2019年福建省中考数学试卷(含答案解析)(可编辑修改word版)
- 格式:pdf
- 大小:348.47 KB
- 文档页数:10
2024年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.下列实数中,无理数是()A.﹣3B.0C.D.2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT(《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为()A.6961×10B.696.1×102C.6.961×104D.0.6961×1053.如图是由长方体和圆柱组成的几何体,其俯视图是()A.B.C.D.4.在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°5.下列运算正确的是()A.a3•a3=a9B.a4÷a2=a2C.(a3)2=a5D.2a2﹣a2=26.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是()A.B.C.D.7.如图,已知点A,B在⊙O上,∠AOB=72°,直线MN与⊙O相切,切点为C,且C为的中点,则∠ACM等于()A.18°B.30°C.36°D.72°8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x亿元,则符合题意的方程是()A.(1+4.7%)x=120327B.(1﹣4.7%)x=120327C.D.9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案,如图.其中△OAB与△ODC都是等腰三角形,且它们关于直线l对称,点E,F分别是底边AB,CD的中点,OE⊥OF.下列推断错误的是()A.OB⊥OD B.∠BOC=∠AOBC.OE=OF D.∠BOC+∠AOD=180°10.已知二次函数y=x2﹣2ax+a(a≠0)的图象经过,B(3a,y2)两点,则下列判断正确的是()A.可以找到一个实数a,使得y1>aB.无论实数a取什么值,都有y1>aC.可以找到一个实数a,使得y2<0D.无论实数a取什么值,都有y2<0二、填空题:本题共6小题,每小题4分,共24分。
福建省2021年中考数学试卷一、单选题(共10题;共20分)1.在实数√2,1,0,-1中,最小的数是()2D. √2A. -1B. 0C. 12【答案】A【考点】实数大小的比较,0,−1中,【解析】【解答】解:在实数√2,12为正数大于0,√2,12−1为负数小于0,∴最小的数是:-1.故答案为:A.【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数相比较,绝对值大的反而小.据此判断即可.2.如图所示的六角螺栓,其俯视图是()A. B.C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】从上面看是一个正六边形,中间是一个圆,故答案为:A.【分析】俯视图:从物体上面所看的平面图形;注意:看到的棱画实线,看不到的棱画虚线,据此判断即可.3.如图,某研究性学习小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得∠A=60°,∠C=90°,AC=2km.据此,可求得学校与工厂之间的距离AB等于()A. 2kmB. 3kmC. 2√3kmD. 4km【答案】 D【考点】解直角三角形的应用【解析】【解答】∵∠A=60°,∠C=90°,AC=2km∴cosA=ACAB ,cos60°=12∴AB=ACcosA =212=4km.故答案为:D.【分析】利用cosA=ACAB即可求出AB.4.下列运算正确的是()A. 2a−a=2B. (a−1)2=a2−1C. a6÷a3=a2D. (2a3)2=4a6【答案】 D【考点】同底数幂的除法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A:2a−a=(2−1)a=a,故A错误;B:(a−1)2=a2−2a+1,故B错误;C:a6÷a3=a6−3=a3,故C错误;D:(2a3)2=22·(a3)2=4a3×2=4a6.故答案为:D【分析】根据合并同类项、完全平方公式、同底数幂的除法、积的乘方与幂的乘方分别进行计算,然后判断即可.5.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A. 甲 B. 乙 C. 丙 D. 丁【答案】B【考点】加权平均数及其计算【解析】【解答】根据题意,得:甲:90×60%+90×40%=90;乙:95×60%+90×40%=93;丙:90×60%+95×40%=92;丁:90×60%+85×40%=88;故答案为:B【分析】分别求出甲、乙、丙、丁四个作品加权平均数,然后比较即得.6.某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是()A. 0.63(1+x)=0.68B. 0.63(1+x)2=0.68C. 0.63(1+2x)=0.68D. 0.63(1+2x)2=0.68【答案】B【考点】一元二次方程的实际应用-百分率问题【解析】【解答】解:设年平均增长率为x,由题意得:0.63(1+x)2=0.68,故答案为:B.【分析】设年平均增长率为x,根据2018年底森林覆盖率×(1+平均增长率)2=2020年底森林覆盖率,列出方程即可.7.如图,点F在正五边形ABCDE的内部,△ABF为等边三角形,则∠AFC等于()A. 108°B. 120°C. 126°D. 132°【答案】C【考点】等腰三角形的性质,等边三角形的性质,多边形内角与外角,正多边形的性质【解析】【解答】∵ABCDE是正五边形,∴∠ABC= (5−2)×180°=108°,AB=BC,5∵△ABF为等边三角形,∴∠ABF=∠AFB=60°,AB=BF,∴BF=BC,∠FBC=∠ABC-∠ABF=48°,∴∠BFC= 1(180°−∠FBC)=66°,2∴∠AFC=∠AFB+∠BFC=126°,故答案为:C.【分析】根据多边形内角和公式求出∠ABC的度数,由正五边形的性质得出AB=BC,根据等边三角形的性质,可得∠ABF=∠AFB=60°,AB=BF,从而得出BF=BC,求出∠FBC=∠ABC-∠ABF=48°,利用等腰三角形的性质求出∠BFC的度数,利用∠AFC=∠AFB+∠BFC即得结论.8.如图,一次函数y=kx+b(k>0)的图象过点(−1,0),则不等式k(x−1)+b>0的解集是()A. x>−2B. x>−1C. x>0D. x>1【答案】C【考点】一次函数与不等式(组)的综合应用【解析】【解答】解:如图所示,将直线y=kx+b(k>0)向右平移1个单位得到y=k(x−1)+b(k>0),该图象经过原点,由图象可知,在y轴右侧,直线位于x轴上方,即y>0,因此,当x>0时,k(x−1)+b>0,故答案为:C.【分析】将直线y=kx+b(k>0)向右平移1个单位得到y=k(x−1)+b(k>0),且该图象经过原点,由图象可知,当x>0时y=k(x−1)+b(k>0)的图象在x轴上方,据此即得结论.9.如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于()A. 35B. 25C. 34D. 45【答案】 D【考点】圆周角定理,切线的性质,锐角三角函数的定义,切线长定理【解析】【解答】解:连接OC ,CP ,DP 是⊙O 的切线,则∠OCP =90°,∠CAP =∠PAD ,∴∠CAD=2∠CAP ,∵OA=OC∴∠OAC =∠ACO ,∴∠COP =2∠CAO∴∠COP =∠CAD∵ AB =6∴OC=3在Rt △COP 中,OC=3,PC=4∴OP=5.∴ sin ∠CAD = sin ∠COP = 45故答案为:D.【分析】连接OC ,利用切线的性质及切线长定理得出∠OCP =90°,∠CAP =∠PAD ,根据圆周角定理∠COP =2∠CAO ,从而得出∠COP =∠CAD ,在Rt △COP 中,利用勾股定理求出OP , 利用sin ∠CAD = sin ∠COP = PC OP 即得结论.10.二次函数 y =ax 2−2ax +c(a >0) 的图象过 A(−3,y 1),B(−1,y 2),C(2,y 3),D(4,y 4) 四个点,下列说法一定正确的是( )A. 若 y 1y 2>0 ,则 y 3y 4>0B. 若 y 1y 4>0 ,则 y 2y 3>0C. 若 y 2y 4<0 ,则 y 1y 3<0D. 若 y 3y 4<0 ,则 y 1y 2<0【答案】 C【考点】二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c 的图象,二次函数y=ax^2+bx+c 的性质【解析】【解答】解:∵二次函数y=ax2−2ax+c(a>0)的对称轴为:x=−b2a =−−2a2a=1,且开口向上,∴距离对称轴越近,函数值越小,∴y1>y4>y2>y3,A,若y1y2>0,则y3y4>0不一定成立,故答案为:错误,不符合题意;B,若y1y4>0,则y2y3>0不一定成立,故答案为:错误,不符合题意;C,若y2y4<0,所以y1>0,y3<0,则y1y3<0一定成立,故答案为:正确,符合题意;D,若y3y4<0,则y1y2<0不一定成立,故答案为:错误,不符合题意;故答案为:C.【分析】抛物线的对称轴为x=1且开口向上,可得距离对称轴越近,函数值越小,从而得出y1>y4>y2>y3,据此逐一分析即可.二、填空题(共6题;共6分)11.若反比例函数y=kx的图象过点(1,1),则k的值等于________.【答案】1【考点】反比例函数图象上点的坐标特征【解析】【解答】∵反比例函数y=kx的图象过点(1,1)∴1=k1,即k=1故答案为:1.【分析】将点(1,1)代入y=kx中,即可求出k值.12.写出一个无理数x,使得1<x<4,则x可以是________(只要写出一个满足条件的x即可)【答案】答案不唯一(如√2,π,1.010010001⋅⋅⋅等)【考点】估算无理数的大小【解析】【解答】根据无理数的定义写一个无理数,满足1<x<4即可;所以可以写:①开方开不尽的数:√2,②无限不循环小数,1.010010001……,③含有π的数π2,等.只要写出一个满足条件的x即可.故答案为:答案不唯一(如√2,π,1.010010001……等)【分析】无限不循环小数叫做无理数,对于开方开不尽的数、圆周率π都是无理数;据此写出满足1< x<4的x值即可.13.某校共有1000名学生.为了解学生的中长跑成绩分布情况,随机抽取100名学生的中长跑成绩,画出条形统计图,如图.根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是________.【答案】270【考点】用样本估计总体【解析】【解答】解:由图知:样本中优秀学生的比例为:27100=27%,∴该校中长跑成绩优秀的学生人数是:1000×27%=270(人)故答案是:270.【分析】利用样本中优秀学生的百分比乘以总人数1000即得结论.14.如图,AD是△ABC的角平分线.若∠B=90°,BD=√3,则点D到AC的距离是________.【答案】√3【考点】角平分线的性质【解析】【解答】如图,过D作DE⊥AC,则D到AC的距离为DE∵AD平分∠CAB,∠B=90°,BD=√3,∴DE=BD=√3∴点D到AC的距离为√3.故答案为√3.【分析】过D作DE⊥AC,根据角平分线的性质可得DE=BD=√3,据此即得结论.15.已知非零实数x,y满足y=xx+1,则x−y+3xyxy的值等于________.【答案】4【考点】代数式求值【解析】【解答】由y=xx+1得:xy+y=x,即x-y=xy∴x−y+3xyxy =xy+3xyxy=4xyxy=4故答案为:4【分析】由y=xx+1可得x-y=xy,然后代入求值即可.16.如图,在矩形ABCD中,AB=4,AD=5,点E,F分别是边AB,BC上的动点,点E不与A,B重合,且EF=AB,G是五边形AEFCD内满足GE=GF且∠EGF=90°的点.现给出以下结论:① ∠GEB与∠GFB一定互补;②点G到边AB,BC的距离一定相等;③点G到边AD,DC的距离可能相等;④点G到边AB的距离的最大值为2√2.其中正确的是________.(写出所有正确结论的序号)【答案】①②④【考点】多边形内角与外角,矩形的性质,锐角三角函数的定义,三角形全等的判定(AAS)【解析】【解答】∵∠EGF=90°GE=GF∴∠GEF=45°① ∵四边形ABCD是矩形∴∠B=90°∵∠EGF=90°,四边形内角和为360°∴∠GEB+∠GFB=180°∴①正确.②如图:过G作GM⊥AB,GN⊥BC∴∠GME=∠GNF=90°∵∠GEB+∠GFB=180°,∠GEM+∠GEB=180°∴∠GFN=GEM又∵GE=GF△GME≌△GNF(AAS)∴GM=GN即点G到边AB,BC的距离一定相等∴②正确.③如图:过G作GN⊥AD,GM⊥CD∴NG<AB−12EF=2,GM<AD−12EF=3∴NG≥AB−EF×sin45°=4−2√2,GM≥AD−EF×sin45°=5−2√2∴4−2√2≤NG<2,5−2√2<GM<3而∵2<5−2√2所以点G到边AD,DC的距离不可能相等∴③不正确.④如图:当GE⊥AB时,点G到边AB的距离的最大GE=EF×sin45°=4×√22=2√2∴④正确.综上所述:①②④正确.故答案为①②④.【分析】根据矩形的性质得出∠B=90°,由∠EGF=90°,四边形内角和为360°即可判断①;过G作GM⊥AB,GN⊥BC,证明△GME≌△GNF(AAS),可得GM=GN,据此判断②;过G作GN⊥AD,GM⊥CD,分别求出GM、GN的长,然后比较即可判断③;当GE⊥AB时,点G到边AB 的距离的最大,可求出GE=EF×sin45°=2√2,据此判断④.三、解答题(共9题;共80分)17.计算:√12+|√3−3|−(13)−1.【答案】解:√12+|√3−3|−(13)−1=2√3+(3−√3)−3=2√3+3−√3−3=√3.【考点】负整数指数幂的运算性质,二次根式的性质与化简,实数的绝对值【解析】【分析】利用二次根式的性质、绝对值的性质、负整数指数幂的性质先进行计算,再进行实数的加减即得.18.如图,在△ABC中,D是边BC上的点,DE⊥AC,DF⊥AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.【答案】证明:∵DE⊥AC,DF⊥AB,∴ ∠DEC =∠DFB =90° .在 △DEC 和 △DFB 中, {DE =DF,∠DEC =∠DFB,CE =BF,∴ △DEC ≌△DFB , ∴ ∠B =∠C .【考点】三角形全等的判定(SAS )【解析】【分析】 根据垂直的定义可得∠DEC =∠DFB =90° , 证明△DEC ≌△DFB ,可得∠B =∠C .19.解不等式组: {x ≥3−2x ①x−12−x−36<1②【答案】 解:解不等式 x ≥3−2x , 3x ≥3 , 解得: x ≥1 . 解不等式x−12−x−36<1 ,3x −3−x +3<6 , 解得: x <3 .所以原不等式组的解集是: 1≤x <3 . 【考点】解一元一次不等式组【解析】【分析】先分别解出两个不等式的解集,然后根据“同大取大,同小取小,大小小大中间找,大大小小无处找”的规律找出不等式组的解集即可.20.某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元. (1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少? 【答案】 (1)解:设该公司当月零售农产品x 箱,批发农产品y 箱. 依题意,得 {70x +40y =4600,x +y =100, 解得 {x =20,y =80.所以该公司当月零售农产品20箱,批发农产品80箱.(2)解:设该公司零售农产品m 箱,获得总利润w 元.则批发农产品的数量为 (1000−m) 箱, ∵该公司零售的数量不能多于总数量的30% ∴ m ≤300依题意,得 w =70m +40(1000−m)=30m +40000,m ≤300 . 因为 30>0 ,所以w 随着m 的增大而增大, 所以 m =300 时,取得最大值49000元,此时1000−m=700.所以该公司应零售农产品300箱、批发农产品700箱才能使总利润最大,最大总利润是49000元.【考点】一次函数的实际应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)设该公司当月零售农产品x箱,批发农产品y箱.根据“ 该公司某月卖出100箱这种农产品共获利润4600元”列出方程组,求解即可;(2)设该公司零售农产品m箱,获得总利润w元.则批发农产品的数量为(1000−m)箱,由该公司零售的数量不能多于总数量的30%,求出m的范围,根据总利润=零售利润+批发的利润,列出w关于m 的关系式,利用一次函数的性质求解即可.21.如图,在Rt△ABC中,∠ACB=90°.线段EF是由线段AB平移得到的,点F在边BC上,△EFD是以EF为斜边的等腰直角三角形,且点D恰好在AC的延长线上.(1)求证:∠ADE=∠DFC;(2)求证:CD=BF.【答案】(1)证明:在等腰直角三角形EDF中,∠EDF=90°,∴∠ADE+∠ADF=90°.∵∠ACB=90°,∴∠DFC+∠ADF=∠ACB=90°,∴∠ADE=∠DFC.(2)证明:连接AE.由平移的性质得AE//BF,AE=BF.∴∠EAD=∠ACB=90°,∴∠DCF=180°−∠ACB=90°,∴∠EAD=∠DCF.∵△EDF是等腰直角三角形,∴DE=DF.由(1)得∠ADE=∠DFC,∴△AED≌△CDF,∴AE=CD,∴CD=BF.【考点】平移的性质,等腰直角三角形,三角形全等的判定(AAS)【解析】【分析】(1)在等腰直角三角形EDF中,可得∠ADE+∠ADF=90°,由∠ACB=90°可得∠DFC+∠ADF=∠ACB=90°,利用余角的性质即得∠ADE=∠DFC;(2)连接AE,由平移的性质得AE//BF,AE=BF,从而求出∠EAD=∠DCF,在等腰直角三角形EDF中,可得DE=DF,证明△AED≌△CDF,可得AE=CD,由等量代换可得CD=BF ..22.如图,已知线段MN=a,AR⊥AK,垂足为a.(1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC=60°,CD//AB;(要求:尺规作图,不写作法,保留作图痕迹)(2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点. 【答案】(1)解:作图如下:四边形ABCD是所求作的四边形;(2)解:设直线BC与AD相交于点S,∵DC//AB,∴△SBA∽△SCD,∴SASD =ABDC设直线PQ与AD相交于点S′,同理S′AS′D =PAQD.∵P,Q分别为AB,CD的中点,∴PA=12AB,QD=12DC∴PAQD =ABDC∴S′AS′D =SASD,∴S′D+ADS′D =SD+ADSD,∴ADS′D =ADSD,∴S′D=SD,∴点S与S′重合,即三条直线AD,BC,PQ相交于同一点.【考点】相似三角形的判定与性质,作图-角【解析】【分析】(1)先截取AB=a,再分别以A/B为圆心,a为半径,两弧交于点C,以点C为顶点作角=∠ABC即可;(2)设直线BC与AD相交于点S,利用平行线可证△SBA∽△SCD,可得SASD =ABDC,设直线PQ与AD相交于点S′,同理S′AS′D =PAQD. 