惠州市2010届高三第三次调研(理数)
- 格式:doc
- 大小:487.50 KB
- 文档页数:9
惠州市2016届高三第三次调研考试数 学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,若,则实数的值为( ) A . B . C . D .或 2.复数(为虚数单位)的共轭复数为( ) A . B . C . D .3.若函数的定义域是,则函数的定义域是( ) A . B . C . D . 4.已知,则的值为( )A .B .C .D . 5.已知圆:上到直线的距离等于1的点至少有2个, 则的取值范围为( )A .B .(,(32,)-∞-+∞C .D .6.甲、乙等5人在9月3号参加了纪念抗日战争胜利周年阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻的排法有( )种。
A . B . C . D .7.已知向量与向量(3,sin )n A A =+共线,其中是的内角, 则角的大小为( )A. B. C. D.8.某程序框图如图所示,该程序运行后输出的的值是( )A .1007B .2015C .2016D .30249.若双曲线22221(0,0)x y a b a b-=>>与直线无交点,则离心率的取值范围是( )A .B .C .D .10.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中最大面积是( ) A . B .4 C . D .11.设实数满足条件203600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则的最小值为( ) A .B .C .D .12.若函数满足:在定义域内存在实数,使得)1()()1(00f x f x f +=+成立,则称函数为“1的饱和函数”。
广东省惠州市2010届高三第三次调研考试数学试题(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效 参考公式:锥体的体积公式13v Sh =,其中s 是锥体的底面积,h 是锥体的高. 球的表面积公式24S R π=一.选择题:(本大题共10小题,每小题5分,共50分)1. 已知集合{}{}|1,|21x M x x N x =<=>,则M N I = ( ) A .∅ B .{}|0x x <C .{}|1x x <D .{}|01x x <<2.已知a 是实数,()(1)a i i -+是纯虚数(i 是虚数单位),则a =( ) A .1 B .-1 CD3等于( )A .23±B .23C .23- D .214.设条件:0p a >;条件2:0q a a +≥,那么p 是q 的什么条件( ).A .充分非必要条件B .必要非充分条件C .充分且必要条件D .非充分非必要条件5.如图,在半径为R 的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是( ) A.4 B.4 C.4π D.4π6.方程223xx -+=的实数解的个数为( )A .2B .3C .1D .4(第5题图)7.设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2B. 4C.152 D. 1728.已知向量(3,4)a =r, (2,1)b =-v ,如果向量a xb +r r 与b r 垂直,则x 的值为( )A.233B.323C.2D. 25-9.如图所示,一个空间几何体的主视图和左视图都是边长为1 的正方形,俯视图是一个直径为1的圆,那么这个几何体的全 面积为 ( ) A .3π2B .2πC .3πD .4π 10.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟。
惠州市高三第三次调研考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则图1中阴影部分所表示的集合为( )(A ){0,1,2} (B ){0,1} (C ){1,2} (D ){1} (2)设函数R x x f y ∈=),(,“)(x f y =是偶函数”是“)(x f y =的图像关于原点对称”的( ) (A )充分不必要条件 (B )充要条件(C )必要不充分条件 (D )既不充分也不必要条件 (3)执行如右图2所示的程序框图, 则输出的结果为( ) (A )7 (B )9 (C )10 (D )11(4)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )(A ) 3 (B ) 2 (C )2 (D )3 (5)⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( )(A )-20 (B )-5 (C )5 (D )20(6)某四棱锥的三视图如图3所示,该四棱锥最长棱的棱长为( )(A )1 (B ) 2 (C ) 3(D )2图1图3(7)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) (A )等腰三角形 (B )直角三角形 (C )正三角形(D )等腰直角三角形(8)函数y =cos 2x +2sin x 的最大值为( ) (A )34 (B )1 (C )32(D )2 (9)已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z =ax +y 的最大值为4,则a 等于( )(A )3 (B )2 (C )-2 (D )-3 (10)函数f (x )=⎝⎛⎭⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为()(A ) (B ) (C ) (D )(11)如图4是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为P A ,PD 的中点,在此几何体中,给出下面四个结论:①直线BE 与直线CF 异面; ②直线BE 与直线AF 异面; ③直线EF ∥平面PBC ; ④平面BCE ⊥平面P AD . 其中正确的有( )(A )1个 (B )2个 (C )3个 (D )4个(12)已知函数21()(,g x a xx e e e=-≤≤为自然对数的底数)与()2ln h x x =的图像上存在关于x 轴对称的点,则实数a 的取值范围是( ) (A )21[1,2]e + (B )2[1,2]e - (C )221[2,2]e e +-(D )2[2,)e -+∞ 第Ⅱ卷本卷包括必考题和选考题两部分。
惠州市201X 届高三第三次调研考试理科数学参考答案与评分标准一.选择题:共8小题,每小题5分,满分40分1.【解析】{2,4,5}U A =ð,{1,5}U B =ð;故{}5U UA B ⋂=痧,所以选D.2.【解析】22(1)11(1)(1)i i i i i i i +==-+--+ ,故其对应的点的坐标是(1,1)-,在第二象限.选B. 3.【解析】2a =-“”时两直线垂直,两直线垂直时2a =-“” ,故选C . 4.【解析】由211x -<得12-11x -<<解得01x <<所以解集(0,1) 选C.5.【解析】由题意知, 27a =3a 9a ,即2111(12)(4)(16)a a a -=--,解得120a =,所以10S =101109(2)2a ⨯+⨯-=110. 选D. 6.【解析】30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=-.选A.7.【解析】()2sin cos 2sin 22f x x x x =+=+. 当4x π=时()f x 取最值.选B.8.【解析】因为12c e a ==,所以2c a =,由222a b c =+,得2b a =.12x x +=ba-2=-, 12x x =12c a -=-,点12(,)P x x 到圆心(0,0)的距离为d =<故点12(,)P x x 在圆内,选A . 二.填空题:共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.⎪⎩⎪⎨⎧>+=<+-=)0(1)0(0)0(1x x x x x y 10.36. 11.()()0,2. 12.①④.13.537. 14.1 159.【解析】本题主要考查学生对条件语句的理解,由条件语句的定义可知:⎪⎩⎪⎨⎧>+=<+-=)0(1)0(0)0(1x x x x x y 10.【解析】设甲乙共抽取x 袋,则丙丁共抽取(8)x -袋,所以81201008060x x -=++,得22x =,一共抽取了222836⨯-=袋。
