0,即(a+c)2<b2;∴只有④是正确的;故选:A.由函数图象可知a<0,对称轴-1<x<0,图象与y轴的交点c>0,函数与x轴有两个不同的交点;即可得出b-2a>0,b<0;△=b2-4ac>0;再由图象可知当x=1时,y<0,即a+b+c<0;当x=-1时,y>0,即a-b+c>0;即可求解.本题考查二次函数的图象及性质;熟练掌握函数的图象及性质,能够通过图象获取信息,推导出a,b,c,△,对称轴的关系是解题的关键.12.【答案】B【解析】解:点运动一个用时为÷π=2秒.如图,作CD⊥AB于D,与交于点E.在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,∴∠CAD=30°,∴CD=AC=×2=1,∴DE=CE-CD=2-1=1,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为-1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;…,∴点P的纵坐标以1,0,-1,0四个数为一个周期依次循环,∵2019÷4=504…3,∴第2019秒时点P的纵坐标为是-1.故选:B.先计算点P走一个的时间,得到点P纵坐标的规律:以1,0,-1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P的纵坐标为是-1.本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,-1,0四个数为一个周期依次循环.也考查了垂径定理.13.【答案】x≥3【解析】解:根据题意得,x-3≥0,解得x≥3.故答案为:x≥3.根据被开方数非负列式求解即可.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.【答案】23【解析】解:用树状图表示所有可能出现的结果有:∴能让灯泡发光的概率:P=,故答案为:.利用树状图列举出所有可能出现的结果总数,从中找到符合条件的结果数,进而求出概率.考查用树状图或列表法求等可能事件的概率,方法是用树状图或列表法列举出所有可能出现的结果总数,找出符合条件的结果数,用分数表示即可,注意每种情况发生的可能性相等.15.【答案】28°【解析】解:∵AC∥BD,∴∠1=∠A,∵AB∥CD,∴∠2=∠A,∴∠2=∠1=28°,故答案为:28°.由平行线的性质得出∠1=∠A,再由平行线的性质得出∠2=∠A,即可得出结果.本题考查了平行线的性质等知识,熟练掌握两直线平行同位角相等是解题的关键.16.【答案】1【解析】解:∵AB为直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴AD=AB=×2=1.故答案为1.利用圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,然后根据含30度的直角三角形三边的关系求求AD的长.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.17.【答案】√5-√2【解析】解:设方程的另一个根为c,∵(+)c=3,∴c=-.故答案为:-.设方程的另一个根为c,再根据根与系数的关系即可得出结论.本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键.18.【答案】2√2【解析】解:当x=0时,y=x=0,即点(0,0)在直线y=x上,因为点(0,0)到直线y=x-4的距离为:d===2,因为直线y=x和y=x-4平行,所以这两条平行线之间的距离为2.故答案为2.利用两平行线间的距离定义,在直线y=x上任意取一点,然后计算这个点到直线y=x-4的距离即可.此题考查了两条直线相交或平行问题,弄清题中求点到直线的距离方法是解本题的关键.考查了学生的阅读理解能力以及知识的迁移能力.19.【答案】解:a2−2ab+b2a−b ÷(1b-1a)=(a−b)2a−b ÷a−bab=a−b1⋅ab a−b=ab,当a=√2-1,b=√2+1时,原式=(√2-1)×(√2+1)=1.【解析】根据分式的除法和减法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】解:原式=1-2+√3-2×√32=1-2+√3-√3=-1.【解析】直接利用负指数幂的性质、特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】200 80 0.1【解析】解:(1)根据上述统计图表,可得此次采访的人数为100÷0.5=200(人),m=200×0.4=80(人),n=1-0.4-0.5=0.1;故答案为200,80,0.4;(2)补全图中的条形统计图(3)高度关注新高考政策的人数:1500×0.4=600(人),答:高度关注新高考政策的约有600人.(1)根据上述统计图表,可得此次采访的人数为100÷0.5=200(人),m=200×0.4=80(人),n=1-0.4-0.5=0.1;(2)据上信息补全图中的条形统计图;(3)高度关注新高考政策的人数:1500×0.4=600(人).