根据线段的中点可得PA=12AB,QD=12DC,可得PAQD=ABDC,从而求出ADS′D=ADSD,即得S′D=SD,继而得出点S与S′重合,据此即得结论.23.“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,试回答以下问题:(1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;(2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.【答案】(1)解:田忌首局应出“下马”才可能在整场比赛中获胜.此时,比赛的所有可能对阵为:(C2A1,A2B1,B2C1),(C2A1,B2C1,A2B1),(C2A1,B2B1,A2C1),(C2A1,A2C1,B2B1),共四种.其中田忌获胜的对阵有(C2A1,A2B1,B2C1),(C2A1,B2C1,A2B1),共两种,故此时田忌获胜的概率为P1=12.(2)解:不是.齐王的出马顺序为A1,B1,C1时,田忌获胜的对阵是(C2A1,A2B1,B2C1);齐王的出马顺序为A1,C1,B1时,田忌获胜的对阵是(C2A1,B2C1,A2B1);齐王的出马顺序为B1,A1,C1时,田忌获胜的对阵是(A2B1,C2A1,B2C1);齐王的出马顺序为B1,C1,A1时,田忌获胜的对阵是(A2B1,B2C1,C2A1);齐王的出马顺序为C1,A1,B1时,田忌获胜的对阵是(B2C1,C2A1,A2B1);齐王的出马顺序为C1,B1,A1时,田忌获胜的对阵是(B2C1,A2B1,C2A1).综上所述,田忌获胜的所有对阵是(C2A1,A2B1,B2C1),(C2A1,B2C1,A2B1),(A2B1,C2A1,B2C1),(A2B1,B2C1,C2A1),(B2C1,C2A1,A2B1),(B2C1,A2B1,C2A1).齐王的出马顺序为A1,B1,C1时,比赛的所有可能对阵是(A2A1,B2B1,C2C1),(A2A1,C2B1,B2C1),(B2A2,A2B1,C2C1),(B2A1,C2B1,A2C1),(C2A1,A2B1,B2C1),(C2A1,B2B1,A2C1),共6种,同理,齐王的其他各种出马顺序,也都分别有相应的6种可能对阵,所以,此时田忌获胜的概率P2=636=16.【考点】列表法与树状图法【解析】【分析】(1)田忌首局应出“下马”才可能在整场比赛中获胜.然后列出比赛的所有可能对阵有4种,其中田忌获胜的对阵有2种,利用概率公式求解即可;(2)根据(1)中的一种情况,推出共18种对阵情况,只要(A2B1,C2A1,B2C1)对阵田忌获胜,然后求出概率即可.24.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE//A′F;(2)求∠GA′B的大小;(3)求证:A′C=2A′B.【答案】(1)证明:设直线DE与AA′相交于点T,∵点A与A′关于DE对称,∴DE垂直平分AA′,即DE⊥AA′,AT=TA′.∵E,F为AB边上的两个三等分点,∴AE=EF,∴ET是△AA′F的中位线,∴ET∥A′F,即DE∥A′F.(2)解:连接FG,∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABG=90°,∠DAT+∠BAG=90°,∵DE⊥AA′,∴∠DTA=90°,∴∠ADT+∠DAT=90°,∴∠ADT=∠BAG. ∴△DAE≌△ABG,∴AE=BG,又AE=EF=FB,∴FB=BG,∴△FBG是等腰直角三角形,∴∠GFB=45°.∵DE//A′F,∴A′F⊥AA′,∴∠FA′G=90°.取FG的中点O,连接OA′,OB,在Rt△A′FG和Rt△BFG中,OA′=OF=OG=12FG,OB=OF=OG=12FG,∴OA′=OF=OG=OB,∴点A′,F,B,G都在以FG为直径的⊙O上,∴∠GA′B=∠GFB=45°.(3)证明:设AB=3a,则AD=BC=3a,AF=2a,AE=BF=a. 由(2)得BG=AE=a,∴tan∠BAG=BGAB =a3a=13,即tan∠A′AF=13,∴A′FAA′=13.设A′F=k,则AA′=3k,在Rt△A′AF中,由勾股定理,得AF=√AA′2+A′F2=√10k,∴√10k=2a,k=√10a5,A′F=√10a5.在Rt△ABG中,由勾股定理,得AG=√AB2+BG2=√10a. 又∵AA′=3k=3√10a5,∴A′G=AG−AA′=√10a−3√10a5=2√10a5,∴A′FA′G =√10a52√10a5=12.∵CG=BC−CB=2a,∴BFCG =a2a=12,∴A′FA′G =BFCG=12.由(2)知,∠A′FB+∠A′GB=180°,又∵∠A′GC+∠A′GB=180°,∴∠A′FB=∠A′GC,∴△A′FB∽△A′GC,∴A′BA′C =BFCG=12,∴A′C=2A′B.【考点】正方形的性质,轴对称的性质,相似三角形的判定与性质,锐角三角函数的定义,三角形的中位线定理【解析】【分析】(1)设直线DE与AA′相交于点T,根据对称性可得DE⊥AA′,AT=TA′,由E,F为AB边上的两个三等分点,可得ET是△AA′F的中位线,利用三角形中位线定理即得结论;(2)连接FG,证明△DAE≌△ABG,可求出△FBG是等腰直角三角形,可得∠GFB=45°,可求出∠FA′G=90°,取FG的中点O,连接OA′,OB,根据直角三角形斜边中线的性质得出OA′=OF=OG=OB,可推出点A′,F,B,G都在以FG为直径的⊙O上,利用圆周角定理即得∠GA′B=∠GFB=45°;(3)设AB=3a,则AD=BC=3a,AF=2a,AE=BF=a,利用锐角三角函数可求出A′FAA′=13,设A′F=k,则AA′=3k,在Rt△A′AF中,由勾股定理求出AF=√10k,从而求出k=25.已知抛物线y=ax2+bx+c与x轴只有一个公共点.(1)若抛物线过点P(0,1),求a+b的最小值;(2)已知点P1(−2,1),P2(2,−1),P3(2,1)中恰有两点在抛物线上.①求抛物线的解析式;②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=−1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:△MAB与△MBC的面积相等.【答案】(1)解:因为抛物线y=ax2+bx+c与x轴只有一个公共点,以方程ax2+bx+c=0有两个相等的实数根,所以Δ=b2−4ac=0,即b2=4ac.因为抛物线过点P(0,1),所以c=1,所以b2=4a,即a=b24.所以a+b=b24+b=14(b+2)2−1,当b=−2时,a+b取到最小值−1.(2)解:①因为抛物线y=ax2+bx+c与x轴只有一个公共点,所以抛物线上的点只能落在x轴的同侧.又点P1(−2,1),P2(2,−1),P3(2,1)中恰有两点在抛物线的图象上,所以只能是P1(−2,1),P3(2,1)在抛物线的图象上,由对称性可得抛物线的对称轴为x=0,所以b=0,即ac=0,因为a≠0,所以c=0.又点P1(−2,1)在抛物线的图象上,所以4a=1,a=14,故抛物线的解析式为y=14x2.②由题意设M(x1,y1),N(x2,y2),A(x0,−1),则y1=kx1+1,y2=kx2+1.记直线y=−1为m,分别过M,N作ME⊥m,NF⊥m,垂足分别为E,F,即∠MEA=∠AFN=90°,因为∠MAN=90°,所以∠MAE+∠NAF=90°.又∠MAE+∠EMA=90°,所以∠EMA=∠NAF,所以△AME∽△NAF.所以AENF =MEAF,所以x0−x1y2+1=y1+1x2−x0,即(y1+1)(y2+1)+(x1−x0)(x2−x0)=0.所以(kx1+2)(kx2+2)+(x1−x0)(x2−x0)=0,即(k2+1)x1x2+(2k−x0)(x1+x2)+x02+4=0.①把y=kx+1代入y=14x2,得x2−4kx−4=0,解得x1=2k−2√k2+1,x2=2k+2√k2+1,所以x1+x2=4k,x1x2=−4.②将②代入①,得−4(k2+1)+4k(2k−x0)+x02+4=0,即(x0−2k)2=0,解得x0=2k,即A(2k,−1).所以过点A且与x轴垂直的直线为x=2k,将x=2k代入y=14x2,得y=k2,即B(2k,k2),将x=2k代入y=kx+1,得y=2k2+1,即C(2k,2k2+1),所以AB=k2+1,BC=k2+1,因此AB=BC,所以△MAB与△MBC的面积相等.【考点】一元二次方程的根与系数的关系,二次函数图象与坐标轴的交点问题,相似三角形的判定与性质,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)由抛物线y=ax2+bx+c与x轴只有一个公共点,可得方程ax2+bx+c=0有两个相等的实数根,即得△=0,可求出b2=4ac,将点P(0,1)代入抛物线解析式中,求出c=1,从而得出a=b24,继而可得a+b=b24+b=14(b+2)2−1,据此即可求出最值;(2)①由抛物线y=ax2+bx+c与x轴只有一个公共点,所以抛物线上的点只能落在x轴的同侧. 又点P1(−2,1),P2(2,−1),P3(2,1)中恰有两点在抛物线的图象上,所以只能是P1(−2,1),P3(2,1)在抛物线的图象上,由对称性可得抛物线的对称轴为x=0,所以b=0,从而求出c=0,再将点P1(−2,1)代入解析式中求出a值即可;②由题意设M(x1,y1),N(x2,y2),A(x0,−1),则y1=kx1+1,y2=kx2+1.记直线y=−1为m,分别过M,N作ME⊥m,NF⊥m,垂足分别为E,F,先求出过点A且与x轴垂直的直线为x=2k,将x=2k代入y=14x2可求出B(2k,k2),将x=2k代入y=kx+1,可求出C(2k,2k2+1),可得AB=k2+1,BC=k2+1,即得AB=BC,根据等底同高即得结论.。
整式一.选择题(共16小题)1.(2019•泰州)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为()A.﹣1B.1C.2D.3 2.(2019•重庆)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 3.(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y 4.(2019•邢台二模)若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.11 5.(2019•宿迁三模)若(2x+1)4=a0x4+a1x3+a2x2+a3x+a4,则a0+a2+a4的值为()A.82B.81C.42D.41 6.(2019•南安市一模)已知(2x﹣3)7=a0x7+a1x6+a2x5+……+a6x+a7,则a0+a1+a2+……+a7=()A.1B.﹣1C.2D.0 7.(2019•霍邱县二模)2018年电影《我不是药神》反映了用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行了改革,看病贵将成为历史.据调查,某种原价为345元的药品进行了两次降价,第一次降价15%,第二次降价的百分率为x,则该药品两次降价后的价格变为多少元?()A.345(1﹣15%)(1﹣x)B.345(1﹣15%)(1﹣x%)C.D.8.(2019•重庆模拟)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据如图所示的计算程序,若输入的值x=﹣2,则输出的值为()A.﹣7B.﹣3C.﹣5D.5 9.(2019•平房区二模)甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定10.(2019春•南岸区校级月考)根据如图的程序运算:当输入x=50时,输出的结果是101;当输入x=20时,输出的结果是167.如果当输入x的值是正整数,输出的结果是127,那么满足条件的x的值最多有()A.3个B.4个C.5个D.6个11.(2019春•沙坪坝区校级月考)如图是一个计算程序,按这个计算程序的计算规律,若输入的数是9,则输出的数是()A12345B36111827A.50B.63C.83D.100 12.(2019春•兴化市期中)如图,两个正方形的面积分别为25,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.4B.9C.16D.25 13.(2019•柳州模拟)已知a2+2a=1,则代数式3a2+6a﹣1的值为()A.0B.1C.﹣1D.214.(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm 15.(2019•慈溪市模拟)把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l1,图③中两个阴影部分图形的周长和为l2,若,则m,n满足()A.m=n B.m=n C.m=n D.m=n 16.(2019•鄞州区模拟)如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足()A.a=B.a=2b C.a=b D.a=3b二.填空题(共4小题)17.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=;(2)当y=﹣2时,n的值为.18.(2019•海安县一模)已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为.19.(2019•临海市一模)如图,九宫格中横向、纵向、对角线上的三个数之和均相等,请用含x的代数式表示y,y=.20.(2019春•江油市校级月考)当x=1时,代数式ax5+bx3+cx+1=2019,当x=﹣1时,ax5+bx3+cx+1=.三.解答题(共10小题)21.(2019•贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.22.(2019•长安区三模)下列算式是一类两个两位数相乘的特殊计算方法:67×63=100×(62+6)+7×3=4221,38×32=100×(32+3)+8×2=1216.(1)仿照上面方法计算,求44×46和51×59的值44×46=;51×59=;(2)观察上述算式我们发现:十位数字相同,个位数字和为10的两个两位数相乘,可以使用上述方法进行计算.如果用a,b分别表示两个两位数的个位数字,c表示十位上的数字.请用含a,b,c的式子表示上面的规律,并说明其正确性;(3)仿照(1)的计算方法,补充完成3342×3358的计算过程:3342×3358==.23.(2019春•沙坪坝区校级月考)已知A、B、C是数轴上3点,O为原点,A在O右侧,C在B右侧,线段OA=2BC=m,点D在线段BC上,关于x的多项式P的一次项系数为n,BD=nCD,且l6x4+mx=P•(2x﹣1)+7.(1)求m,n的值:(2)若OA、BC中点连线的长度也为m,求线段OB的长;(3)若A、C重合,E是直线OA上一动点,F是线段OA延长线上任意一点,求OE++AE的最小值.24.(2019春•鼓楼区校级期中)某菜农用780元购进某种蔬菜200千克,如果直接批发给菜商,每千克售价a元,如果拉到市场销售,每千克售价b元(b>a).已知该蔬菜在市场上平均每天可售出20千克,且该菜农每天还需支付15元其他费用.假设该蔬菜能全部售完.(1)当a=4.5,b=6时,该菜农批发给菜商和在市场销售获得的销售额分别是多少元?(2)设W1和W分别表示该菜农批发给菜商和在市场销售的利润,用含a,b的式子分别表示出W1和W;(3)若b=a+k(0<k<2),试根据k的取值范围,讨论选择哪种出售方式较好.25.(2019春•瑞安市期中)如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1)L=(试用m,n的代数式表示)(2)若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L 的值.26.(2019•河东区一模)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x份(x为正整数)(1)根据题意,填写下表一次印制数量51020 (x)甲印刷厂收费(元)155…乙印刷厂收费(元)12.5…(Ⅱ)在印刷品数量大于800份的情况下选哪家印刷厂印制省钱?27.(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm、宽为18.5cm、厚为1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?28.(2019春•南关区校级月考)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(QUOTE 含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为20公里,行车时间为30分钟,则需付车费元.(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简.)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?29.(2018秋•蒸湘区校级期末)甲、乙两家商店出售同样牌子和规格的羽毛球拍和羽毛球,每副球拍定价300元,每盒羽毛球定价40元,为庆祝五一节,两家商店开展促销活动如下:甲商店:所有商品9折优惠;乙商店:每买1副球拍赠送1盒羽毛球.某校羽毛球队需要购买a副球拍和b盒羽毛球(b>a).(1)按上述的促销方式,该校羽毛球队在甲、乙两家商店各应花费多少元?试用含a、b 的代数式表示;(2)当a=10,b=20时,试判断分别到甲、乙两家商店购买球拍和羽毛球,哪家便宜?30.(2018秋•南安市期末)福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?参考答案与试题解析一.选择题(共16小题)1.【解答】解:4a2﹣6ab+3b,=2a(2a﹣3b)+3b,=﹣2a+3b,=﹣(2a﹣3b),=1,故选:B.2.【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.3.【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.4.【解答】解:∵m+n=7,2n﹣p=4,∴m+3n﹣p=(m+n)+(2n﹣p)=7+4=11,故选:D.5.【解答】解:令x=1,得34=a0+a1+a2+a3+a4,①令x=﹣1,得1=a0﹣a1+a2﹣a3+a4,②①+②得:2(a0+a2+a4)=82,则a0+a2+a4=41,故选:D.6.【解答】解:当x=1时,(2﹣3)7=a0+a1+a2+……+a6+a7,则a0+a1+a2+……+a7=﹣1,故选:B.7.【解答】解:由题意可得,该药品两次降价后的价格变为:345(1﹣15%)(1﹣x),故选:A.8.【解答】解:当x=﹣2,x2+1=4+1=5.故选:D.9.