广东省惠州市高考数学三模试卷(理科)一.选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.已知复数z=+2i,则z的共轭复数是()A.﹣1﹣i B.1﹣i C.1+i D.﹣1+i3.已知函数f(x)是偶函数,当x>0时,,则在(﹣2,0)上,下列函数中与f(x)的单调性相同的是()A.y=﹣x2+1 B.y=|x+1|C.y=e|x| D.4.已知函数在一个周期内的图象如图所示,则=()A.1 B.C.﹣1 D.5.下列四个结论:①若p∧q是真命题,则¬p可能是真命题;②命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∃x∈R,x2﹣x﹣1≥0”;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.其中正确结论的个数是()A.0个B.1个C.2个D.3个6.过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B,则=()A.0 B.C.5 D.7.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.88.如图是某几何体的三视图,则该几何体的体积等于()A.B.C.1 D.9.执行如图所示的程序框图,则输出的结果是()A.14 B.15 C.16 D.1710.若实数x,y满足的约束条件,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为()A.B.C.D.11.如图所示,已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为()A.B.8πC.16πD.64π12.已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则a2+b2的取值范围是()A.B.C.[5,+∞)D.(5,+∞)二.填空题:本大题共4小题,每小题5分.13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158,则P(ξ>1)=.14.在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是.15.抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于.16.已知平面四边形ABCD为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则平面四边形ABCD面积的最大值为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知公差不为0的等差数列{a n}的前n项和为S n,S7=70,且a1,a2,a6成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的最小项是第几项,并求出该项的值.18.1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30 15 4580后45 10 55合计75 25 100(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.参考数据:P(K2>k)0.15 0.10 0.05 0.025 0.010 0.005k 2.072 2.706 3.841 5.024 6.635 7.879(参考公式:,其中n=a+b+c+d)19.如图,已知长方形ABCD中,AB=2,AD=,M为DC的中点,将△ADM沿AM 折起,使得平面ADM⊥平面ABCM(Ⅰ)求证:AD⊥BM(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为.20.在平面直角坐标系xOy中,F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,B为短轴的一个端点,E是椭圆C上的一点,满足,且△EF1F2的周长为.(1)求椭圆C的方程;(2)设点M是线段OF2上的一点,过点F2且与x轴不垂直的直线l交椭圆C于P、Q两点,若△MPQ是以M为顶点的等腰三角形,求点M到直线l距离的取值范围.21.已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)(1)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;(2)在(1)的条件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,求a的取值范围.[选修4-1:几何证明选讲]22.如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;(Ⅱ)若AF=2,CF=2,求AE的长.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若点P的直角坐标为(1,0),圆C与直线l交于A、B两点,求|PA|+|PB|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|x+|(a>0)(I)当a=2时,求不等式f(x)>3的解集;(Ⅱ)证明:f(m)+.广东省惠州市高考数学三模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]【考点】并集及其运算.【分析】求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.【解答】解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.2.已知复数z=+2i,则z的共轭复数是()A.﹣1﹣i B.1﹣i C.1+i D.﹣1+i【考点】复数代数形式的乘除运算.【分析】根据复数的运算性质将z化简,从而求出z的共轭复数.【解答】解:∵z=+2i=+2i=1﹣i+2i=1+i,则z的共轭复数是:1﹣i,故选:B.3.已知函数f(x)是偶函数,当x>0时,,则在(﹣2,0)上,下列函数中与f(x)的单调性相同的是()A.y=﹣x2+1 B.y=|x+1|C.y=e|x| D.【考点】奇偶性与单调性的综合;函数奇偶性的判断.【分析】先判断函数f(x)的单调性和奇偶性,然后进行判断比较即可.【解答】解:∵f(x)是偶函数,当x>0时,,∴当x>0时函数f(x)为增函数,则在(﹣2,0)上f(x)为减函数,A.在(﹣2,0)上y=﹣x2+1为增函数,不满足条件.B.y=|x+1|在(﹣∞,﹣1)上是减函数,在(﹣2,0)上不单调,不满足条件.C.f(x)在(﹣2,0)上是单调递减函数,满足条件.D.当x<0时,f(x)=x3+1是增函数,不满足条件.故选:C4.已知函数在一个周期内的图象如图所示,则=()A.1 B.C.