本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.统计表能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】解:如图,作AF⊥CD于F.设AE=x米.∵斜坡AB的坡度为i=1:1,∴BE=AE=x米.在Rt△BDC中,∵∠C=90°,CD=96米,∠DBC=∠β,∴BC=CDtanβ=964=24(米),∴EC=EB+BC=(x+24)米,∴AF=EC=(x+24)米.在Rt△ADF中,∵∠AFD=90°,∠DAF=∠α,∴DF=AF•tanα=2(x+24)米,∵DF=DC-CF=DC-AE=(96-x)米,∴2(x+24)=96-x,解得x=16.故山顶A的高度AE为16米.【解析】作AF⊥CD于F.设AE=x米.由斜坡AB的坡度为i=1:1,得出BE=AE=x 米.解Rt△BDC,求得BC==24米,则AF=EC=(x+24)米.解Rt△ADF,得出DF=AF•tanα=2(x+24)米,又DF=DC-CF=DC-AE=(96-x)米,列出方程2(x+24)=96-x ,求出x 即可.本题考查解直角三角形的应用-仰角俯角问题,解直角三角形的应用-坡度坡角问题,要求学生能借助俯角构造直角三角形并解直角三角形.解此题的关键是掌握数形结合思想与方程思想的应用.23.【答案】解:(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱,依题意,得:{x +y =50025x +35y =14500, 解得:{x =300y =200. 答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35-25)×300+(48-35)×200=5600(元). 答:该商场售完这500箱矿泉水,可获利5600元.【解析】(1)设购进甲矿泉水x 箱,购进乙矿泉水y 箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论. 本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.【答案】证明:(1)连接OD ,∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∵OA =OB ,∴∠BAD =∠ADO ,∴∠CAD =∠ADO ,∴AC ∥OD ,∵CD ⊥AC ,∴CD ⊥OD ,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴∠ABE =∠BDE =90°,∵CD ⊥AC ,∴∠C =∠BDE =90°,∵∠CAD =∠BAE =∠DBE ,∴△ACD ∽△BDE , ∴CD DE =ADBE ,∴CD •BE =AD •DE .【解析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.25.【答案】证明:(1)∵四边形ABCD 是矩形,∴∠A =∠C .∴在△AEH 与△CGF 中,{AE =CG ∠A =∠C AH =CF,∴△AEH ≌△CGF (SAS );(2)∵由(1)知,△AEH ≌△CGF ,则EH =GF ,同理证得△EBF ≌△GDH ,则EF =GH , ∴四边形EFGH 是平行四边形;(3)四边形EFGH 的周长一半等于矩形ABCD 一条对角线长度.理由如下: 如图,连接AC ,BD .∵四边形ABCD 是矩形,∴AC =BD .由(1)知,四边形EFGH 是平行四边形,则EH∴EH 是△ABD 的中位线,∴EH =12BD .同理,FG =12BD ,EF =HG =12AC .∴12(EH +HG +GF +EF )=12(AC +BD )=AC .∴四边形EFGH 的周长一半等于矩形ABCD 一条对角线长度.【解析】(1)根据全等三角形的判定定理SAS 证得结论;(2)由(1)中全等三角形的性质得到:EH=GF ,同理可得FE=HG ,即可得四边形EFGH 是平行四边形;(3)由相似三角形的对应边成比例得到:四边形EFGH 的周长一半等于矩形ABCD 一条对角线长度.考查了矩形的性质,全等三角形的判定与性质.灵活运用这些性质进行推理证明是本题的关键.26.【答案】解:(1)函数的表达式为:y =a (x +1)(x -3),将点D 坐标代入上式并解得:a =1,故抛物线的表达式为:y =x 2-2x -3…①;(2)设直线PD 与y 轴交于点G ,设点P (m ,m 2-2m -3),将点P 、D 的坐标代入一次函数表达式:y =sx +t 并解得:直线PD 的表达式为:y =mx -3-2m ,则OG =3+2m ,S △POD =12×OG (x D -x P )=12(3+2m )(2-m )=-m 2+12m +3,∵-1<0,故S △POD 有最大值,当m =14时,其最大值为4916;(3)∵OB =OC =3,∴∠OCB =∠OBC =45°,∵∠ABC =∠OBE ,故△OBE 与△ABC 相似时,分为两种情况:①当∠ACB =∠BOQ 时,AB =4,BC =3√2,AC =√10,过点A 作AH ⊥BC 与点H ,S △ABC =12×AH ×BC =12AB ×OC ,解得:AH =2√2,则sin ∠ACB =AH AC =2√5,则tan ∠ACB =2,则直线OQ 的表达式为:y =-2x …②,联立①②并解得:x =±√3(舍去负值),故点Q (√3,-2√3)②∠BAC =∠BOQ 时,tan ∠BAC =OC OA =31=3=tan ∠BOQ ,则直线OQ 的表达式为:y =-3x …③,联立①③并解得:x =−1+√132, 故点Q (−1+√132,1−√132);综上,点Q (√3,-2√3)或(−1+√132,1−√132).