【解答】解:甲:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;乙:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.10.【解答】解:根据题意得:2x+1=127,解得:x=63;2x+1=63,解得:x=31;2x+1=31,解得:x=15;2x+1=15,解得:x=7;2x+1=7,解得:x=3;2x+1=3,解得:x=1,则满足条件x的值有6个,故选:D.11.【解答】解:若输入的数是9,则输出的数为92+2=81+2=83,故选:C.12.【解答】解:设空白出长方形的面积为x,根据题意得:a+x=25,b+x=9,两式相减得:a﹣b=16,故选:C.13.【解答】解:当a2+2a=1时,3a2+6a﹣1=3(a2+2a)﹣1=3×1﹣1=3﹣1=2故选:D.14.【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.15.【解答】解:图②中通过平移,可将阴影部分的周长转换为长为m,宽为n的长方形的周长,即图②中阴影部分的图形的周长l1为2m+2n图③中,设小长形卡片的宽为x,长为y,则y+2x=m所求的两个长方形的周长之各为:2m+2(n﹣y)+2(n﹣2x),整理得,2m+4n﹣2m=4n即l2为4n∵,∴2m+2n=×4n整理得,故选:C.16.【解答】解:由图形可知,,,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选:B.二.填空题(共4小题)17.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.18.【解答】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.19.【解答】解:根据题意得:第一行第三列,第二行第二列,第三行第一列的三个数之和为:x+y+7,第一行第一列的数为:x+y+7﹣x﹣4=y+3,第一行第二列的数为:x+y+7﹣(y+3)﹣7=x﹣3,第三行第二列的数为:x+y+7﹣(x﹣3)﹣x=10﹣x+y,第三行的三个数之和为:y+(10﹣x+y)+4=x+y+7,整理得:y=2x﹣7,故答案为:2x﹣7.20.【解答】解:把x=1代入ax5+bx3+cx+1得a+b+c+1=2019,∴a+b+c=2018,再把x=﹣1代入ax5+bx3+cx+1得﹣a﹣b﹣c+1=﹣(a+b+c)+1=﹣2018+1=﹣2017.故答案为:﹣2017三.解答题(共10小题)21.【解答】解:(1)S=ab﹣a﹣b+1;(2)当a=3,b=2时,S=6﹣3﹣2+1=2;22.【解答】解:(1)由题意可得,44×46=100×(42+4)+4×6=2024,51×59=100×(52+5)+1×9=3009,故答案为:100×(42+4)+4×6=2024;100×(52+5)+1×9=3009;(2)(10c+a)×(10c+b)=100(c2+c)+ab,证明如下:(10c+a)×(10c+b)=100c2+10bc+10ac+ab=100c2+10c(b+a)+ab=100c2+100c+ab=100(c2+c)+ab;(3)3342×3358=3342×(3348+10)=3342×3348+33420=100×(3342+334)+2×8+33420=11222436故答案为:100×(3342+334)+2×8+33420;11222436.23.【解答】解:(1)∵l6x4+mx=P•(2x﹣1)+7,设P=8x3+ax2+nx+b,∴16x4+2ax3+2nx2+2bx﹣8x3﹣ax2﹣nx﹣b+7=l6x4+mx,∴a=4,n=2,2b﹣n=m,b=7,∴m=12,n=2;(2)∵m=12,∴OA=12,BC=6,∵O为原点,A在O右侧,∴A表示的数是12,∴OA的中点表示的是6,∵OA、BC中点连线的长度也为m,∴BC中点在数轴上表示的数是18或﹣6,∴B点表示的数是15或﹣9,∴BO=15或BO=9;(3)∵BC=6,n=2,BD=nCD,A、C重合,∴B点表示的数是6,D点表示的数是10,设E点表示的数是a,F点表示的数是b,OE++AE=|a|++|12﹣a|=|a|+|12﹣a|+,当a<0时,OE++AE=17﹣>17;当0≤a≤10时,OE++AE=17﹣,∴12≤OE++AE≤17;当10<a<12时,OE++AE=7+,∴12<OE++AE<13;当a≥12时,OE++AE=﹣17≥13;∴12≤OE++AE,∴OE++AE的最小值是12;24.【解答】解:由题意,可得直接批发商的销售额为200a元,拉到市场的销售额为200b元(1)当a=4.5时,直接批发商的销售额为:200×4.5=900元,当b=6时,拉到市场的销售额为:200×6=1200元(2)由题意,进菜的成本为=3.9元直接批发商的利润为:W1=200(a﹣3.9)=200a﹣780拉到市场的利润为:W=200(b﹣3.9)﹣×15=200b﹣930(3)由题意,当b=a+k(0<k<2)时,W=200(a+k)﹣930=200a+200k﹣930则W﹣W1=200a+200k﹣930﹣(200a﹣780)=200k﹣150∴①当0.75<k<2时,W>W1,选择拉到市场出售比直接给批发商好;②当k=0.75时,W=W1,两种出售方式都可以;③当0<k<0.75时,W<W1,选择直接给批发商比拉到市场出售好;25.【解答】解:(1)L=6m+6n,故答案为:6m+6n;(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42cm.26.【解答】解:(1)甲每份材料收1元印刷费,另收150元的制版费;故答案为160,170,150+x;乙每份材料收2.5元印刷费,故答案为25,50,2.5x;(2)对甲来说,印刷大于800份时花费大于150+800,即花费大于950元;对乙来说,印刷大于800份时花费大于2.5×800,即花费大于2000元;故去甲更省钱;27.【解答】解:(1)小海宝所用包书纸的面积是:(18.5×2+1+2x)(26+2x)=(38+2x)(26+2x)=4x2+128x+988(cm2);(2)当x=2cm时,S=4×22+128×2+988=1260(cm2).答:需要的包装纸至少是1260平方厘米.28.【解答】解:(1)1.8×20+0.45×30+0.4×(20﹣10)=53.5(元),故答案为:53.5;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)小王与小张乘坐滴滴快车分别为a分钟、b分钟,1.8×9.5+0.45a=1.8×14.5+0.45b+0.4×(14.5﹣10)整理,得0.45a﹣0.45b=10.8,∴a﹣b=24因此,这两辆滴滴快车的行车时间相差24分钟.29.【解答】解:(1)由题意可得,在甲商店购买的费用为:(300a+40b)×0.9=(270a+36b)(元),在乙商店购买的费用为:300a+40(b﹣a)=(260a+40b)(元);(2)当a=10,b=20时,在甲商店购买的费用为:270×10+36×20=3420(元),在乙商店购买的费用为:260×10+40×20=3400(元),∵3420>3400,∴当a=10,b=20时,到乙商店购买球拍和羽毛球便宜.30.【解答】解:依题意(1)A店购买可列式:40×150+(x﹣40)×30=4800+30x在网店B购买可列式:(40×150+30x)×0.9=5400+27x故答案为:4800+30x;5400+27x(2)当x=100时在A网店购买需付款:4800+30x=4800+30×100=7800元在B网店购买需付款:5400+27x=5400+27×100=8100元∵7800<8100∴当x=100时,应选择在A网店购买合算.(3)由(2)可知,当x=100时,在A网店付款7800元,在B网店付款8100元,在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳合计需付款:150×40+30×60×90%=7620∵7620<7800<8100∴省钱的购买方案是:在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.。
2023年福建省中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数中,最大的数是( )A .1-B .0C .1D .22.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A .B .C .D .3.若某三角形的三边长分别为3,4,m ,则m 的值可以是( )A .1B .5C .7D .94.党的二十大报告指出,我国建成世界上规模最大的教育体系、社会保障体系、医疗卫生体系,教育普及水平实现历史性跨越,基本养老保险覆盖十亿四千万人,基本医疗保险参保率稳定在百分之九十五、将数据1040000000用科学记数法表示为( )A .710410⨯B .810.410⨯C .91.0410⨯D .100.10410⨯5.下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a-=6.根据福建省统计局数据,福建省2020年的地区生产总值为43903.89亿元,2022年的地区生产总值为53109.85亿元.设这两年福建省地区生产总值的年平均增长率为x ,根据题意可列方程( )A .()43903.89153109.85x +=B .243903.89(1)53109.85x +=C .243903.8953109.85x =D .()243903.89153109.85x +=7.阅读以下作图步骤:A.12∠=∠且CM DM=C.12∠=∠且OD DM=8.为贯彻落实教育部办公厅关于要求,学校要求学生每天坚持体育锻炼.小亮记录了自己一周内每天校外锻炼的时间(单位:分钟),并制作了如图所示的统计图.根据统计图,下列关于小亮该周每天校外锻炼时间的描述,正确的是( )A.平均数为70分钟B.众数为67分钟C.中位数为9.如图,正方形四个顶点分别位于两个反比例函数则实数n的值为( )A.3-B.1 -A.3二、填空题13.如图,在菱形ABCD中,AB=14.某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:项目综合知识工作经验应聘者三、解答题20.先化简,再求值:1⎛- ⎝(1)求证:AO BE ∥;(2)求证:AO 平分BAC ∠.任务:测量一个扁平状的小水池的最大宽度,该水池东西走向的最大度AB 远大于南北走向的最大宽度,如图1.工具:一把皮尺(测量长度略小于AB )和一台测角仪,如图2.皮尺的功能是直接测量任意可到达的两点间的距离(这两点间的距离不大于皮尺的测量长度);测角仪的功能是测量角的大小,即在任一点O 处,对其视线可及的P ,Q 两点,可测得POQ ∠的大小,如图3.小明利用皮尺测量,求出了小水池的最大宽度AB ,其测量及求解过程如下:测量过程:(ⅰ)在小水池外选点C ,如图4,测得m AC a =,m BC b =;(ⅱ)分别在AC ,BC ,上测得3a CM m =,m 3bCN =;测得m MN c =.求解过程:由测量知,AC a =, BC b =,3aCM =,3b CN =,∴13CM CN CA CB ==,又∵①___________,∴CMN CAB ∽△△,∴13MN AB =.又∵MN c =,∴AB =②___________()m .;(1)求证:ADE FMC(2)求ABF∠的度数;= (3)若N是AF的中点,如图2.求证:ND NO参考答案:1.D【分析】有理数比较大小的法则:正数大于负数,正数大于0,两个负数中绝对值大的反而小,据此判断即可.【详解】解:正数大于0,正数大于负数,且21>,所以1012-、、、中最大的实数是2.故选:D【点睛】本题主要考查了有理数比较大小,熟练掌握其方法是解题的关键.2.D【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .【点睛】本题考查了简单组合体的三视图,掌握从上面看得到的图形是俯视图是解答本题的关键.3.B【分析】根据三角形的三边关系求解即可.【详解】解:由题意,得4343m -<<+,即17m <<,故m 的值可选5,故选:B .【点睛】本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解答的关键.4.C【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:91040000000 1.0410=⨯,故选:C .【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a -÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.6.B【分析】设这两年福建省地区生产总值的年平均增长率为x ,根据题意列出一元二次方程即可求解.【详解】设这两年福建省地区生产总值的年平均增长率为x ,根据题意可列方程243903.89(1)53109.85x +=,故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.7.A【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≅ ,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==∵DM DM=∴()SSS COM DOM ≅ ,∴12∠=∠∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键.8.B∵OB OA =,AOB BDO ACO ∠=∠=∠∴90CAO AOC BOD ∠=︒-∠=∠∴AOC OBD≌【详解】解:∵“正”和“负”相对,∴进货10件记作10+,那么出货5件应记作5-.故答案为:5-.【点睛】本题主要考查了正数和负数,理解“正”和“负”的相对性,确定一对具有相反意义的量是解题关键.12.10【分析】由平行四边形的性质可得,DC AB DC AB =∥即,OFD OEB ODF EBO ∠=∠∠=∠,再结合OD OB =可得()AAS DOF BOE ≅ 可得DF EB =,最进一步说明10FC AE ==即可解答.【详解】解:∵ABCD Y 中,∴,DC AB DC AB =∥,∴,OFD OEB ODF EBO ∠=∠∠=∠,∵OD OB=∴()AAS DOF BOE ≅ ,∴DF EB =,∴DC DF AB BE -=-,即10FC AE ==.故答案为:10.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定与性质等知识点,证明三角形全等是解答本题的关键.13.10【分析】由菱形ABCD 中,=60B ∠︒,易证得ABC 是等边三角形,根据等边三角形的性质即可得解.【详解】解:∵四边形ABCD 是菱形,∴10AB BC ==,∵=60B ∠︒,∴ABC 是等边三角形,∴10AC =.故答案为:10.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟记菱形的性质并推出等边三【分析】(1)由切线的性质可得90OAF ∠=︒,由圆周角定理可得90CBE ∠=︒,即90OAF CBE ∠=∠=︒,再根据平行线的性质可得BAF ABC ∠=∠,则根据角的和差可得OAB ABE ∠=∠,最后根据平行线的判定定理即可解答;(2)由圆周角定理可得ABE ACE =∠∠,再由等腰三角形的性质可得ACE OAC ∠=∠,进而得到ABE OAC ∠=∠,再结合OAB ABE ∠=∠得到OAB OAC ∠=∠即可证明结论.【详解】(1)证明AF 是O 的切线,AF OA ∴⊥,即90OAF ∠=︒.CE 是O 的直径,90CBE ∴∠=︒.∴90OAF CBE ∠=∠=︒.AF BC ∥,BAF ABC ∴∠=∠,OAF BAF CBE ABC ∴∠-∠=∠-∠,即OAB ABE ∠=∠,AO BE ∴∥.(2)解:ABE ∠ 与ACE ∠都是»AE 所对的圆周角,ABE ACE ∴∠=∠.OA OC = ,ACE OAC ∴∠=∠,ABE OAC ∴∠=∠.由(1)知OAB ABE ∠=∠,OAB OAC ∴∠=∠,AO ∴平分BAC ∠.(ⅱ)用皮尺测得m BC a =.求解过程:由测量知,在ABC 中,ABC α∠=,BAC ∠过点C 作CD AB ⊥,垂足为D .设直线CE 对应的函数表达式为y =因为E 为AB 中点,所以()2,0E .又因为()4,3C ,所以4320k n k n +=⎧⎨+=⎩,解得所以直线CE 对应的函数表达式为因为点3,4D m ⎛⎫- ⎪⎝⎭在抛物线上,所以35如图2,当,C D 分别运动到点11,C D 的位置,且保持11,,C D E 三点共线.此时点1P 到直线EM 的距离小于P 到直线EM 的距离,所以1MEP △的面积小于故MEP △的面积不为定值.又因为,,AMP MEP ABP △△△中存在面积为定值的三角形,故ABP 的面积为定值.在(2)的条件下,直线BC 对应的函数表达式为39y x =-,直线AD 对应的函数表达式为3322y x =-+,求得7,23P ⎛⎫- ⎪⎝⎭,此时ABP 的面积为2.【点睛】本题考查一次函数和二次函数的图象与性质、二元一次方程组、一元二次方程、三角形面积等基础知识,如何利用数形结合求得点的坐标、函数的表达式等是解题的关键.45,∠=∠=∠DBI CFI︒∴ ,BID FICBI DI∴=,FI CIBI FI∴=.DI CI,∠=∠BIF DIC∴ ,BIF DIC,∠︒∠==90FBI BOA∴∥,BF AO∴∠=∠.FTN AONQ是AF的中点,N。