﹣1 D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由图知,A=2,易求T=π,ω=2,由f()=2,|φ|<,可求得φ=,从而可得函数y=f(x)的解析式,继而得f()的值.【解答】解:由图知,A=2,且T=﹣=,∴T=π,ω=2.∴f(x)=2sin(2x+φ),又f()=2,∴sin(2×+φ)=1,∴+φ=2kπ+(k∈Z),又|φ|<,∴φ=,∴f(x)=2sin(2x+),∴f()=2sin=1,故选:A.5.下列四个结论:①若p∧q是真命题,则¬p可能是真命题;②命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∃x∈R,x2﹣x﹣1≥0”;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.其中正确结论的个数是()A.0个B.1个C.2个D.3个【考点】命题的真假判断与应用.【分析】①根据复合命题真假关系进行判断②根据含有量词的命题的否定进行判断③根据充分条件和必要条件的定义进行判断④根据幂函数单调性的性质进行判断【解答】解:①若p∧q是真命题,则p,q都是真命题,则¬p一定是假命题,故①错误;②命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”,故②错误;③当a>5且b>﹣5时,a+b>0,即充分性成立,当a=2,b=1时,满足a+b>0,但a>5且b>﹣5不成立,即③“a>5且b>﹣5”是“a+b>0”的充充分不必要条件,故③错误;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减.故④正确,故正确结论的个数是1个,故选:B.6.过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B,则=()A.0 B.C.5 D.【考点】平面向量数量积的运算;直线与圆的位置关系.【分析】先求出圆心和半径,再根据过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B得到=0,再根据向量的运算即可求出.【解答】解:由圆C:x2+y2﹣4y﹣1=0配方为x2+(y﹣2)2=5.∴C(0,2),半径r=.∵过点A(3,1)的直线l与圆C:x2+y2﹣4y﹣1=0相切于点B,∴=0,∴=(+)•=||2+=5,故选:C.7.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为=0.8x﹣155,后因某未知原因第5组数据的y值模糊不清,此位置数据记为m(如表所示),则利用回归方程可求得实数m的值为()x 196 197 200 203 204y 1 3 6 7 mA.8.3 B.8.2 C.8.1 D.8【考点】线性回归方程.【分析】根据回归直线经过样本数据中心点,求出x、y的平均数,即可求出m值.【解答】解:根据题意,计算=×=200,=×(1+3+6+7+m)=,代入回归方程=0.8x﹣155中,可得=0.8×200﹣155=25,解得m=8.故选:D.8.如图是某几何体的三视图,则该几何体的体积等于()A.B.C.1 D.【考点】由三视图求面积、体积.【分析】几何体是三棱柱削去一个同高的三棱锥,根据三视图判断相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱削去一个同高的三棱锥,其中三棱柱的高为2,底面是直角边长为1的等腰直角三角形,三棱锥的底面是直角边长为1的等腰直角三角形,∴几何体的体积V=×1×1×2﹣××1×1×2=.故选:A.9.执行如图所示的程序框图,则输出的结果是()A.14 B.15 C.16 D.17【考点】程序框图.【分析】通过分析循环,推出循环规律,利用循环的次数,求出输出结果.【解答】解:第一次循环:,n=2;第二次循环:,n=3;第三次循环:,n=4;…第n次循环:=,n=n+1令解得n>15∴输出的结果是n+1=16故选:C.10.若实数x,y满足的约束条件,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为()A.B.C.D.【考点】几何概型;简单线性规划.【分析】利用古典概型概率计算公式,先计算总的基本事件数N,再计算事件函数z=2ax+by 在点(2,﹣1)处取得最大值时包含的基本事件数n,最后即可求出事件发生的概率.【解答】解:画出不等式组表示的平面区域,∵函数z=2ax+by在点(2,﹣1)处取得最大值,∴直线z=2ax+by的斜率k=﹣≤﹣1,即2a≥b.∵一颗骰子投掷两次分别得到点数为(a,b),则这样的有序整数对共有6×6=36个其中2a≥b的有(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共30个则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为=.故选:D.11.如图所示,已知△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,AD=2,∠AEB=60°,则多面体E﹣ABCD的外接球的表面积为()A.B.8πC.16πD.64π【考点】球的体积和表面积;球内接多面体.【分析】设球心到平面ABCD的距离为d,利用△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,可得E到平面ABCD的距离为,从而R2=()2+d2=12+(﹣d)2,求出R2=4,即可求出多面体E﹣ABCD的外接球的表面积.【解答】解:设球心到平面ABCD的距离为d,则∵△EAB所在的平面与矩形ABCD所在的平面互相垂直,EA=EB=3,∠AEB=60°,∴E到平面ABCD的距离为,∴R2=()2+d2=12+(﹣d)2,∴d=,R2=4,∴多面体E﹣ABCD的外接球的表面积为4πR2=16π.故选:C.12.已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则a2+b2的取值范围是()A.B.C.[5,+∞)D.(5,+∞)【考点】一元二次方程的根的分布与系数的关系;简单线性规划.【分析】利用抛物线的离心率为1,求出c=﹣1﹣a﹣b,分解函数的表达式为一个一次因式与一个二次因式的乘积,通过函数的零点即可推出a,b的关系利用线性规划求解a2+b2的取值范围即可.【解答】解:设f(x)=x3+ax2+bx+c,由抛物线的离心率为1,可知f(1)=1+a+b+c=0,故c=﹣1﹣a﹣b,所以f(x)=(x﹣1)[x2+(1+a)x+a+b+1]的另外两个根分别是一个椭圆一个双曲线的离心率,故g(x)=x2+(1+a)x+a+b+1,有两个分别属于(0,1),(1,+∞)的零点,故有g(0)>0,g(1)<0,即a+b+1>0且2a+b+3<0,利用线性规划的知识,可确定a2+b2的取值范围是(5,+∞).故选D.二.填空题:本大题共4小题,每小题5分.13.若随机变量ξ~N(2,1),且P(ξ>3)=0.158,则P(ξ>1)=0.842.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ~N(2,1),得到正态曲线关于x=2对称,由P(ξ>1)=P(ξ<3),即可求概率.【解答】解:∵随机变量ξ~N(2,1),∴正态曲线关于x=2对称,∵P(ξ>3)=0.158,∴P(ξ>1)=P(ξ<3)=1﹣0.158=0.842.故答案为:0.842.14.在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是﹣56.【考点】二项式定理.【分析】先求出n,在展开式的通项公式,令x的指数为2,即可得出结论.