【解析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)S △POD =×OG (x D -x P )=(3+2m )(2-m )=-m 2+m+3,即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
2019娄底中考数学试卷及答案娄底市2019年初中毕业学业考试参考答案数 学一、选择题(本大题共10小题,每小题3分,满分30分)1-5 BDCDB 6-10 CBAAC二、填空题(本大题共8小题,每小题3分,满分24分)11.-2 12.1.12×10513.AB ∥CD 14.答案不唯一,符合题意即可,如:DE ∥BC15.y =2x -2 16.0.8,80%或4517.13 18.3<m <8三、解答题(本大题共2小题,每小题6分,满分12分)19.解:原式=1+2-1+2-2×22 ………………………………………………2分 =2+2-2………………………………………………4分 =2………………………………………………6分 20.解:原式=x -1-2x -1 ·x (x -1)(x -3)2…………2分 =x -3x -1 ·x (x -1)(x -3)2…………3分 =x x -3…………4分 当x =1或3时,x -1=0或x -3=0,分式无意义,故x =2…………5分 当x =2时,原式的值=22-3=-2 …………6分 四、解答题(本大题共2小题,每小题8分,满分16分)21.(1)m =80,n =0.20(2分);(2)图略(3分);(3)大约有4000×(0.20+0.10)=1200人。
(3分)22.BH ≈16.32m (7分)≈16.3m (8分)(之前的步骤省略,评卷人可酌情按步骤给分)五、解答题(本大题共2小题,每小题9分,满分18分)23.(1)解:设乙骑自行车的速度为x m /min 。
…………1分由题意,得 6000.5x +24002x +2=3000x…………2分 解得 x =300经检验,x =300是原方程的解。
…………4分 答:乙骑自行车的速度为300 m /min (或5m/s )。
…………5分(2)解:300 m /min ×2min =600m …………7分 答:当甲到达学校时,乙同学离学校还有600m 。
湖南省娄底市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体,上下部分均为圆柱体,其左视图是( )A .B .C .D .2.如图,等腰△ABC 中,AB =AC =10,BC =6,直线MN 垂直平分AB 交AC 于D ,连接BD ,则△BCD 的周长等于( )A .13B .14C .15D .163.将二次函数2y x =的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+4.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .40°B .50°C .60°D .140°5.若( )53-=-,则括号内的数是( )A .2-B .8-C .2D .86.下列算式的运算结果正确的是( )A .m 3•m 2=m 6B .m 5÷m 3=m 2(m≠0)C .(m ﹣2)3=m ﹣5D .m 4﹣m 2=m 27.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x 个,依题意列方程为( )A .21021051.5x x -=B .21021051.5x x -=- C .21021051.5x x -=+ D .2102101.55x =+ 8.如图,AOB V 是直角三角形,90AOB ∠=o ,2OB OA =,点A 在反比例函数1y x=的图象上.若点B 在反比例函数k y x=的图象上,则k 的值为( )A .2B .-2C .4D .-49.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是210.如图,向四个形状不同高同为h 的水瓶中注水,注满为止.如果注水量V (升)与水深h (厘米)的函数关系图象如图所示,那么水瓶的形状是( )A .B .C .D .11.一次函数y kx k =-与反比例函数(0)k y k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .12.