2019年福建省初中学业水平考试数 学(试卷满分:150分 考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.计算22+(-1)0的结果是( )A .5B .4C .3D .22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ) A .72×104 B .7.2×105 C .7.2×106 D .0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .直角三角形 C .平行四边形 D .正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( )A .B .C .D .5.已知正多边形的一个外角是36°,则该正多边形的边数为( ) A .12 B .10 C .8 D .66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳定 7.下列运算正确的是( ).A .a ·a 3=a 3B .(2a )3=6a 3C .a 6÷a 3=a 2D .(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ) A .x +2x +4x =34 685 B .x +2x +3x =34 685 C .x +2x +2x =34 685 D .x +12x +14x =34 685次数主视图9.如图,P A 、PB 是⊙O 的两条切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( ) A .55° B .70° C .110° D .125°10.若二次函数y =|a |x 2+bx +c 的图象过不同的五点A (m ,n ),B (0,y 1),C (3-m ,n ),D (2,y 2),E (2,y 3),则y 1, y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 二、填空题(每小题4分,共24分) 11.因式分解:x 2-9= .12.如图,数轴上A 、B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 . 13.某校征集校运会会徽图案,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100位学生, 其中60位学生喜欢甲图案,若该校共有学生2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生 有 人.14.在平面直角坐标系xOy 中,□OABC 的三个顶点分别为O (0,0),A (3,0),B (4,2),则其第四个顶点C 的坐标 是 .15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交 点,则图中阴影部分的面积为 .(结果保留π)16.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为 .第15题图 第16题图三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组:⎩⎪⎨⎪⎧x -y =52x +y =4.18.(本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF =CE .A19.(本小题满分8分)先化简,再求值:(x -1)÷(x -2x -1x ),其中x =2+1已知△ABC为和点A',如图,(1)以点A'为一个顶点作△A'B'C',使得△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D,E,F分别是△ABC三边AB,BC,CA的中点,D',E',F'分别是你所作的△A'B'C'三边A'B',B'C',A'C'的中点,求证:△DEF∽△D'E'F'.AA'21.(本小题满分8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一个角度α得到△DEC,点A,B的对应点分别为D,E.(1)若点E恰好落在边AC上,如图1,求∠ADE的大小;(2)若α=60°,F为AC的中点,如图2,求证:四边形BEDF是平行四边形.图1 图2某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元。
福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a25.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=.14.若二次根式在实数范围内有意义,则x的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若x+y=10,xy=1,则x3y+xy3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=(x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=. 故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r 上=r 下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x 3y+xy 3的值是 98 .【考点】代数式求值.【分析】可将该多项式分解为xy (x 2+y 2),又因为x 2+y 2=(x+y )2﹣2xy ,然后将x+y 与xy 的值代入即可.【解答】解:x 3y+xy 3=xy (x 2+y 2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市﹣常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,比增加了7万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将人数减去人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,比增加了750﹣743=7(万人);(2)由图可知增加:×100%≈0.98%,增加:×100%≈0.97%,增加:×100%≈1.2%,增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是;(3)预测福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测福州市常住人口数大约为757万人.故答案为:(1)7;(2).【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H 重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。
第四节全等三角形姓名:________ 班级:________ 限时:______分钟1.(2018·安徽)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AEC.BD=CE D.BE=CD2.(2018·黔南州)下列各图中a,b,c为三角形的边长,则甲,乙,丙三个三角形和左侧△ABC全等的是( )A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙3.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A. 75°B. 70°C. 65°D. 60°4.(2018·南京)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c5.(2018·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE 的长是( )A.32B .2C .2 2D.106.(2018·济宁)在△ABC 中,点E ,F 分别是边AB ,AC 的中点,点D 在BC 边上,连接DE ,DF ,EF ,请你添加一个条件________,使△BED 与△FDE 全等.7.(2018·金华)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是________.8.(2018·福州质检)如图,点B ,F ,C ,E 在一条直线上,AB∥DE,AC∥DF 且AC =DF ,求证:AB =DE.9.(2018·云南省卷)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.10.(2018·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.11.(2018·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H.若AB=CD,求证:AG=DH.12.(2017·恩施州)如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于点P. 求证:∠AOB=60°.13.(2018·恩施州)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O. 求证:AD与BE互相平分.14.(2018·怀化)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.1.(2018·桂林)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.2.(2018·衡阳)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.3.(2018·莆田质检)如图,在△ABC中,AB=BC,∠ABC=90°,分别以AB,AC为边在AB同侧作等边△ABD和等边△ACE,连接DE.(1)判断△ADE的形状,并加以证明;(2)过图中两点画一条直线,使其垂直平分图中的某条线段,并说明理由.4.(2018·哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE=∠ADE.(1)如图①,求证:AD=CD;(2)如图②,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图②中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.5.(2018·滨州)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.参考答案【基础训练】1.D 2.B 3.C 4.D 5.B 6.D 是BC 的中点7.AC =BC8.证明: ∵AB∥DE,AC∥DF,∴∠B=∠E,∠ACB=∠DFE.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧∠B=∠E ∠ACB=∠DFE,AC =DF∴△ABC≌△DEF(AA S ),∴AB=DE.9.证明:∵AC 平分∠BAD,∴∠BAC=∠DAC,在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ∠BAC=∠DAC,AC =AC∴△ABC≌△ADC.10.证明:在Rt △ABC 和Rt △DCB 中,⎩⎪⎨⎪⎧AC =BD ,CB =BC , ∴Rt △ABC≌Rt △DCB(HL ),∴∠OBC=∠OCB,∴BO=CO.11.证明: ∵AB∥CD.∴∠A=∠D.∵EC∥BF.∴∠BHA=∠CGD.∵AB=CD ,∴△ABH≌△DCG.∴AH=DG.∴AG=DH.12.证明:∵△ABC、△CDE 为等边三角形,∴∠ACB=∠ECD=60°,AC =BC ,CD =CE ,∴∠ACE=∠BCD,在△ACE 和△BCD 中,⎩⎪⎨⎪⎧AC =BC ,∠ACE=∠BCD,CE =CD ,∴△ACE≌△BCD(S A S ),∴∠CAE=∠CBD,∵∠AOB+∠CBD+∠BPO=180°,∠BCA +∠CAE+∠APC=180°,且∠BPO=∠APC,∴∠AOB=∠BCA=60°.13.证明:如解图,连接BD ,AE ,∵FB=CE ,∴BC=EF ,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE,∴△ABC≌△DEF(A S A),∴AB=DE ,又∵AB∥DE,∴四边形ABDE 是平行四边形,∴AD 与BE 互相平分.14.证明:(1)∵AB∥DC,∴∠A=∠C.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠A=∠C,AB =CD ,∠B=∠D,∴△ABE≌△CDF(A S A);(2)解:∵点E ,G 分别为线段FC ,FD 的中点,∴EG=12CD ,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD =10.【拔高训练】1.(1)证明:∵AC=AD +DC ,DF =DC +CF ,且AD =CF ,∴AC=DF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE BC =EF ,AC =DF∴△ABC≌△DEF(SSS );(2)解:由(1)可知,∠F=∠ACB.∵∠A=55°,∠B=88°,∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°,∴∠F=∠ACB=37°.2.(1)证明:在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AE =DE ∠AEB=∠DEC,BE =EC∴△AEB≌△DEC(S A S ).(2)解:∵△AEB≌△DEC,∴AB=CD ,∵AB=5,∴CD=5.3.解: (1)△ADE 是等腰直角三角形.理由:在等边△ABD 和等边△ACE 中,∵BA=DA ,CA =EA ,∠BAD=∠CAE=60°,∴∠BAD-∠CAD=∠CAE-∠CAD.即∠BAC=∠EAD,∴△ABC≌△ADE.∴BC=DE ,∠ABC=∠ADE,∵AB=BC =AD ,∠ABC=90°,∴AD=DE ,∠ADE=90°,即△ADE 是等腰直角三角形.(2)连接CD ,则直线CD 垂直平分线段AE.(或连接BE ,则直线BE 垂直平分线段AC) 理由:由(1)得DA =DE.又∵CA=CE ,∴直线CD 垂直平分线段AE.4.(1)证明:∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD,BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD.(2)解:△ACD、△ABE、△BCE、△BHG.【解法提示】设DE =a ,则AE =2DE =2a ,EG =DE =a ,∵S △ADE =12AE·DE=12·2a·a=a 2, ∵BH 是△ABE 的中线,∴AH=HE =a ,∵AD=CD ,AC⊥BD,∴CE=AE =2a ,则S △ADC =12AC·DE=12·(2a+2a)·a=2a 2=2S △ADE ; 在△ADE 和△BGE 中,⎩⎪⎨⎪⎧∠AED=∠BEG DE =GE ,∠ADE=∠BGE∴△ADE≌△BGE(A S A),∴BE=AE =2a ,∴S △ABE =12AE·BE=12·2a·2a=2a 2, S △BCE =12CE·BE=12·2a·2a=2a 2, S △BHG =12HG·BE=12·(a +a)·2a=2a 2, 综上,面积等于△ADE 面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.5.(1)证明:连接AD ,如解图①所示.第5题解图①∵∠A=90°,AB =AC ,∴△ABC 为等腰直角三角形,∠EBD=45°.∵点D 为BC 的中点,∴AD=12BC =BD ,∠FAD=45°. ∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE 和△ADF 中,⎩⎪⎨⎪⎧∠EBD=∠FAD BD =AD ,∠BDE=∠ADF∴△BDE≌△ADF(A S A),∴BE=AF.(2)解:BE =AF ,证明如下:连接AD ,如解图②所示.第5题解图②∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°, ∴∠EDB=∠FDA.在△EDB 和△FDA 中,⎩⎪⎨⎪⎧∠EBD=∠FAD BD =AD∠EDB=∠FDA, ∴△EDB≌△FDA(A S A),∴BE=AF.。
2019年中考数学试卷一、选择题(本大题共12小题,共36.0分)1.若√a=2,则a的值为()A. −4B. 4C. −2D. √22.据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A. 0.2×10−3B. 0.2×10−4C. 2×10−3D. 2×10−43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形又不是中心对称图形4.下列几何体中,主视图是三角形的是()A. B. C. D.5.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最小值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. 方差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +ba<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =( )A. 2√23B. 5√26C. 3√22D. 13√26二、填空题(本大题共6小题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b−1y 是同类项,则a b =______.16. 一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h . 17. 在△ABC 中,若∠B =45°,AB =10√2,AC =5√5,则△ABC 的面积是______. 18. 如图,△ABC 、△BDE 都是等腰直角三角形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针方向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本大题共7小题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0; (2)先化简,再求值:(a a 2−b 2-1a+b )÷bb−a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.21.辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?22.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=m2−3m(m≠0且m≠3)的图象在第一象限交于点A、xB,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.23.如图,AB是⊙O的直径,点C为BD⏜的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;PA的最小值.(3)若点P为x轴上任意一点,在(2)的结论下,求PE+3525.如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平方根的概念可得.本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.2.【答案】D【解析】解:将数0.0002用科学记数法表示为2×10-4,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所示:是中心对称图形.故选:B.直接利用中心对称图形的性质得出答案.此题主要考查了中心对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正面看所得到的图形,注意要把所看到的棱都表示到图中.