【解答】解:∵在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,∴n=8,展开式的通项公式为T r+1=•(﹣1)r•x8﹣2r,令8﹣2r=2,则r=3,∴展开式中含x2项的系数是﹣=﹣56.故答案为:﹣56.15.抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于.【考点】抛物线的简单性质;双曲线的简单性质.【分析】由题意可求抛物线线y2=2px的准线,从而可求p,,进而可求M,由双曲线方程可求A,根据双曲线的一条渐近线与直线AM平行,则由斜率相等可求a【解答】解:由题意可知:抛物线线y2=2px(p>0)的准线方程为x=﹣4∴p=8则点M(1,4),双曲线的左顶点为A(﹣,0),所以直线AM的斜率为k=,由题意可知:∴故答案为:16.已知平面四边形ABCD为凸四边形(凸四边形即任取平面四边形一边所在直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则平面四边形ABCD面积的最大值为2.【考点】余弦定理;正弦定理.【分析】在△ABC和△ACD中使用余弦定理求出cosB,cosD的关系,得出四边形的面积S 关于sinB,sinD的函数表达式,利用余弦函数的性质求出S的最大值.【解答】解:设AC=x,在△ABC中,由余弦定理得:x2=22+42﹣2×2×4cosB=20﹣16cosB,同理,在△ADC中,由余弦定理得:x2=32+52﹣2×3×5cosD=34﹣30cosD,∴15cosD﹣8cosB=7,①又平面四边形ABCD面积为,∴8sinB+15sinD=2S,②①2+②2得:64+225+240(sinBsinD﹣cosBcosD)=49+4S2,∴S2=60﹣60cos(B+D),当B+D=π时,S取最大值=.故答案为:2.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知公差不为0的等差数列{a n}的前n项和为S n,S7=70,且a1,a2,a6成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的最小项是第几项,并求出该项的值.【考点】等差数列的前n项和;等差数列的通项公式;等比数列的通项公式.【分析】(Ⅰ)根据等差(等比)数列对应的前n项和、通项公式和性质,列出关于a1和d 方程,进行求解然后代入通项公式;(Ⅱ)由(Ⅱ)的结果求出S n,代入b n进行化简后,利用基本不等式求出最小项以及对应的项数.【解答】解:(I)设公差为d且d≠0,则有,即,解得或(舍去),∴a n=3n﹣2.(II)由(Ⅱ)得,=,∴b n===3n+﹣1≥2﹣1=23,当且仅当3n=,即n=4时取等号,故数列{b n}的最小项是第4项,该项的值为23.18.1月1日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:生二胎不生二胎合计70后30 15 4580后45 10 55合计75 25 100(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.参考数据:P(K2>k)0.15 0.10 0.05 0.025 0.010 0.005k 2.072 2.706 3.841 5.024 6.635 7.879(参考公式:,其中n=a+b+c+d)【考点】性检验的应用;离散型随机变量的期望与方差.【分析】(Ⅰ)由已知得该市70后“生二胎”的概率为,且X~B(3,),由此能求出随机变量X的分布列和数学期望.(Ⅱ)求出K2=3.030>2.706,从而有90%以上的把握认为“生二胎与年龄有关”.【解答】解:(Ⅰ)由已知得该市70后“生二胎”的概率为=,且X~B(3,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,其分布列如下:X 0 1 2 3P(每算对一个结果给1分)∴E(X)=3×=2.(Ⅱ)假设生二胎与年龄无关,K2==≈3.030>2.706,所以有90%以上的把握认为“生二胎与年龄有关”.19.如图,已知长方形ABCD中,AB=2,AD=,M为DC的中点,将△ADM沿AM 折起,使得平面ADM⊥平面ABCM(Ⅰ)求证:AD⊥BM(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)根据线面垂直的性质证明BM⊥平面ADM即可证明AD⊥BM(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立二面角的夹角关系,解方程即可.【解答】(1)证明:∵长方形ABCD中,AB=2,AD=,M为DC的中点,∴AM=BM=2,∴BM⊥AM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM∴BM⊥平面ADM∵AD⊂平面ADM∴AD⊥BM;(2)建立如图所示的直角坐标系,设,则平面AMD的一个法向量=(0,1,0),=+=(1﹣λ,2λ,1﹣λ),=(﹣2,0,0),设平面AME的一个法向量为=(x,y,z),则,取y=1,得x=0,z=,则=(0,1,),∵cos<,>==,∴求得,故E为BD的中点.20.在平面直角坐标系xOy中,F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,B为短轴的一个端点,E是椭圆C上的一点,满足,且△EF1F2的周长为.(1)求椭圆C的方程;(2)设点M是线段OF2上的一点,过点F2且与x轴不垂直的直线l交椭圆C于P、Q两点,若△MPQ是以M为顶点的等腰三角形,求点M到直线l距离的取值范围.【考点】直线与圆锥曲线的综合问题.【分析】(1)由已知F1(﹣c,0),设B(0,b),则E(﹣c,),,2a+2c=2+2,由此能求出椭圆C的方程.(2)设点M(m,0),(0<m<1),直线l的方程为y=k(x﹣1),k≠0,由,得:(1+2k2)x2﹣4k2x+2k2﹣2=0,由此利用韦达定理、中点坐标公式、点到直线的距离公式,结合已知条件能求出点M到直线距离的取值范围.【解答】(本小题满分12分)解:(1)由已知F1(﹣c,0),设B(0,b),即=(﹣c,0),=(0,b),∴=(﹣c,),即E(﹣c,),∴,得,①…又△PF1F2的周长为2(),∴2a+2c=2+2,②…又①②得:c=1,a=,∴b=1,∴所求椭圆C的方程为:=1.…(2)设点M(m,0),(0<m<1),直线l的方程为y=k(x﹣1),k≠0,由,消去y,得:(1+2k2)x2﹣4k2x+2k2﹣2=0,设P(x1,y1),Q(x2,y2),PQ中点为N(x0,y0),则,∴y1+y2=k(x1+x2﹣2)=,∴,=,即N(),…∵△MPQ是以M为顶点的等腰三角形,∴MN⊥PQ,即=﹣1,∴m=∈(0,),…设点M到直线l:kx﹣y﹣k=0距离为d,则d2==<=,∴d∈(0,),即点M到直线距离的取值范围是(0,).…21.已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)(1)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;(2)在(1)的条件下,若方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,求a的取值范围.【考点】利用导数求闭区间上函数的最值;函数恒成立问题;根的存在性及根的个数判断.【分析】(1)求导f′(x)=2(x﹣1)+a(﹣1)=(x﹣1)(2﹣),且f(1)=0+a(ln1﹣1+1)=0,从而讨论以确定函数的单调性,从而解得;(2)化简f(x)+a+1=(x﹣1)2+a(lnx﹣x+1)+a+1,从而讨论以确定函数的单调性,从而解得.