如图,直立于地面上的电线杆 AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )A .2+23B .4+23C .2+32D .4+32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= .14.如图,矩形纸片ABCD ,AD=4,AB=3,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当△EFC 是直角三角形时,那么BE 的长为______.15.已知函数||(2)31m y m x x =+-+是关于x 的二次函数,则m =__________.16.如图,在菱形纸片ABCD 中,2AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为________.17.请写出一个一次函数的解析式,满足过点(1,0),且y 随x 的增大而减小_____.18.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.20.(6分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。
湖南省娄底市新化县2019年中考数学二模试卷(解析版)一.选择题1.﹣的相反数是()A. 2B. ﹣2C.D. ﹣2.节约是一种美德,节约是一种智慧,据不完全统计,全国每年浪费的食物若折合成粮食可养活约360000000人,把350000000用科学记数法可以表示为()A. 3.5×1010B. 3.5×109C. 3.5×109D. 3.5×1093.下列运算正确的是()A. x 2?x 3=x6 B. x 6÷x5=x C. (﹣x 2)4=x 6D. x 2+x 3=x54.下列说法正确的是()A. 对角线互相垂直的四边形是菱形B. 矩形的对角线互相垂直C. 一组对边平行的四边形是平行四边形D. 四边相等的四边形是菱形5.某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是s 甲2=1.9,s 乙2=2.4,则参赛学生身高比较整齐的班级是()A. 甲班B. 乙班C. 同样整齐D. 无法确定6.某几何体的三视图如图所示,则这个几何体是()A. 圆柱B. 正方体C. 球D. 圆锥9.如图AB ∥DE ,∠ABC=30°,∠BCD=90°,则∠CDE=()A. 20°B. 50°C. 60°D. 100°9.已知方程组,则x+y 的值为()A. ﹣1B. 0C. 2D. 39.如图,在△ABC中,AD,BE是两条中线,则S△EDC:S△ABC=()A. 1:2B. 1:4C. 1:3D. 2:310.若一次函数y=(k﹣1)x+3的图象经过第一、二、四象限,则k的取值范围是()A. k>0B. k<0C. k>1D. k<111.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A. a≥1B. a>1且a≠5C. a≥1且a≠5D. a≠512.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的 1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为 1.5x万千克,根据题意列方程为()A. ﹣=20B. ﹣=20C. ﹣=20D. + =20二.填空题13.若实数a、b满足|2019a﹣2019|+b2=0,则a b的值为________.14.分式的值为0,那么x的值为________.15.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.16.如图,⊙O的直径CD⊥EF,∠OEG=30°,则∠DCF=________°.19.在10个外观相同的产品中,有3个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是________.19.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为________.三.解答题19.计算:|﹣2|+2﹣1﹣cos60°﹣(1﹣)0.20.已知a2﹣2a﹣2=0,求代数式(1﹣)÷ 的值.四.解答题21.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.如图,小俊在A处利用高为 1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C 处,又测得楼顶E的仰角为60°,求楼EF的高度.(=1.932,结果精确到0.1米)DEB五.解答题.23.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?24.如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.六.解答题25.如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD= ,求AD的长.26.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,顶点M关于x轴的对称点是M′.(1)求抛物线的解析式;(2)若直线AM′与此抛物线的另一个交点为C,求△CAB的面积;(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】C【考点】相反数【解析】【解答】解:﹣的相反数是.故答案为:C.【分析】求一个数的相反数就是在这个数的前面添上负号,负数的相反数是正数。