此题主要考查了几何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直角三角形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直角三角形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最小值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平方根的估算和绝对值的意义,熟练掌握平方数是关键.7.【答案】D【解析】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及方差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利用了极差、众数、中位数及方差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据“购进甲乙商品不超过4200元的资金、两种商品均售完所获利润大于750元”列出关于x的不等式组,解之求得整数x的值即可得出答案.本题主要考查一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.11.【答案】D【解析】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了二次函数图象与系数关系,熟练掌握二次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直角三角形的性质得到AC=3,根据相似三角形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三角形的性质得到==,设HE=3x,HK= x,再由相似三角形的性质列方程即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,等腰直角三角形的性质,矩形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.首先提取公因式n,再利用完全平方公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平行线的性质可得∠ABD+∠CDB=180°,再根据角平分线的定义可得∠1=∠ABD,∠2=∠CDB,进而可得结论.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sinB=10,BD=AB•cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三角形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三角形的性质得到∠D′=∠CE′B=45°,过B作BH⊥CE′于H,解直角三角形即可得到结论.本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1 =2√63+2-2√63-1=1;(2)原式=a(a+b)(a−b)×b−ab -1a+b ×b−ab =-ab(a+b)-b−ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2−√2=-12. 【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5, 补全图形如下:扇形统计图中扇形D 对应的圆心角度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12, 所以抽取的学生恰好是一名男生和一名女生的概率为1220=35. 【解析】(1)由B 组百分比求得其人数,据此可得80~85的频数,再根据各组频数之和等于总人数可得最后一组频数,从而补全图形,再用360°乘以对应比例可得答案;(2)画树状图展示所有20种等可能的结果数,找出抽取的学生恰好是一名男生和一名女生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.21.【答案】解:设甲、乙两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500, 解得{y =200x=300,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20-x−20020×2)-80×20=−110(x−200)2+2400,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.【解析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到m关于乙种房价的函数关系式,然后根据二次函数的性质即可解答本题.本题考查二次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用二次函数的性质解答.22.【答案】解:(1)将点A(4,1)代入y=m2−3mx,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y=4x;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴CD CE =BDAE,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B=4x=4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,{k+b=44k+b=1,解得,k=-1,b=5,∴y AB=-x+5,设直线AB 与x 轴交点为F , 当x =0时,y =5;当y =0时x =5, ∴C (0,5),F (5,0), 则OC =OF =5,∴△OCF 为等腰直角三角形, ∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最小值,即OM =12CF =5√22.【解析】(1)将点A (4,1)代入y=,即可求出m 的值,进一步可求出反比例函数解析式;(2)先证△CDB ∽△CEA ,由CE=4CD 可求出BD 的长度,可进一步求出点B 的坐标,以及直线AC 的解析式,直线AC 与坐标轴交点的坐标,可证直线AC 与坐标轴所围成和三角形为等腰直角三角形,利用垂线段最短可求出OM 长度的最小值.本题考查了反比例函数的性质,相似三角形的性质,垂线段最短等定理,解题关键是能够熟练运用反比例函数的性质及相似三角形的性质.23.【答案】证明:(1)∵C 是BC ⏜的中点, ∴CD⏜=BC ⏜, ∵AB 是⊙O 的直径,且CF ⊥AB , ∴BC⏜=BF ⏜, ∴CD ⏜=BF ⏜, ∴CD =BF ,在△BFG 和△CDG 中, ∵{∠F =∠CDG∠FGB =∠DGC BF =CD, ∴△BFG ≌△CDG (AAS );(2)如图,过C 作CH ⊥AD 于H ,连接AC 、BC ,∵CD⏜=BC⏜,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴BC AB =BEBC,∴BC2=AB•BE=6×2=12,∴BF=BC=2√3.【解析】(1)根据AAS证明:△BFG≌△CDG;(2)如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC (HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE 和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.24.【答案】解:(1)将二次函数y =ax 2(a >0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y =a (x -1)2-2,∵OA =1,∴点A 的坐标为(-1,0),代入抛物线的解析式得,4a -2=0,∴a =12, ∴抛物线的解析式为y =12(x −1)2−2,即y =12x 2−x −32. 令y =0,解得x 1=-1,x 2=3, ∴B (3,0),∴AB =OA +OB =4,∵△ABD 的面积为5,∴S △ABD =12AB ⋅y D =5,∴y D =52,代入抛物线解析式得,52=12x 2−x −32,解得x 1=-2,x 2=4,∴D (4,52),设直线AD 的解析式为y =kx +b ,∴{4k +b =52−k +b =0,解得:{k =12b =12, ∴直线AD 的解析式为y =12x +12.(2)过点E 作EM ∥y 轴交AD 于M ,如图,设E (a ,12a 2−a −32),则M (a ,12a +12),∴EM =12a +12−12a 2+a +32=−12a 2+32a +2,∴S △ACE =S △AME -S △CME =12×EM ⋅1=12(−12a 2+32a +2)×1=−14(a 2−3a −4), =−14(a −32)2+2516, ∴当a =32时,△ACE 的面积有最大值,最大值是2516,此时E 点坐标为(32,−158).(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH ⊥AE 于点H ,交轴于点P ,∵E (32,−158),OA =1, ∴AG =1+32=52,EG =158,∴AG EG =52158=43, ∵∠AGE =∠AHP =90°∴sin ∠EAG =PH AP =EG AE =35, ∴PH =35AP ,∵E 、F 关于x 轴对称,∴PE =PF ,∴PE +35AP =FP +HP =FH ,此时FH 最小,∵EF =158×2=154,∠AEG =∠HEF ,∴sin∠AEG =sin∠HEF =AG AE =FH EF =45,∴FH =45×154=3. ∴PE +35PA 的最小值是3.【解析】(1)先写出平移后的抛物线解析式,经过点A (-1,0),可求得a 的值,由△ABD 的面积为5可求出点D 的纵坐标,代入抛物线解析式求出横坐标,由A 、D 的坐标可求出一次函数解析式;(2)作EM ∥y 轴交AD 于M ,如图,利用三角形面积公式,由S △ACE =S △AME -S △CME 构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.25.【答案】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DFA,∴△DOE∽△DAF,∴OE AF =ODAD=√22,∴AF=√2t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴AE AD =AFAG,∴AG⋅AE=AD⋅AF=4√2t,又∵AE=OA+OE=2√2+t,∴AG=√2t22+t,∴EG=AE-AG=22√2+t,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴FH FD =FBAD=4−√2t4,∵AF∥CD,∴FG DG =AFCD=√2t4,∴FG DF =√2t4+√2t,∴4−√2t4=√2t4+√2t,解得:t1=√10−√2,t2=√10+√2(舍去),∴EG=EH=22√2+t =√10−√2)22√2+√10−√2=3√10−5√2;(3)过点F作FK⊥AC于点K,由(2)得EG=t 2+82√2+t,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S△EFG=12EG⋅FK=32√2+t.【解析】(1)由正方形的性质可得∠DAC=∠CAB=45°,根据圆周角定理得∠FDE=∠DFE=45°,则结论得证;(2)设OE=t,连接OD,证明△DOE∽△DAF可得AF=,证明△AEF∽△ADG 可得AG=,可表示EG的长,由AF∥CD得比例线段,求出t 的值,代入EG的表达式可求EH的值;(3)由(2)知EG=,过点F作FK⊥AC于点K,根据即可求解.本题属于四边形综合题,考查了圆周角定理,相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
福建省泉州市南安市2019年中考数学模拟试卷(五)(解析版)一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.965.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<26.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A .,B .,﹣C .,﹣D .﹣,二、填空题:.8.16的算术平方根是______.9.计算:﹣=______.10.分解因式:4x 2﹣6x=______.11.如图,已知AB ∥ED ,∠B=58°,∠C=35°,则∠D 的度数为______度.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为______.13.方程组的解为______.14.如图,已知AB 是⊙O 的直径,OD ⊥AC ,OD=3,则弦BC 的长为______.15.一个扇形的半径为6cm ,弧长是4πcm ,这个扇形的面积是______cm 2.16.如图,菱形ABCD 中,点O 是对角线AC 、BD 的交点,已知AB=5,OB=3,则菱形ABCD 的面积是______.17.在平面直角坐标系中,点A (0,6),点B (t ,0)是x 轴正半轴上的点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .(1)点C 的坐标为______;(2)△ABC 的面积为______.(均用含t 的代数式表示)三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为______.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.2019年福建省泉州市南安市中考数学模拟试卷(五)参考答案与试题解析一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数,可得出答案.【解答】解:,故选:D.【点评】本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则化简求出答案.【解答】解:A、4a+5b无法计算,故此选项错误;B、(a3)5=a15,正确;C、a4•a2=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算等知识,掌握运算法则是解题关键.3.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.96【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据按从小到大的顺序排列为:76,78,82,88,96,96,处于中间位置的两个数是82和88,那么由中位数的定义可知,这组数据的中位数是(82+88)÷2=85.故选B.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<2【考点】不等式的解集.【分析】根据x的取值范围画出数轴即可得出不等式组的解集.【解答】解:如图所示:,故不等式组的解集是:x>2.故选:C.【点评】此题主要考查了不等式的解集,正确在数轴上表示出解集是解题关键.6.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【考点】圆周角定理.【分析】由圆周角定理知,∠AOB=2∠C=68°.【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选D.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【考点】二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.二、填空题:.8.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.9.计算:﹣=1.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==1.故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.分解因式:4x2﹣6x=2x(2x﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式法分解因式得出答案.【解答】解:原式=2x(2x﹣3).故答案为:2x(2x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为23度.【考点】平行线的性质;三角形的外角性质.【分析】要求∠D的度数,只需根据三角形的外角的性质求得该三角形的外角∠1的度数.显然根据平行线的性质就可解决.【解答】解:∵AB∥ED,∠B=58°,∠C=35°,∴∠1=∠B=58°.∵∠1=∠C+∠D,∴∠D=∠1﹣∠C=58°﹣35°=23°.故答案为:23.【点评】根据两直线平行同位角相等和三角形外角的性质解答.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为 2.67×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26700用科学记数法表示为2.67×104.故答案为:2.67×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.方程组的解为.【考点】二元一次方程组的解.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=4,解得:x=1,将x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.如图,已知AB是⊙O的直径,OD⊥AC,OD=3,则弦BC的长为6.【考点】圆周角定理;垂径定理.【分析】先根据圆周角定理求出∠C的度数,再由OD⊥AC,点O是直径AB的中点可得出OD是△ABC的中位线,根据中位线定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵OD⊥AC,∴OD∥BC.∵OD=3,点O是AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.故答案为:6.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.一个扇形的半径为6cm,弧长是4πcm,这个扇形的面积是12πcm2.【考点】扇形面积的计算;弧长的计算.【分析】直接根据扇形的面积公式即可得出结论.【解答】解:∵扇形的半径为6cm,弧长是4πcm,∴这个扇形的面积=×4π×6=12πcm2..故答案为:12π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.16.如图,菱形ABCD中,点O是对角线AC、BD的交点,已知AB=5,OB=3,则菱形ABCD的面积是24.【考点】菱形的性质.