【解答】解:(1)∵f(x)=(x﹣1)2+a(lnx﹣x+1),∴f′(x)=2(x﹣1)+a(﹣1)=(x﹣1)(2﹣);且f(1)=0+a(ln1﹣1+1)=0,①当a≤2时,f′(x)>0在(1,+∞)上恒成立,故f(x)>=f(1)=0;②当a>2时,可知f(x)在(1,)上是减函数,在(,+∞)上是增函数;故f()<0;综上所述,a≤2;(2)f(x)+a+1=(x﹣1)2+a(lnx﹣x+1)+a+1,当a<0时,f(x)+a+1在(0,1]上是减函数,在(1,2]上是增函数;且((x﹣1)2+a(lnx﹣x+1)+a+1)=+∞,f(1)+a+1=a+1,f(2)+a+1=1+a(ln2﹣1)+a+1;故a+1=0或1+a(ln2﹣1)+a+1<0;故a=﹣1或a<﹣;当a=0时,f(x)+a+1=(x﹣1)2+1>0,故不成立;当0<a<2时,f(x)+a+1在(0,]上是增函数,在(,1]上是减函数,在(1,2]上是增函数;且((x﹣1)2+a(lnx﹣x+1)+a+1)=﹣∞,f(1)+a+1=a+1>0,故方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,当a=2时,f(x)+a+1=(x﹣1)2+2(lnx﹣x+1)+2+1=(x﹣1)2+2(lnx﹣x+1)+3,故f(x)在(0,2]上是增函数;且((x﹣1)2+2(lnx﹣x+1)+3)=﹣∞,f(1)=3>0;故方程f(x)+a+1=0在x∈(0,2]上有且只有一个实根,综上所述,a<﹣或a=﹣1或0<a≤2.[选修4-1:几何证明选讲]22.如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;(Ⅱ)若AF=2,CF=2,求AE的长.【考点】与圆有关的比例线段.【分析】(I)如图所示,连接BE.由于AE是⊙O的直径,可得∠ABE=90°.利用∠E与∠ACB都是所对的圆周角,可得∠E=∠ACB.进而得到△ABE∽△ADC,即可得到.(II)利用切割线定理可得CF2=AF•BF,可得BF.再利用△AFC∽△CFB,可得AF:FC=AC:BC,进而根据sin∠ACD=sin∠AEB,AE=,即可得出答案.【解答】证明:(I)如图所示,连接BE.∵AE是⊙O的直径,∴∠ABE=90°.又∠E与∠ACB都是所对的圆周角,∴∠E=∠ACB.∵AD⊥BC,∠ADC=90°.∴△ABE∽△ADC,∴AB:AD=AE:AC,∴AB•AC=AD•AE.又AB=BC,∴BC•AC=AD•AE.解:(II)∵CF是⊙O的切线,∴CF2=AF•BF,∵AF=2,CF=2,∴(2)2=2BF,解得BF=4.∴AB=BF﹣AF=2.∵∠ACF=∠FBC,∠CFB=∠AFC,∴△AFC∽△CFB,∴AF:FC=AC:BC,∴AC==.∴cos∠ACD=,∴sin∠ACD==sin∠AEB,∴AE==[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=2sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)若点P的直角坐标为(1,0),圆C与直线l交于A、B两点,求|PA|+|PB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)把直线l的参数方程消去参数t可得,它的直角坐标方程;把圆C的极坐标方程依据互化公式转化为直角坐标方程.(Ⅱ)把直线l方程与圆C的方程联立方程组,求得A、B两点的坐标,可得|PA|+|PB|的值.【解答】解:(Ⅰ)∵直线l的参数方程为(t为参数),消去参数t可得3x+y ﹣3=0.圆C的方程为ρ=2sinθ,即ρ2=2ρsinθ,即x2+y2=2y,即x2+=3.(Ⅱ)由求得,或,故可得A(,﹣)、B(﹣, +).∵点P(1,0),∴|PA|+|PB|=+=(2﹣)+(2+)=4.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|x+|(a>0)(I)当a=2时,求不等式f(x)>3的解集;(Ⅱ)证明:f(m)+.【考点】带绝对值的函数.【分析】(I)当a=2时,去掉绝对值,再求不等式f(x)>3的解集;(Ⅱ)f(m)+f(﹣)=|m+a|+|m+|+|﹣+a|+|﹣+|≥2|m+|=2(|m|+)≥4,可得结论.【解答】(I)解:当a=2时,f(x)=|x+2|+|x+|,不等式f(x)>3等价于或或,∴x<﹣或x>,∴不等式f(x)>3的解集为{x|x<﹣或x>};(Ⅱ)证明:f(m)+f(﹣)=|m+a|+|m+|+|﹣+a|+|﹣+|≥2|m+|=2(|m|+)≥4,当且仅当m=±1,a=1时等号成立,∴f(m)+.8月12日21 / 21。
广东省惠州市2011届高三第三次调研考试数学试题(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
参考公式: 2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅⋅+-. 一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 在复平面内,复数12z i=+对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.已知条件:1p x ≤,条件1:1q x<,则q p ⌝是成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既非充分也非必要条件 3. 某学校开展研究性学习活动,一组同学获得了下面的一组实验数据:x 1.99 3 4 5.1 6.12 y1.54.047.51218.01现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ) A.y =2x -2 B.y =(12)x C.y =log 2x D.y =12(x 2-1)4. 右图是在惠州市举行的全省运动会上,七位评委为某跳水比赛项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩 数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,45. 若△ABC 的周长等于20,面积是103,A =60°,则BC 边的长是 ( )A .5B .6C .7D .86. 若直线ax +by +1=0(a 、b >0)过圆x 2+y 2+8x +2y +1=0的圆心,则1a +4b的最小值为( )A .8 B .12 C .16 D .207. 已知整数以按如下规律排成一列:()1,1、()1,2、()2,1、()1,3、()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,……,则第60个数对是( )8 9 4 4 6 4 7 37 9俯视图202020侧视图40主视图1050NM CABOA .()10,1B .()2,10C .()5,7D .()7,58. 在区间[π,π]-内随机取两个数分别记为,a b ,则使得函数222()2πf x x ax b =+-+有零点的概率为( )A .1-8π B .1-4π C .1- 2πD .1-34π 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.一简单组合体的三视图及尺寸 如右图示( 单位:cm)则该组合体的表面积为 _______ 2cm .10.已知△ABC 中,点A 、B 、C 的坐标依次是A(2,-1),B(3,2),C(-3,-1),BC 边上的高为AD ,则AD →的坐标是:_______.11.在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中, x 的一次项系数是10-,则实数a 的值为 .12. 给出如图所示的程序框图,那么输出的数是________. 