Trench的电抗器产品介绍
- 格式:pdf
- 大小:1.41 MB
- 文档页数:16
交流输出电抗器产品概述输出交流电抗器用于变频器的负载侧,输出交流电抗器补偿长电缆的电容性电荷反转电流;如果是长电机电缆,则可以限制电机端子的dv/dt,延长变频器的有效传输距离,抑制变频器的IGBT模块开关时产生的瞬间高压。
主要应用于工业自动化系统工程中,特别是使用变频器的场合。
交流输出电抗器性能特点铁芯采用优质取向硅钢片,芯柱经多个气隙分成均匀小块,气隙采用高温高强度粘接胶将芯柱的每个小段与上、下铁轭紧密粘接起来,铁芯端面采用高品质防锈漆喷涂工艺,解决了电抗器铁芯表面生锈问题。
在运行中大大减小了噪音和振动电抗器均采用真空浸漆工艺,经高温热烘固化。
线圈有良好的绝缘性能,整体机械强度高,防潮性能好。
线圈采用F、H级绝缘系统,大大提高了长期运行的可靠性。
温升低,损耗小,成本低,综合利用率高。
体积小,重量轻,占用空间小,便于安装。
交流输出电抗器产品介绍◆降低电机的噪音,降低涡流损耗。
◆降低输入高次谐波造成的漏电流。
◆用于平滑滤波,降低瞬变电压dv/dt,延长电机寿命。
◆保护变频器内部的功率开关器件。
交流输出电抗器技术参数1、额定工作电压:380V/50Hz或660V/50Hz2、额定工作电流:5A至1600A@40℃3、抗电强度:铁芯-绕组3500VAC/50Hz/10mA/10s无飞弧击穿4、绝缘电阻:1000VDC绝缘阻值≥100MV5、电抗器噪音:小于65dB6、防护等级:IP007、绝缘等级:F级以上8、产品执行标准:IEC289:1987电抗器GB10229-88电抗器(eqv IEC289:1987)JB9644-1999半导体电气传动用电抗器。
意大利督凯提电容器电抗器产品手册07-2019目录公司介绍 1PPMh/MKPh电容器新技术 2电容器的一般性能 3调谐滤波电抗器 4数字式REGO 系列无功功率控制器 5REGO 接线图 7调谐滤波器选型 8三相电容器尺寸图 10电抗率为7%电抗器尺寸图 11电抗率为12.5%电抗器尺寸图 12电抗器温度保护接线图举例 13方案设计参考 16有源滤波器 17质量体系 19部分中国客户 20公司介绍博洛尼亚Bologna1909年诺贝尔物理奖获得者、世界第一套无线电收发装置的发明者意大利人马可尼与督凯提家族于1926年共同创建的 energia 公司,至今已有85年的历史。
共有 energia 发展至今已经成为一家集团性质公司,六家工厂,产品涉及九个领域:电力电容器、电子电容器、电力仪表、高速公路的SOS 呼叫系统、车库的记费管理系统、轻燃料车、电池车、摩托车马达、铁路控制系统。
其中,电容器的生产85年来从未间断。
energia 生产的电力电容器,产品电压等级齐全、种类丰富、销售机构完善、服务团队经验丰富,年销售额超过6亿欧元,是全球电容器市场的主要供货商之一。
在全球100多个国家和地区设立了分支机构。
随着中国经济的快速发展, energia 越来越重视中国市场并在中国设立了北京代表处。
北京代表处负责中国地区的市场开发及技术服务工作。
北京代表处经过长期努力在中国各省建立了销售服务网络,并在北京建立了库房,从而实现了中国市场的现货供应,每月定期定量从意大利博洛尼亚补充库存。
PPMh/MKPh电容器新技术由 energia 公司研发的具有镀特殊金属成份的聚丙烯膜PPMh/MKPh,它的目的是支持自愈性能并减少介质损耗。
较于现在的其它介质及气体绝缘的电容器,PPMh 电容器以它优越的过载能力和长寿命成为功率因数补偿系统新的目标。
由于创新的金属化处理,聚丙烯膜在卷绕期间承受较少的应力。
因此介质性能能够长期保存并且在电压和电流作用下表现相当好的性能,可以达到4 In的过载能力。
电抗器型号说明电抗器是一种电子器件,也称为电阻器,它的作用是限制电流,保护和调整电路的电源和负载,以稳定电路的工作电压及阻止波形失真。
电抗器的形式各式各样,大小不同,结构复杂,根据不同需求,一般都可以选择合适的电抗器。
1、RC系列电抗器:RC电抗器由电解水胶浆,活性陶瓷芯片和陶瓷外壳三大部分组成,遇到低频高电流时可有效降低纹波,也有耐高温和超高压系列材料可供选择。
2、环形强流电抗器:环形强流电抗器由于采用芯片夹垫技术,所以在线路中容易短路,可以减少电流流量,从而控制驱动元件的电流,保护驱动元件不受损害。
3、磁性电抗器:其工作原理是通过把磁体放入电抗器内,根据磁场对电流的影响,控制电流的大小,使电路中发生的磁滞现象可以更充分地被利用,具有良好的稳定性和频率响应特性。
4、磁阻电抗器:磁阻电抗器是利用磁阻的特性来调整电流,其在控制电流中的作用是有限的,但是它可以实现比较大的电流调节,与环形强流电抗器相比,磁阻电抗器可以实现更大范围的电流控制。