【分析】根据菱形的面积公式,求出菱形的对角线的长即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,OB=OD,∴∠AOB=90°,∵AB=5,OB=3,∴AO===4,∴AC=8,BD=6,=•AC•BD=×6×8=24.∴S菱形ABCD【点评】本题考查菱形的性质、菱形的面积公式、勾股定理等知识,解题的关键是记住菱形的面积公式,灵活应用菱形的性质解决问题,属于中考常考题型.17.在平面直角坐标系中,点A(0,6),点B(t,0)是x轴正半轴上的点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.(1)点C的坐标为(t+3,);(2)△ABC的面积为.(均用含t的代数式表示)【考点】坐标与图形变化-旋转;三角形的面积.【分析】(1)根据点A和点B的坐标可以求得点M的坐标,从而可以求得点C的坐标;(2)根据点A和点B的坐标可以求得AB的长,从而可以求得BM的长,进而求得△ABC 的面积.【解答】解:(1)∵点A(0,6),点B(t,0),点M是线段AB的中点,∴点M的坐标是(),又∵将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,∴点C的坐标为:(t+3,),故答案为:(t+3,);(2)∵点A(0,6),点B(t,0),点M的坐标是(),∠ABC=90°,∴AB=,BM==,∴BC=,∴△ABC的面积是:,故答案为:.【点评】本题考查坐标与图形的变化﹣旋转,三角形的面积,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2×﹣1+3﹣﹣4=﹣1﹣.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.【考点】整式的混合运算—化简求值.【分析】根单项式乘以多项式、平方差公式对所求式子化简,然后将a=﹣3代入即可解答本题.【解答】解:a(a﹣2)﹣(a+3)(a﹣3)=a2﹣2a﹣a2+9=﹣2a+9,当a=﹣3时,原式=﹣2×(﹣3)+9=15.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.【考点】旋转的性质;平行四边形的判定.【分析】(1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋转的性质可得到∠BAD=∠CAE,通过等量代换,即可证得所求的两条线段所在直线的内错角相等,由此得证.(2)由旋转的性质易知:AD=AE=BD,且已证得AE∥BD,根据一组对边平行且相等的四边形是平行四边形,即可判定四边形ABDE是平行四边形.【解答】(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)解:四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.【点评】此题主要考查了旋转的性质以及平行四边形的判定和性质,难度不大.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.【考点】列表法与树状图法;等腰三角形的判定与性质;概率公式.【分析】(1)由概率公式容易得出结果;(2)画出树状图,所有等可能结果共有12种,其中能构成等腰三角形有8种,即可求出概率.【解答】解:(1)P(取出的小球上的数字为5)=;(2)画出树状图如下所有等可能结果共有12种,其中能构成等腰三角形有8种,∴P(能构成等腰三角形)==.【点评】本题考查的是用列表法或画树状图法求概率、概率公式、等腰三角形的判定与性质.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过C点作CD⊥AB于D,根据三角形外角的性质得出∠CBD=∠CAB+∠ACB,故可得出∠ACB=30°,BC=AB=10.在Rt△BCD中根据sin60°=即可得出CD的长.【解答】解:过C点作CD⊥AB于D,∵∠CBD=∠CAB+∠ACB,∴∠ACB=30°,∴∠ACB=∠CAB,∴BC=AB=10.在Rt△BCD中,sin60°=,∴CD=10×=5(m).因此C点离地面的高度为5m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.【考点】一次函数的应用.【分析】(1)根据x=0时,甲距离B地30千米,由此即可解决问题.(2)根据相遇时间=即可解决.(3)分三个时间段求出时间即可,①是相遇前,则15x+30x=30﹣3,②是相遇后,则15x+30x=30+3,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,分别解方程即可.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;(3)设x小时甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查一次函数的应用、相遇问题等知识,理解题意是解题的关键,考虑问题要全面,不能漏解,属于中考常考题型.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x﹣a)2+(y﹣b)2=r2.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.【考点】圆的综合题.【分析】(1)问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;(2)综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.【解答】解:(1)问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案为(x﹣a)2+(y﹣b)2=r2;(2)综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB(SAS),∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=8.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙Q的方程:(x﹣4)2+(y﹣3)2=25.【点评】此题考查了圆的综合、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质、勾股定理、切线的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义等知识,正确应用相关定理是解题关键.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【考点】二次函数综合题.【分析】(1)利用tan∠ABC=3,得出C但坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF=(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c=0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.【点评】此题主要考查了二次函数综合以及待定系数法求二次函数解析式和直角三角形中线的性质等知识,用AD表示出△PEF的周长是解题关键.。
2019年福建省福州市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(2019年福建福州)﹣5的相反数是()A.﹣5 B.5C.D.﹣分析:根据相反数的定义直接求得结果.解:﹣5的相反数是5.故选:B.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(2019年福建福州)地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11×104B.1.1×105C.1.1×104D.0.11×105分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将110000000用科学记数法表示为:1.1×105.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2019年福建福州)某几何体的三视图如图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选D.点评:考查了由三视图判断几何体的知识,主视图和左视图的大致轮廓为长方形的几何体为锥体.4.(2019年福建福州)下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a分析:根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.解;A.x4•x4=x16,故本小题错误;B.(a3)2=a5,故本小题错误;C.(ab2)3=ab6故本小题错误;D.a+2a=3a,正确.故选:D.点评:本题主要考查了同底数幂相乘,幂的乘方的性质,积的乘方的性质,合并同类项,熟练掌握运算性质并理清指数的变化是解题的关键.5.(2019年福建福州)若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.47分析:先求出这组数的和,然后根据“总数÷数量=平均数”进行解答即可;解:平均数为:(40+42+43+45+47+47+58)÷7=322÷7=46(千克);故选C.点评:此题考查了平均数的计算方法,牢记计算方法是解答本题的关键,难度较小.6.(2019年福建福州)下列命题中,假命题是()A.对顶角相等B.三角形两边的和小于第三边C.菱形的四条边都相等D.多边形的外角和等于360°分析:分别利用对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和对四个选项分别判断后即可确定正确的选项.解:A、对顶角相等,正确,是真命题;B、三角形的两边之和大于第三边,错误,是假命题;C、菱形的四条边都相等,正确,是真命题;D、多边形的外角和为360°,正确,为真命题,故选B.点评:本题考查了命题与定理的知识,解题的关键是熟知对顶角的性质、三角形的三边关系、菱形的性质及多边形的外角和定理,属于基础知识,难度较小.7.(2019年福建福州)若(m﹣1)2+=0,则m+n的值是()A.﹣1 B.0C.1D.2分析:根据非负数的性质,可求出m、n的值,然后将代数式化简再代值计算.解:∵(m﹣1)2+=0,∴m﹣1=0,n+2=0;∴m=1,n=﹣2,∴m+n=1+(﹣2)=﹣1故选:A.点评:考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2019年福建福州)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.解:设原计划每天生产x台机器,则现在可生产(x+50)台.依题意得:=.故选:A.点评:此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(2019年福建福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°分析:根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.解:∵四边形ABCD是正方形,∴AB=AD又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°∴AD=AE∴∠ABE=∠AEB,∠BAE=90°+60°=150°∴∠ABE=(180°﹣150°)÷2=15°又∵∠BAC=45°∴∠BFC=45°+15°=60°故选:C.点评:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.10.(2019年福建福州)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1 B.1C.D.分析:作FH⊥x轴,EC⊥y轴,FH与EC交于D,先利用一次函数图象上点的坐标特征得到A(2,0),B(0,2),易得△AOB为等腰直角三角形,则AB=OA=2,所以EF=AB=,且△DEF为等腰直角三角形,则FD=DE=EF=1;设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),根据反比例函数图象上点的坐标特征得到t(﹣t+2)=(t+1)•(﹣t+1),解得t=,这样可确定E点坐标为(,),然后根据反比例函数图象上点的坐标特征得到k=×.解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形∴FD=DE=EF=1,设F点坐标为(t,﹣t+2),则E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选D.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.二、填空题(共5小题,每小题4分,满分20分)11.(2019年福建福州)分解因式:ma+mb=.分析:这里的公因式是m,直接提取即可.解:ma+mb=m(a+b).点评:本题考查了提公因式法分解因式,公因式即多项式各项都含有的公共的因式.12.((2019年福建福州)若5件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,则抽到不合格产品的概率是.分析:根据不合格品件数与产品的总件数比值即可解答.解:∵在5个外观相同的产品中,有1个不合格产品,∴从中任意抽取1件检验,则抽到不合格产品的概率是:.故答案为:.点评:本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(2019年福建福州)计算:(+1)(﹣1)=.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解:(+1)(﹣1)=.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.14.(2019年福建福州)如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD 的周长是.分析:根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.点评:本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.15.(2019年福建福州)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC.若AB=10,则EF的长是.分析:根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.点评:本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.三、解答题(满分90分)16.(2019年福建福州)(1)计算:+()0+|﹣1|;(2)先化简,再求值:(x+2)2+x(2﹣x),其中x=.分析:(1)本题涉及零指数幂、绝对值、二次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据完全平方公式、单项式成多项式,可化简整式,根据代数式求值,可得答案.解:(1)原式=3+1+1=5;(2)原式=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=2+4=6.点评:本题考查了实数的运算,熟练掌握零指数幂、绝对值、二次根式的运算.17.(2019年福建福州)(1)如图1,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:∠A=∠D.(2)如图2,在边长为1个单位长度的小正方形所组成的网格中,△ABC的顶点均在格点上.①sinB的值是;②画出△ABC关于直线l对称的△A1B1C1(A与A1,B与B1,C与C1相对应),连接AA1,BB1,并计算梯形AA1B1B的面积.分析:(1)根据全等三角形的判定与性质,可得答案;(2)根据正弦函数的定义,可得答案;根据轴对称性质,可作轴对称图形,根据梯形的面积公式,可得答案.(1)证明:BE=CF,∴BE+EF=CF+EF.即BF=CE.在△ABF和△DCE中,,∴△ABF≌△DCE(SAS).∴∠A=∠D;(2)解:①∵AC=3,BC=4,∴AB=5.sinB=;②如图所示:由轴对称性质得AA1=2,BB1=8,高是4,∴==20.点评:本题考查了全等三角形的判定与性质,利用了等式的性质,全等三角形的判定与性质.18.(2019年福建福州)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?分析:(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.点评:此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(2019年福建福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?分析:(1)设A商品每件x元,B商品每件y元,根据关系式列出二元一次方程组.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件,根据关系式列出二元一次不等式方程组.求解再比较两种方案.解:(1)设A商品每件x元,B商品每件y元,依题意,得,解得.答:A商品每件20元,B商品每件50元.(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件解得5≤a≤6根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.点评:此题主要考查二元一次方程组及二元一次不等式方程组的应用,根据题意得出关系式是解题关键.20.(2019年福建福州)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.分析:(1)根据题意得出AE的长,进而得出BE=AE,再利用tan∠ACB=,求出EC的长即可;(2)首先得出AC的长,再利用圆周角定理得出∠D=∠M=60°,进而求出AM的长,即可得出答案.解:(1)过点A作AE⊥BC,垂足为E,∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,∴AE=ABsinB=3sin45°=3×=3,∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,在Rt△ACE中,∵tan∠ACB=,∴EC====,∴BC=BE+EC=3+;(2)连接AO并延长到⊙O上一点M,连接CM,由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,∴AC=2,∵∠D=∠M=60°,∴sin60°===,解得:AM=4,∴⊙O的半径为2.点评:此题主要考查了解直角三角形以及锐角三角函数关系应用,根据题意正确构造直角三角形是解题关键.21.(2019年福建福州)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.分析:(1)如答图1所示,作辅助线,利用三角函数或勾股定理求解;(2)当△ABP是直角三角形时,有三种情形,需要分类讨论;(3)如答图4所示,作辅助线,构造一对相似三角形△OAQ∽△PBO,利用相似关系证明结论.(1)解:当t=秒时,OP=2t=2×=1.如答图1,过点P作PD⊥AB于点D.在Rt△POD中,PD=OP•sin60°=1×=,∴S△ABP=AB•PD=×(2+1)×=.(2)解:当△ABP是直角三角形时,①若∠A=90°.∵∠BOC=60°且∠BOC>∠A,∴∠A≠90°,故此种情形不存在;②若∠B=90°,如答图2所示:∵∠BOC=60°,∴∠BPO=30°,∴OP=2OB=2,又OP=2t,∴t=1;③若∠APB=90°,如答图3所示:过点P作PD⊥AB于点D,则OD=OP•cos30°=t,PD=OP•sin60°=t,∴AD=OA+OD=2+t,BD=OB﹣OD=1﹣t.在Rt△ABP中,由勾股定理得:PA2+PB2=AB2∴(AD2+PD2)+(BD2+PD2)=AB2,即[(2+t)2+(t)2]+[(1﹣t)2+(t)2]=32解方程得:t=或t=(负值舍去),∴t=.综上所述,当△ABP是直角三角形时,t=1或t=.(3)证明:如答图4,过点O作OE∥AP,交PB于点E,则有,∴PE=PB.∵AP=AB,∴∠APB=∠B,∵OE∥AP,∴∠OEB=∠APB,∴∠OEB=∠B,∴OE=OB=1,∠3+∠B=180°.∵AQ∥PB,∴∠OAQ+∠B=180°,∴∠OAQ=∠3;∵∠AOP=∠1+∠QOP=∠2+∠B,∠QOP=∠B,∴∠1=∠2;∴△OAQ∽△PBO,∴,即,化简得:AQ•PB=3.点评:本题是运动型综合题,考查了相似三角形的判定与性质、解直角三角形、勾股定理、一元二次方程等多个知识点.第(2)问中,解题关键在于分类讨论思想的运用;第(3)问中,解题关键是构造相似三角形,本问有多种解法,可探究尝试.22.(2019年福建福州)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.分析:(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=()2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,).点评:本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.第 11 页共 11 页。