13. 已知ABC ∆的三边长为c b a ,,,内切圆半径为r(用的面积表示ABC S ABC ∆∆),则ABC S ∆)(21c b a r ++=; 类比这一结论有:若三棱锥BCD A -的内切球半径为R ,则三棱锥体积=-BCD A V .(二)选做题(14~15题,考生只能从中选做一题;两道题都做的,只记第14题的分) 14.(坐标系与参数方程选做)在极坐标系中,点()1,0到直线()cos sin 2ρθθ+=的距离为 . 15.(几何证明选讲选做题)如图,点B 在⊙O 上, M 为直径AC 上一点,BM 的延长线交⊙O 于N , 45BNA ∠= ,若⊙O 的半径为233OM ,开始结束是否100k ≥3s s k=+1,0k s ==S输出2k k =+FE DCBA DA则MN 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本题满分12分)已知函数()sin()f x A x ωϕ=+(0,0,,)2A x ωϕπ>><∈R 的图象的一部分如下图所示.(1)求函数()f x 的解析式;(2)当2[6,]3x ∈--时,求函数()(2)y f x f x =++的最大值与最小值及相应的x 的值.17.(本题满分12分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和. (1)若某位顾客消费128元,求返券金额不低于30元的概率; (2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X (元).求随机变量X 的分布列和数学期望.18.(本题满分14分)2a ,5a 是方程2x 02712=+-x 的两根, 数列{}n a 是公差为正的等差数列,数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n . (1)求数列{}n a ,{}n b 的通项公式; (2)记n c =n a n b ,求数列{}n c 的前n 项和n S .19.(本题满分14分)已知梯形ABCD 中,AD∥BC,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF∥BC,AE = x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD⊥平面EBCF (如图). (1)当x=2时,求证:BD⊥EG ;(2)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,ABC 60︒求()f x 的最大值;(3)当()f x 取得最大值时,求二面角D-BF-C 的余弦值.20.(本题满分14分)已知椭圆C :)0( 12222>>=+b a b y a x 的离心率为23,过坐标原点O 且斜率为21的直线l 与C 相交于A 、B ,102||=AB .⑴求a 、b 的值;⑵若动圆1)(22=+-y m x 与椭圆C 和直线 l 都没有公共点,试求m 的取值范围.21.(本题满分14分)已知函数1163)(23--+=ax x ax x f ,1263)(2++=x x x g ,和直线m :9+=kx y . 又0)1(=-'f . (1)求a 的值;(2)是否存在k 的值,使直线m 既是曲线()y f x =的切线,又是()y g x =的切线;如果存在,求出k 的值;如果不存在,说明理由.(3)如果对于所有2-≥x 的x ,都有)(9)(x g kx x f ≤+≤成立,求k 的取值范围._ O_1_2_3 _4_5 _6 _6_5_4 _3_2 _1 惠州市2011届高三第三次调研考试数学试题(理科)答案一题号 1 2 3 4 5 6 7 8 答案DBDCCCCB1.【解析】答案:D z =12+i =2-i (2+i )(2-i )=25-15i .故选D.2.【解析】B ⌝p :1x >,q :110x x<⇔<或1x >,故q 是⌝p 成立的必要不充分条件,故选B.3.【解析】选D 直线是均匀的,故选项A 不是;指数函数1(2xy =是单调递减的,也不符合要 求;对数函数12log y x =的增长是缓慢的,也不符合要求;将表中数据代入选项D 中,基本符合要求.4.【解析】C 去掉最高分和最低分后,所剩分数为84,84,86,84,87,可以计算得平均数和方差.5.【解析】答案:C 依题意及面积公式S =12bcsinA ,得103=12bcsin60°,得bc =40.又周长为20,故a +b +c =20,b +c =20-a ,由余弦定理得:222220222222cos 2cos60()3(20)120a b c bc A b c bc b c bc b c bc a =+-=+-=+-=+-=--,故a 解得a =7.6.【解析】答案:C 由题意知,圆心坐标为(-4,-1),由于直线过圆心,所以4a +b =1,从而1a +4b =(1a +4b )(4a +b)=8+b a +16ab ≥8+2×4=16(当且仅当b =4a 时取“=”).7.【解析】C ; 根据题中规律,有()1,1为第1项,()1,2为第2项,()1,3为第4项,…,()5,11为第56项,因此第60项为()5,7.8.【解析】B ;若使函数有零点,必须必须()()22224π0a b ∆=--+≥,即222πa b +≥.在坐标轴上将,a b 的取值范围标出,有如图所示当,a b 满足函数有零点时,坐标位于正方形内圆外的部分.于是概率为321144πππ-=-.二.填空题(本大题每小题5分,共30分,把答案填在题后的横线上)9.12800 10.(-1,2) 11.1 12.750013.)1(3ABC ABD ACD BCD R S S S S ∆∆∆∆+++ 14.2215.29.【解析】该组合体的表面积为:222212800S S S cm ++侧视图主视图俯视图=。
广东省惠州市2016届高三上学期第三次调研考试数学(理)试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,若,则实数的值为( ) A . B . C . D .或 2.复数(为虚数单位)的共轭复数为( ) A . B . C . D .3.若函数的定义域是,则函数的定义域是( ) A . B . C . D . 4.已知,则的值为( )A .B .C .D . 5.已知圆:上到直线的距离等于1的点至少有2个, 则的取值范围为( )A .B .(,(32,)-∞-+∞C .D .6.甲、乙等5人在9月3号参加了纪念抗日战争胜利周年阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻的排法有( )种。
A . B . C . D .7.已知向量与向量(3,sin )n A A =共线,其中是的内角, 则角的大小为( )A. B. C. D.8.某程序框图如图所示,该程序运行后输出的的值是( ) A .1007 B .2015 C .2016 D .30249.若双曲线22221(0,0)x y a b a b-=>>与直线无交点,则离心率的取值范围是( )A .B .C .D .10.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中最大面积是( )A .B .4C .D .11.设实数满足条件203600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则的最小值为( )A .B .C .D .12.若函数满足:在定义域内存在实数,使得)1()()1(00f x f x f +=+成立,则称函数为“1的饱和函数”。
惠州市第三中学2010-2011学年第一学期第三次测试高三数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共20题。