2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将350000000用科学记数法表示为: 3.5×109.故答案为:C.【分析】科学计数法的表示形式为a×10n的形式。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1。
3.【答案】B【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则和去括号法则【解析】【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、同底数幂的除法底数不变指数相减,故B正确;C、积的乘方等于乘方的积,故C错误;D、不是同类项不能合并,故D错误;故答案为:B.【分析】根据幂的性质及同类项的定义解答此题。
4.【答案】D【考点】平行四边形的判定,菱形的判定,矩形的性质【解析】【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故答案为:D.【分析】根据菱形的判定、矩形的性质、平行四边形的判定解答此题。
5.【答案】A【考点】方差【解析】【解答】解:∵=1.9,=2.4,∴<,∴参赛学生身高比较整齐的班级是甲班,【分析】要求参赛学生身高比较整齐的班级,看方差,方差越小数据波动越小。
6.【答案】D【考点】由三视图判断几何体【解析】【解答】解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形和圆心可判断出这个几何体应该是圆锥,故答案为:D.【分析】观察三种视图的形状,即可得出几何体的形状。
9.【答案】B【考点】平行线的性质【解析】【解答】解:延长BC交DE于F,∵AB∥DE,∴∠B=∠BFD=30°,∵∠BCD=90°,∴∠CDE=∠BCD﹣∠BFD=90°﹣30°=50°,故答案为:B.【分析】添加辅助线,方法一、延长BC交DE于F或延长DC;方法二、过点C作AB的平行线;方法三、连接BD,根据平行线的性质即可求解。
9.【答案】D【考点】解二元一次方程组【解析】【解答】解:,①+②得:3x+3y=9,则x+y=3.故答案为: D【分析】观察同一未知数系数的特点,将两方程相加除以3,即可求出x+y的值;也可求出方程组的解,即可求得x+y的值。
9.【答案】B【考点】三角形中位线定理,相似三角形的判定与性质【解析】【解答】解:∵在△ABC中,AD,BE是两条中线,∴DE∥AB,DE= AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=1:4.【分析】根据三角形的中位线定理得出DE∥AB,得出△EDC∽△ABC,根据相似三角形的面积比等于相似比的平方。
即可求得结果。
10.【答案】 D【考点】一次函数与系数的关系【解析】【解答】解:∵一次函数y=(k﹣1)x+3的图象经过第一、二、四象限,∴k﹣1<0;∴k<1,故答案为:D.【分析】一次函数y=kx+b,k>0.图像必过一、三象限,k<0时,图像必过二、四象限、b>0时,图像必过一、二象限,b<0时,图像必过三、四象限,b=0时图像过原点。
抓住此图像经过第一、二、四象限,建立不等式求解即可。
11.【答案】 A【考点】一元一次方程的定义,一元二次方程的定义,根的判别式【解析】【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故答案为:A.【分析】此题采用分类讨论:①当a﹣5=0即a=5时,此时方程一定有实数根;②当a﹣5≠0即a≠5时,已知方程有两个实数根,即得b2-4ac≥0,建立不等式,求解即可。
12.【答案】 A【考点】由实际问题抽象出分式方程【解析】【解答】解:设原计划每亩平均产量x万千克,由题意得:﹣=20,故答案为:A.【分析】此题的等量关系是:原计划种植的亩数-改良后种植的亩数=20,根据等量关系列出方程即可。
二.<b >填空题</b>13.【答案】 1【考点】平方的非负性,绝对值的非负性【解析】【解答】解:∵|2019a﹣2019|+b2=0,又∵|2019a﹣2019|≥0,b2≥0,∴a= ,b=0,∴a b=()0=1,故答案为 1【分析】几个非负数之和为0,则每一个非负数都为0,建立方程,求出a、b的值,即可得出结果。
14.【答案】 3【考点】分式的值为零的条件【解析】【解答】解:由题意可得:x2﹣9=0且x+3≠0,解得x=3.故答案为:3.【分析】根据分式值为0,分母≠0且分子=0,建立不等式和方差求解即可。