2019年中考数学二次函数真题汇编试卷(名师全国选择压轴真题+详细解析答案,值得下载练习)1.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a >4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个2.如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1 D.﹣23.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,(a>b),x1、x2是此方程的两个实数根,且x1<x2.现给出四个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2;④x1<x2<b<a其中正确结论个数是()A.1 B.2 C.3 D.44.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y 与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD =BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④5.已知抛物线y=﹣x2+1的顶点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结P A、PD,PD交AB于点E,△P AD与△PEA相似吗?()A.始终不相似B.始终相似C.只有AB=AD时相似D.无法确定6.定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l:y=x+b经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n)(n为正整数),依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…A n+1(x n+1,0)(n为正整数).若x1=d(0<d<1),当d为()时,这组抛物线中存在美丽抛物线.A.或B.或C.或D.7.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有()A.3个B.2个C.1个D.0个9.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.410.如图是某二次函数的图象,将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c(a≠0),则下列结论中正确的有()(1)a>0;(2)c<0;(3)2a﹣b=0;(4)a+b+c>0.A.1个B.2个C.3个D.4个11.如图,记抛物线y=﹣x2+1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…P n﹣1,过每个分点作x轴的垂线,分别与抛物线交于点Q1,Q2,…,Q n﹣1,再记直角三角形OP1Q1,P1P2Q2,…,P n﹣2P n﹣1Q n﹣1的面积分别为S1,S2,…,这样就有S1=,S2=,…;记W=S1+S2+…+S n﹣1,当n越来越大时,你猜想W最接近的常数是()A.B.C.D.12.为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12m处的挑射正好射中了2.4m高的球门横梁,若足球运行的路线是抛物线y=ax2+bx+c(如图所示)则下列结论:①a<﹣,②﹣<a<0,③a﹣b+c>0,④0<b<﹣24a,其中正确的结论是()A.①③B.①④C.②③D.②④13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个14.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则的值为()A.B.2 C.D.15.如图,半圆A和半圆B均与y轴相切于O,其直径CD,EF均和x轴垂直,以O 为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分面积是()A.πB.πC.πD.条件不足,无法求16.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c ﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.317.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④18.如图,矩形OABC在平面直角坐标系中的位置如图所示,OA=3,AB=2.抛物线y=ax2+bx+c(a≠0)经过点A和点B,与x轴分别交于点D、E(点D在点E左侧),且OE=1,则下列结论:①a>0;②c>3;③2a﹣b=0;④4a﹣2b+c=3;⑤连接AE、BD,则S梯形ABDE=9.其中正确结论的个数为()A.1个B.2个C.3个D.4个19.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③20.边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕顶点O 顺时针旋转75°,使点B落在抛物线y=ax2(a<0)的图象上.则抛物线y=ax2的函数解析式为()A.y=﹣B.y=﹣C.y=﹣2x2D.y=﹣21.已知直线经过点A(0,2),B(2,0),点C在抛物线y=x2的图象上,则使得S△ABC =2的点有()个.A.4 B.3 C.2 D.1参考答案1.解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∵a<0,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.2.解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.3.解:如图所示,关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,x1,x2是抛物线y=x2﹣(a+b)x+ab与直线y=1的交点的横坐标,(不妨设x1<x2且a<b)观察图象可知,x1≠x2,故①正确设抛物线的对称轴为x=h,x2=h+m,x1=h﹣m,b=h+n,a=h﹣n,m>n,∴x1•x2=h2﹣m2,ab=h2﹣n2,∵m>n,∴x1•x2<ab,故②正确,∵=,∴x1+x2=a+b,∴x12+2x1x2+x22=a2+2ab+b2,∵2x1x2<2ab,∴x12+x22>a2+b2,故③错误,观察图象可知x1<b<a<x2,故④错误.故选:B.4.解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.5.解:令x=0,则y=1,∴OP=1,设点A的横坐标为m,则AD=﹣m2+1,∵AB⊥y轴,AD⊥x轴,∴AF=OD=m,OF=﹣m2+1,PF=1﹣(﹣m2+1)=m2,在Rt△P AF中,P A2=PF2+AF2=(m2)2+m2=m4+m2,在Rt△POD中,PD===,由AB∥x轴得,△PEF∽△PDO,∴=,即=,解得,PE=m2,∴P A2=PD•PE=m4+m2,∴=,∵∠APE=∠DP A,∴△P AD∽△PEA,即,△P AD与△PEA始终相似.故选:B.6.解:直线l:y=x+b经过点M(0,),则b=;∴直线l:y=x+.由抛物线的对称性知:抛物线的顶点与x轴的两个交点构成的直角三角形必为等腰直角三角形;∴该等腰三角形的高等于斜边的一半.∵0<d<1,∴该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1);∵当x=1时,y1=×1+=<1,当x=2时,y2=×2+=<1,当x=3时,y3=×3+=>1,∴美丽抛物线的顶点只有B1、B2.①若B1为顶点,由B1(1,),则d=1﹣=;②若B2为顶点,由B2(2,),则d=1﹣[(2﹣)﹣1]=,综上所述,d的值为或时,存在美丽抛物线.故选:B.7.解:∵对称轴是x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选:C.8.解:∵图象开口向下,∴a<0,∵对称轴在y轴左侧,∴a,b同号,∴a<0,b<0,∵图象经过y轴正半轴,∴c>0,∴M=a+b﹣c<0当x=﹣2时,y=4a﹣2b+c<0,∴N=4a﹣2b+c<0,∵﹣>﹣1,∴<1,∵a<0,∴b>2a,∴2a﹣b<0,∴P=2a﹣b<0,则M,N,P中,值小于0的数有M,N,P.故选:A.9.解:由图知:当点B的横坐标为1时,抛物线顶点取C(﹣1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y =﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即与x轴的交点为(2,0)或(4,0)(舍去),∴点A的横坐标的最大值为2.故选:B.10.解:(1)∵将其向左平移2个单位后的图象的函数解析式为y=ax2+bx+c(a≠0)(如虚线部分),∴y=ax2+bx+c的对称轴为:直线x=﹣1;∵开口方向向上,∴a>0,故①正确;(2)∵与y轴的交点为在y轴的负半轴上∴c<0,故②正确;(3)∵对称轴x==﹣1,∴2a﹣b=0,故③正确;(4)当x=1时,y=a+b+c>0,故④正确.故选:D.11.解:由图象知S3=,总结出规律:,则w=S1+S2+…+S n﹣1=++…+====﹣﹣+﹣=﹣﹣,当n越来越大时,可知W最接近的常数为.故选:C.12.解:由抛物线的开口向下知a<0,对称轴为x=>0,∴a、b异号,即b>0.与y轴的交点坐标为(0,2.4),∴c=2.4把点(12,0)代入解析式得:144a+12b+2.4=0.∴144a=﹣2.4﹣12b,12b=﹣2.4﹣144a∴144a<﹣2.4,12b<﹣144a∴a<﹣,b<﹣12a,∴2b<﹣24a,即b<﹣12a,∴b<﹣24a,∴①④正确,②错误∵此题是实际问题,∴x不能取﹣1,∴③a﹣b+c>0错误.故选:B.13.解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.14.解:根据题意得:A i B i=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选:A.15.解:由分析知图中阴影面积等于半圆的面积,则s==.故选:B.16.解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选:D.17.解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.18.解:由函数图象可得:抛物线开口向下,∴a<0,选项①错误;又OA=3,AB=2,∴抛物线与y轴交于A(0,3),即c=3,选项②错误;又A和B关于对称轴对称,且AB=2,∴对称轴为直线x=﹣=﹣1,即2a﹣b=0,选项③正确;∴B(﹣2,3),将x=﹣2,y=3代入抛物线解析式得:4a﹣2b+c=3,选项④正确;由OE=1,利用对称性得到CD=OE=1,又OC=AB=2,∴DE=CD+OC+OE=1+2+1=4,又OA=3,则S梯形ABDE=OA(AB+DE)=9,选项⑤正确,综上,正确的个数为3个.故选:C.19.解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选:D.20.解:如图,作BE⊥x轴于点E,连接OB,∵正方形OABC绕顶点O顺时针旋转75°,∴∠AOE=75°,∵∠AOB=45°,∴∠BOE=30°,∵OA=1,∴OB=,∵∠OEB=90°,∴BE=OB=,∴OE=,∴点B坐标为(,﹣),代入y=ax2(a<0)得a=﹣,∴y=﹣.故选:B.21.解:∵S△ABC=×2×2=2,可见,当O与C重合时,S△ABC=2,作CD⊥AB,∵AO=BO=2,可见,△ACB为等腰直角三角形,CD=2×cos45°=2×=.由图易得,到AB距离为的点有C、C1、C2,作CC3∥AB,则CC3的解析式为y=﹣x,将y=﹣x和y=x2组成方程组得,,解得,,,则C3坐标为(﹣1,1),可见,有四个点,使得S△ABC=2.故选:A.。
2019年福建省中考数学试题(满分150分,考试时间120分钟)第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.计算22+(﹣1)0的结果是()A.5 B.4 C.3 D.22.北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形4.如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.已知正多边形的一个外角为36°,则该正多边形的边数为()A.12 B.10 C.8 D.66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685 C.x+2x+2x=34685 D.x+x+x=34685 9.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°10.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E (2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分。
2019年福建省中考数学试卷一、选择题(每小题4分,共40分)1.(4分)计算22+(﹣1)0的结果是()A.5B.4C.3D.22.(4分)北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×106 3.(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形4.(4分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.(4分)已知正多边形的一个外角为36°,则该正多边形的边数为()A.12B.10C.8D.66.(4分)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.(4分)下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=08.(4分)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346859.(4分)如图,P A、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°10.(4分)若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1二、填空题(每小题4分,共24分)11.(4分)因式分解:x2﹣9=.12.(4分)如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.13.(4分)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.14.(4分)在平面直角坐标系xOy中,▱OABC的三个顶点O(0,0)、A(3,0)、B(4,2),则其第四个顶点是.15.(4分)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)16.(4分)如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠BAD=30°,则k =.三、解答题(共86分)17.(8分)解方程组.18.(8分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.19.(8分)先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.20.(8分)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.21.(8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.22.(10分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.23.(10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.25.