满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题纸上。
2.选择题每小题选出答案后,答在答题纸上3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题纸各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考试结束后,将答题纸交回。
第Ⅰ卷(选择题,共40分)一、选择题:(本大题共8小题,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设P、Q是两个非空集合,定义集合间的一种运算“⊙”:P⊙Q=}.|{QPxQPxx⋂∉⋃∈,且如果}0,4|{},4|{2>==-==xyyQxyxP x,则P⊙Q= ()A ),2(]1,2[+∞⋃- B ),2[]1,2[+∞⋃- C [1,2] D (2,+∞)2.设x,y满足约束条件0,,4312.xy xx y≥⎧⎪≥⎨⎪+≤⎩则231x yx+++的取值范围为()A.[]1,5 B.[]2,6 C.[]2,10 D.[]3,113.在等比数列{}n a中,12a=,前n项和为nS,若数列{}1na+也是等比数列,则nS等于()(A) 122n+- (B) 3n (C) 2n (D) 31n-4.不等式2()0f x ax x c=-->的解集为{|21}x x-<<,则函数()y f x=-的图象为()5.已知)(2Rxxx∈=-⋅+⋅,其中A、B、C三点共线,则满足条件的x()A.不存在B.有一个 C.有两个 D.以上情况均有可能6.已知直线x y a+=与圆224x y+=交于A、B两点,O是坐标原点,向量OA、OB满足||||OA OB OA OB+=-,则实数a的值是()(A)2 (B)2-(C6或6(D)2或2-7.如图,△PAB所在的平面α和四边形ABCD所在的平面β互相垂直,且αα⊥⊥BCAD,,AD=4,BC=8,AB=6,若10tan2tan=∠+∠BCPADP,则点P在平面α内的轨迹是()A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分8.若函数,0)(210)1,0)(2(log )(2>≠>+=x f a a x x x f a )内恒有,在区间(则f (x )的单调递增区间是( )A .)41,(--∞B .),41(+∞-C .)21,(--∞D .(0,+∞)第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,共30分.9.酒杯的形状为倒立的圆锥,杯深8cm ,上口宽6cm ,水以202cm s 的流量倒入杯中,当水深为4cm 时,则水面升高的瞬时变化率是 . 10.已知a>b>0,则a 2+16b (a -b )的最小值是_________。
惠州市届高三第三次调研考试文科综合能力测试试题(政治部分)一、选择题年月日,国务院印发《关于开展新型农村社会养老保险试点的指导意见》,标志着全国新农保试点工作正式启动。
据此回答题。
.全国新农保试点工作正式启动,有利于①加快完善我国的社会保障体系②提高农村企业的经济效益③维护广大农民的合法权益④促进社会主义新农村建设.①②④.①③④.②④.③④.建立新型农村社会养老保险制度要由各地结合本地经济发展水平、集体经济实力和农民收入水平等实际情况制订具体办法和试点实施方案。
从唯物辩证法角度看,这要求我们在建立新型农村社会养老保险制度时.要提高农民的消费水平.要坚持从实际出发.要坚持辩证否定的观点.要坚持具体问题具体分析.国务院常务会议决定:到2010年1月1日,将对事业单位全面实行绩效工资改革。
右图是一幅名为“工资上调”的漫画。
它表明.工资水平越高越有利于提高人民的生活水平.物价水平越低越有利于提高人民生活水平.收入水平是影响民生的重要因素.面对通货紧缩,国家只有提高工资水平.年月日,正在埃及进行访问的温家宝总理考察了华晨汽车股份有限公司的埃及工厂。
下列关于该公司的说法正确的有.公司总经理及其助手组成公司的执行机构,负责公司的日常经营.该公司发行的股票是一种支付凭证.所有股东可以用货币出资,也可以用实物、知识产权等作价出资.其主体业务是贷款业务,也是公司营利的主要来源.年月日,美国对华油管征反补贴税是迄今美对华贸易制裁的最大案。
我国产品频繁受到反倾销、反补贴调查和制裁①会使我国企业在对外贸易中受到不公正待遇②是因为我国政府实施贸易保护主义③是因为我国产品的价格低于国际市场价格④将促使我国合理利用规则,积极应诉.①②.①④.①③.②④.年月日,重庆市市长指出:打击黑社会必然“拔出萝卜带出泥”,对于黑恶势力,我们是见黑就打,露头就打。
这充分体现了重庆市政府①坚持立党为公、民主执政②坚持对人民负责的原则③贯彻落实科学发展观④积极履行保障人民民主的职能.①②③.①②④.②③④.①②③④.年月日,国家某次会议免去原教育部部长职务,任命了新的教育部部长。
惠州市2010届高三第三次调研考试数学试题(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
参考公式:锥体的体积公式13v Sh =,其中s 是锥体的底面积,h 是锥体的高. 球的表面积公式S =42R π一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知R 是实数集,}1{},12{-==<=x y y N xxM ,则M C N R ⋂=( ) A .(1,2) B .[0,2] C . D .[1,2]2.在复平面内,复数z=cos3+isin3(i 是虚数单位)对应的点位于( ) A.第一象限 B .第二象限 C .第三象限 D .第四象限 3.设条件:0p a >;条件2:0q a a +≥,那么p 是q 的什么条件( ).A .充分非必要条件B .必要非充分条件C .充分且必要条件D .非充分非必要条件4.等差数列{a n }的前n 项和为S n ,若301182=++a a a ,那么S 13值的是 ( ) A .130 B .65 C .70 D .以上都不对5.若21,e e 是夹角为3π的单位向量,且212e e a +=,2123e e +-=,则b ⋅=( ) A.1 B. -4 C .27- D .276.已知)3cos()(πω+=x x f 的图像与y=1的图像的两相邻交点间的距离为π,要得到y=f(x)的图像,只须把y=sin ωx 的图像( )A .向左平移π125个单位 B .向右平移π125个单位 C .向左平移π127个单位 D .向右平移π127个单位7.用若干个体积为1的正方体搭成一个几何体,其正视图、侧视图都是如图所示的图形,则这个几何体的最大体积与最小体积的差是( ).A .2B .3C .4D .58.给出定义:若函数f(x)在D 上可导,即f'(x )存在,且导函数 f'(x )在D 上也可导,则称f(x )在D 上存在二阶导函数,记f'’(x)=(f'(x))’,若f'’(x)<0在D 上恒成立,则称f(x)在D 上为凸函数。