(14分)已知抛物y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.2019年福建省中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】分别计算平方、零指数幂,然后再进行实数的运算即可.【解答】解:原式=4+1=5故选:A.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:将720000用科学记数法表示为7.2×105.故选:B.3.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.4.【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为:故选:C.5.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.6.【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好【解答】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.7.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a3,不符合题意;C、原式=a3,不符合题意;D、原式=0,符合题意,故选:D.8.【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.9.【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB =110°,再根据切线的性质以及四边形的内角和定理即可求解.【解答】解:连接OA,OB,∵P A,PB是⊙O的切线,∴P A⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.10.【分析】由点A(m,n)、C(3﹣m,n)的对称性,可求函数的对称轴为x=,再由B (0,y1)、D(,y2)、E(2,y3)与对称轴的距离,即可判断y1>y3>y2;【解答】解:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.二、填空题(每小题4分,共24分)11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣113.【分析】用总人数乘以样本中喜欢甲图案的频率即可求得总体中喜欢甲图案的人数.【解答】解:由题意得:2000×=1200人,故答案为:1200.14.【分析】由题意得出OA=3,由平行四边形的性质得出BC∥OA,BC=OA=3,即可得出结果.【解答】解:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(4,2),∴点C的坐标为(4﹣3,2),即C(1,2);故答案为:(1,2).15.【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.16.【分析】连接OC,AC过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.【解答】解:连接OC,AC过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D 作DG⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O、A、C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.三、解答题(共86分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.【分析】由SAS证明△ADF≌△BCE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.19.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=(x﹣1)÷=(x﹣1)•=,当x=+1,原式==1+.20.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可所求.(2)根据中位线定理易得∴△DEF∽△ABC,△D'E'F'∽△A'B'C',故△DEF∽△D'E'F'【解答】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.【分析】(1)如图1,利用旋转的性质得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,再根据等腰三角形的性质和三角形内角和计算出∠CAD,从而利用互余和计算出∠ADE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到AB=AC,则BF=AB,再根据旋转的性质得到∠BCE=∠ACD=60°,CB=CE,DE=AB,从而得到DE=BF,△ACD和△BCE为等边三角形,接着证明△CFD≌△ABC得到DF=BC,然后根据平行四边形的判定方法得到结论.【解答】(1)解:如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=25°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.22.【分析】(1)求出该车间处理35吨废水所需费用,将其与350比较后可得出m<35,根据废水处理费用=该车间处理m吨废水的费用+第三方处理超出部分废水的费用,即可得出关于m的一元一次方程,解之即可得出结论;(2)设一天产生工业废水x吨,分0<x≤20及x>20两种情况考虑,利用每天废水处理的平均费用不超过10元/吨,可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)∵35×8+30=310(元),310<350,∴m<35.依题意,得:30+8m+12(35﹣m)=370,解得:m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得:15≤x≤20;当x>20时,12(x﹣20)+8×20+30≤10x,解得:20<x≤25.综上所述,该厂一天产生的工业废水量的范围为15≤x≤20.23.【分析】(1)利用概率公式计算即可.(2)分别求出购买10次,11次的费用即可判断.【解答】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.(2)购买10次时,此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300购买11次时,此时这100台机器维修费用的平均数y2=(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.24.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.25.【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k,C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.。
2022年福建省中考数学真题学校:___________姓名:___________班级:___________考号:___________一、单选题1.-11的相反数是()A.-11B.111-C.111D.112.如图所示的圆柱,其俯视图是()A.B.C.D.3.5G应用在福建省全面铺开,助力千行百业迎“智”变,截止2021年底,全省5G终端用户达1397.6万户,数据13 976 000用科学记数法表示为()A.31397610⨯B.41397.610⨯C.71.397610⨯D.80.1397610⨯4.美术老师布置同学们设计窗花,下列作品为轴对称图形的是()A.B.C.D.5.如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是( )A.B C D .π6.不等式组1030x x ->⎧⎨-≤⎩的解集是( ) A .1x >B .13x <<C .13x <≤D .3x ≤ 7.化简()223a 的结果是( )A .29aB .26aC .49aD .43a8.2021年福建省的环境空气质量达标天数位居全国前列,下图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是( )A .1FB .F 6C .7FD .10F9.如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB =AC ,27ABC ∠=︒,BC =44cm ,则高AD 约为( )(参考数据:sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .9.90cmB .11.22cmC .19.58cmD .22.44cm10.如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''',点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A .96B .C .192D .二、填空题11.四边形的外角和等于_______.12.如图,在△ABC 中,D ,E 分别是AB ,AC 的中点.若BC =12,则DE 的长为______.13.一个不透明的袋中装有3个红球和2个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,这个球是红球的概率是______.14.已知反比例函数k y x=的图象分别位于第二、第四象限,则实数k 的值可以是______.(只需写出一个符合条件的实数)15.推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.△等式两边都减2m ,得222x m mx m -=-.△等式两边分别分解因式,得()()()x m x m m x m +-=-.△等式两边都除以x m -,得x m m +=.△等式两边都减m ,得x =0.△所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.16.已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.三、解答题17012022-.18.如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,△B =△E .求证:△A =△D .19.先化简,再求值:2111a a a -⎛⎫+÷ ⎪⎝⎭,其中1a =. 20.学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t (单位:h ),按同样的分组方法制成如下扇形统计图,其中A 组为01t ≤<,B 组为12t ≤<,C 组为23t ≤<,D 组为34t ≤<,E 组为45t ≤<,F 组为5t ≥.(1)判断活动前、后两次调查数据的中位数分别落在哪一组;(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3h 的人数.21.如图,△ABC 内接于△O ,AD BC ∥交△O 于点D ,DF AB ∥交BC 于点E ,交△O 于点F ,连接AF ,CF .(1)求证:AC =AF ;(2)若△O 的半径为3,△CAF =30°,求AC 的长(结果保留π).22.在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.23.如图,BD 是矩形ABCD 的对角线.(1)求作△A ,使得△A 与BD 相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD 与△A 相切于点E ,CF △BD ,垂足为F .若直线CF 与△A 相切于点G ,求tan ADB 的值.24.已知ABC DEC ≌△△,AB =AC ,AB >BC .(1)如图1,CB 平分△ACD ,求证:四边形ABDC 是菱形;(2)如图2,将(1)中的△CDE 绕点C 逆时针旋转(旋转角小于△BAC ),BC ,DE 的延长线相交于点F ,用等式表示△ACE 与△EFC 之间的数量关系,并证明;(3)如图3,将(1)中的△CDE 绕点C 顺时针旋转(旋转角小于△ABC ),若BAD BCD ∠=∠,求△ADB 的度数.25.在平面直角坐标系xOy 中,已知抛物线2y ax bx =+经过A (4,0),B (1,4)两点.P 是抛物线上一点,且在直线AB 的上方.(1)求抛物线的解析式;(2)若△OAB 面积是△P AB 面积的2倍,求点P 的坐标;(3)如图,OP 交AB 于点C ,PD BO ∥交AB 于点D .记△CDP ,△CPB ,△CBO 的面积分别为1S ,2S ,3S .判断1223S S S S +是否存在最大值.若存在,求出最大值;若不存在,请说明理由.参考答案:1.D【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:-11的相反数是11故选:D.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键.2.A【解析】【分析】圆柱体的顶部是一圆,圆柱体的俯视图应为一个圆.【详解】△圆柱体的顶部是一个圆△圆柱体的俯视图应为一个圆A选项是一个圆,是圆柱体的俯视图B选项是长方形,不符合题意C选项是长方形,不符合题意D选项不是圆,不符合题意故选:A.【点睛】本题考查几何体的三视图,从不同的方向抽象出几何体的形状是解决问题的关键.3.C【解析】【分析】在科学记数法中,一个数被写成一个1与10之间的实数(尾数)与一个10的幂的积.【详解】在科学记数法中,一个数被写成一个1与10之间的实数(尾数)与一个10的幂的积A选项13976不是一个1与10之间的实数B选项1397.6不是一个1与10之间的实数C选项1.3976是一个1与10之间的实数,且10的幂为7,与题意相符合D选项0.13976不是一个1与10之间的实数.故选:C.【点睛】本题考查科学计数法,解题的关键是理解和掌握科学计数法的相关知识.4.A【解析】【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.5.B【解析】【分析】先根据数轴确定点P对应的数的大小,再结合选项进行判断即可.【详解】解:由数轴可得,点P对应的数在1与2之间,A.221,故本选项不符合题意;B. 12<,故此选项符合题意;C. 23<<,故本选项不符合题意;D. 34π<<,故本选项不符合题意;故选:B【点睛】本题主要考查了实数与数轴,无理数的估算,正确确定点P 对应的数的大小是解答本题的关键.6.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大;同小取小;大小小大中间找,大大小小找不到,确定不等式组的解集.【详解】解:由10>x -,得:1x >, 由30x -≤,得:3x ≤,则不等式组的解集为13x ≤<,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解题的基础,熟知“同大取大;同小取小;大小小大中间找,大大小小找不到”的原则是解题的关键.7.C【解析】【分析】根据幂的乘方和积的乘方进行计算即可.【详解】()()222224339a a a ==, 故选:C .【点睛】本题考查幂的乘方和积的乘方,熟记幂的运算法则是解题的关键.8.D【解析】【分析】根据折线统计图,观察图中的各个数据,根据数据信息逐项判定即可.【详解】解:结合题意,综合指数越小,表示环境空气质量越好,根据福建省10个地区环境空气质量综合指数统计图可直观看到10F 的综合指数最小,从而可知环境空气质量最好的地区就是10F ,故选:D .【点睛】本题考查折线统计图,根据图中所呈现的数据信息得出结论是解决问题的关键. 9.B【解析】【分析】根据等腰三角形的性质及BC =44cm ,可得1222DC BC ==cm ,根据等腰三角形的性质及27ABC ∠=︒,可得27ACB ABC ∠=∠=︒,在Rt ADC 中,由tan 27AD CD =︒⨯,求得AD 的长度.【详解】解:△等腰三角形ABC ,AB =AC ,AD 为BC 边上的高, △12DC BC =, △BC =44cm , △1222DC BC ==cm . △等腰三角形ABC ,AB =AC ,27ABC ∠=︒,△27ACB ABC ∠=∠=︒.△AD 为BC 边上的高,27ACB ∠=︒,△在Rt ADC 中,tan 27AD CD =︒⨯,△tan 270.51︒≈,22DC =cm ,△0.512211.22AD ≈⨯=cm .故选:B .【点睛】本题考查了等腰三角形的性质以及锐角三角函数的定义,熟练掌握正切的定义是解题的关键.10.B【解析】【分析】根据直尺与三角尺的夹角为60°,根据四边形ACC A ''的面积为sin602sin60AA AC AB AA ⋅'︒︒⋅'=,即可求解.【详解】解:依题意ACC A ''为平行四边形,△90ABC ∠=︒,60CAB ∠=︒,AB =8,12AA '=.2AC AB ∴=△平行四边形ACC A ''的面积=sin602sin60AA AC AB AA ''⋅︒=︒⋅2812=⨯⨯=故选B【点睛】本题考查了解直角三角形,平移的性质,掌握平移的性质是解题的关键.11.360°.【解析】【详解】解:n (n≥3)边形的外角和都等于360°.12.6【解析】【分析】利用中位线的性质计算即可.【详解】△D ,E 分别是AB ,AC 的中点,△DE 是△ABC 的中位线,又BC =12, △162DE BC ==, 故答案为:6.本题考查了三角形中位线的性质,中位线平行且等于第三边的一半,熟记中位线的性质是解题的关键.13.3 5【解析】【分析】先求出总的所有可能结果数及摸出的球是红球的所有可能数,再根据概率公式即可得出答案.【详解】解:根据题意可得:不透明的袋子里装有将5个球,其中3个红色的,任意摸出1个,摸到红球的概率是35.故答案为:35.【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.-5(答案不唯一)【解析】【分析】根据反比例函数的图象分别位于第二、四象限可知k<0,进而问题可求解.【详解】解:由反比例函数kyx的图象分别位于第二、第四象限可知k<0,△实数k的值可以是-5;故答案为-5(答案不唯一).【点睛】本题主要考查反比例函数的图象,熟练掌握反比例函数的图象是解题的关键.15.△【解析】【分析】根据等式的性质2即可得到结论.等式的性质2为:等式两边同乘或除以同一个不为0的整式,等式不变,△第△步等式两边都除以x m -,得x m m +=,前提必须为0x m -≠,因此错误; 故答案为:△.【点睛】本题考查等式的性质,熟知等式的性质是解题的关键.16.8【解析】【分析】先求出抛物线22y x x n =+-与x 轴的交点,抛物线22y x x n =--与x 轴的交点,然后根据2AD BC =,得出224AD BC =,列出关于n 的方程,解方程即可。