以下四个函数在)2,0(π上不是凸函数的是( )A. f(x)=sinx+cosxB. f(x)=lnx-2xC. f(x)=-x 3+2x-1 D. f(x)=-xe -x二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密), 接收方由密文→明文(解密),已知加密规则如图所示,例如,明文 1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28 时,则解密得到的明文为________. 10.5)1(xx -的展开式中含x 3项的二项式系数为_________. 11.若抛物线y 2=2px 的焦点与双曲线13622=-y x 的右焦点重合,则p 的值为______. 12.dx x ⎰-124=__________.13.已知,x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数) ,若3z x y =+的最大值为8,则k = .(二)选做题(14 -15题,考生只能从中选做—题;两道题都做的,只记第一题的分) 14.(坐标系与参数方程选做题)若P 是极坐标方程为)(3R p ∈=πθ的直线与参数方程为⎩⎨⎧+==θθ2cos 1cos 2y x (θ为参数,且θ∈R)的曲线的交点,则P 点的直角坐标为____. 15.(几何证明选讲选做题)如图,平行四边形ABCD 中,:1:2AE EB =, AEF ∆的面积为6,则ADF ∆的面积为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知1tan 3α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值;(2)求函数())cos()f x x x αβ=-++的最大值.17.(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个A(第15题图)不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的。
假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的。
(1)求蜜蜂落入第二实验区的概率;(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率: (3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望EX 。
18.(本小题满分14分) 如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 为AB 的中点 (1)若F 为AA 1的中点,求证:EF∥面DD 1C 1C :(2)若F 为AA 1的中点,求二面角A-EC-D 1的余弦值; (3)若F 在AA 1上运动时(F 与A 、A 1不重合), 求当半平面D 1EF 与半平面ADE 成4π的角时,线段A 1F 与FA 的比。
19.(本小题满分14分)已知点P 是9:22=+Θy x O 上的任意一点,过P 作PD 垂直x 轴于D ,动点Q 满足DP DQ 32=。
(1)求动点Q 的轨迹方程;(2)已知点D (1,1),在动点Q 的轨迹上是否存在两个不重合的两点M 、N ,使)(21ON OM OD +=(O 是坐标原点),若存在,求出直线MN 的方程,若不存在,请说明理由。
20.(本小题满分14分)已知数列{a n }中,).,2(02,211N n n n a a a n n ∈≥=--=- (1)写出a 2,a 3的值(只写结果)并求出数列{a n }的通项公式; (2)设nn n n n a a a a b 23211111++++=+++ ,若对任意的正整数n ,当m∈[-1,1]时,不等式n b mt t >+-6122恒成立,求实数t 的取值范围。
21.(本小题满分14分) 已知函数x axxx f ln 1)(+-= (1)若函数f(x )在[1,+∞)上为增函数,求正实数a 的取值范围; (2)当a=1时,求f(x )在]2,21[上的最大值和最小值; (3)当a=1时,求证:对大于1的任意正整数n ,都有nn 1413121ln ++++>数(理科)答案1、【解析】因为}02{}12{<>=<=x x x xxM 或,],2,0[=M C R ),0[}1{+∞=-==x y y N , 故],2,0[=⋂M C N R 选B 。
2、【解析】因为ππ<<32,所以cos3<0,sin3>0,故点(cos3,sin3)在第二象限,选B 。
3.【解析】,p q ⇒但是q 不能推出p . ∴选A4.【解析】设等差数列{a n }的首项为a 1,公差为d,由a 2+a 8+a 11=30,可得a 1+6d=10,故130)6(132)(13113113=+=+=d a a a S ,A .5、【解析】依题意,213cos 2121=⋅⋅=⋅πe e e e ,所以27212626)23()2(2122212121-=++-=⋅++-=+-⋅+=⋅e e e e e e e e b a ,选C. 6、【解析】依题意,y=f(x)的最小正周期为π,故ω=2,因为)652sin()232sin()32cos(ππππ+=++=+=x x x y ,所以把y=sin2x 的图像向左平移π125个单位即可得到)32cos(π+=x y 的图像. 选A 另解:把y=sin2x 的图像向左平移4π个单位,可得到y=cos2x 的图像,再把y=cos2x 的图像向左平移6π个单位,即可得到)32cos(π+=x y 的图像,共向左平移π125个单位。
7、【解析】由正视图、侧视图可知,体积最小时,底层有5个小正方体,上面有2个,共7个;体积最大时,底层有9个小正方体,上面有2个,共11个,故这个几何体的最大体积与最小体积的差是4.故选C .8.【解析】若f(x)=sinx+cosx,则f ’’(x)=-sinx-cosx,在)2,0(π∈x 上,恒有f ’’(x)<0;若f(x)=lnx-2x ,则21)(''xx f -=,在)2,0(π∈x 上,恒有f ’’(x)<0; 若f(x)=-x 3+2x-1,则= f”(x)=-6x,在)2,0(π∈x 上,恒有f ’’(x)<0;若f(x)=-xe -x,则f”(x)=2e -x-xe -x=(2-x )e -x,在)2,0(π∈x 上,恒有f ’’(x)>0,故选D 。
二、填空题:9. 6,4,1,7 10. 5 11. 6 12.π3123+ 13.-6 14、 (0,0) 15、 189、【解析】6142,492,12332,7284=⇒=+=⇒=+=⇒=+=⇒=a b a b c b c d c d d 10、【解析】因为r r r r rrr x C xxC T 255551)1()1(--+-=-=,r=1时为展开式中含x 3的项,该项的二项式系数为515=C11、【解析】双曲线13622=-y x 的右焦点F(3,0)是抛物线y 2=2px 的焦点,所以,6,32==p p .12、【解析】填π3123+。
解析:根据积分的几何意义,由图可得 ⎰+=-10231234πdx x ,故填π3123+。
13、【解析】由可行域可知,目标函数z 的最大值在y =x 与2x+y+k=0的交点处取得,联立方程组可得交点)3,3(k k --8343=-=--=∴k k k z ,6-=∴k ,填-6. 14、【解析】解析:直线的方程为x y 3=,曲线的方程为])2,2[(212-∈=x x y ,联立解方程组得,⎩⎨⎧==⎩⎨⎧==63200y x y x 或根据x 的范围应舍去⎩⎨⎧==632y x ,故P 点的直角坐标为P (0,0). 15.【解析】由题意可得AEF ∆∽CDF ∆,且相似比为1:3,由AEF ∆的面积为6,得CDF ∆的面积为54,又ADF S ∆︰CDF S ∆=1:3,所以18ADF S ∆=; 三.解答题16.解:(1)由cos β=(0,)βπ∈得sin β=, tan 2β= ………2分 于是tan()αβ+=12tan tan 3121tan tan 13αβαβ-++==-+. ……………………………6分(2)因为1tan ,(0,)3ααπ=-∈所以sin αα== ………………9分x x x x x x f s i n 5s i n 552c o s 55c o s 55s i n 553)(-=-+--= ……11分()f x ……………………………………………………12分17、解:(1)记“蜜蜂落入第一实验区”为事件A ,“蜜蜂落入第二实验区”为事件B.…1分87)(1)(=-=∴A P B P ∴ 蜜蜂落入第二实验区的概率为87。