5、磁补偿电抗器:磁补偿电抗器主要是利用磁铁来补偿电路中存在的纹波,并可以通过调节磁铁来减少纹波,特别是在设备需求电流过大或者电流缓慢变化时,表现效果会更佳。
6、热敏电阻:热敏电阻(PR)是一种模拟型电阻,主要由热敏结构和陶瓷外壳组成,通过改变温度来改变电阻的值,可以有效的监测系统的温度变化,以保护电子设备的安全运行。
7、热电偶式电阻:通过将一个电阻片裹在热继电器上,利用其被加热的原理不断补偿可以达到电阻调节的作用,可以用于控制系统的温度,可以保证在系统发生变温时电阻固定不变。
此外,还有多种其它类型的电抗器,比如结构电抗器,抗带宽电抗器,放大电抗器,低调整电抗器,调整电抗器等,所选择的型号取决于电路的需求。
电抗器用途和作用说明一、电抗器的概念电抗器,又称感性电抗器,是一种用来抵消电路中电感器件产生的感性电动势而产生的电动势的被动电子元件。
其实现的方式是通过对电路中流过的电流施加反电动势,从而抵扣电感器件的电动势,使电路得以稳定的运行。
二、电抗器的作用电抗器是一种吸收电流磁能的被动元器件,其主要作用包括以下方面:1.稳压由于电抗器有平衡电压、稳定电压、抵消负载电感等功能,因此电抗器广泛应用于电路中。
变频器、电感加热、电弧炉、印刷机、太阳能光伏发电等行业都需要电抗器来稳压、调节电流。
2.过滤电抗器亦可用作电路的过滤器,过滤出具有特定频率的信号并滤去不必要的噪声,使信号更清晰可见。
通常在需要保证信号跨越的距离较远时,我们需要对信号进行筛选,电抗器就是一个好的筛选器。
3.防止电网电压的波动电压波动对于电子设备来说可能造成不良的影响。
而电抗器能够有效地维持电压的稳定,减轻电荷峰值的压力,使电路更加稳定和可靠。
4.抑制电流的高频谐振在一些不应当出现高频谐振的电路中,出现的高频谐振会导致电路的不稳定,进而降低电路的容错率。
而通过在电路中加入适当的电抗器,能有效地抑制这种高频谐振。
三、电抗器的使用电抗器的使用通常需要考虑以下几点:1.多与电容器配合使用电容器和电抗器有相似的作用,它们都可以对电路的噪声进行过滤,稳定电压、电流等输入模拟电信号。
因此,使用电容器和电抗器的组合应该根据具体的电路设计来确定。
2.电抗器与电路的匹配电抗器的特性参数(如电感值、最大电流、最大电压等)需要与电路的要求相匹配。
在使用电抗器时,需要确保其工作条件不会超过其能力范围,否则可能会导致元件損壞。
3.电抗器的接线方式电抗器的接线方式也是非常重要的,不同的接线方式会对电抗器的电性能产生不同的影响。
多数情况下,电抗器会以串联方式接在电路中,以实现其过滤的作用。
而也有一些情况下,电抗器会以并联方式来工作,比如在抑制反冲电压时。
四、总结电抗器的应用范围非常广泛,它的作用也是非常重要,能够为电子设备提供稳定、可靠的电源和维持正常的工作状态。
电抗器说明电抗器简单来说就是线圈,有⽤作降压的,有的电容配套消谐的,有的⽤来限流的,降压就相当于⼀个变压器,通过接⼊的线圈匝数改变输出电压,⽐如说电动器启动时电流很⼤就需要电抗器分⼀部分电压,启动起来以后切除电抗器,电抗器电抗器也叫电感器,⼀个导体通电时就会在其所占据的⼀定空间范围产⽣磁场,所以所有能载流的电导体都有⼀般意义上的感性。
然⽽通电长直导体的电感较⼩,所产⽣的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空⼼电抗器;有时为了让这只螺线管具有更⼤的电感,便在螺线管中插⼊铁⼼,称铁⼼电抗器。
电抗分为感抗和容抗,⽐较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然⽽由于过去先有了电感器,并且被称为电抗器,所以现在⼈们所说的电容器就是容抗器,⽽电抗器专指电感器。
分类编辑按结构及冷却介质、按接法、按功能、按⽤途进⾏分类。
1、按结构及冷却介质:分为空⼼式、铁⼼式、⼲式、油浸式等,例如电抗器(图2) (2张):⼲式空⼼电抗器、⼲式铁⼼电抗器、油浸铁⼼电抗器、油浸空⼼电抗器、夹持式⼲式空⼼电抗器、绕包式⼲式空⼼电抗器、⽔泥电抗器等。
2、按接法:分为并联电抗器和串联电抗器。
3、按功能:分为限流和补偿。
4、按⽤途:按具体⽤途细分,例如:限流电抗器、滤波电抗器、平波电抗器、功率因数补偿电抗器、串联电抗器、平衡电抗器、接地电抗器、消弧线圈、进线电抗器、出线电抗器、饱和电抗器、⾃饱和电抗器、可变电抗器(可调电抗器、可控电抗器)、轭流电抗器、串联谐振电抗器、并联谐振电抗器等。
作⽤编辑电⼒系统中所采取的电抗器常见的有串联电抗器和并联电抗器。
电抗器(图4)串联电抗器主要⽤来限制短路电流,也有在滤波器中与电容器串联或并联⽤来限制电⽹中的⾼次谐波。
220kV、110kV、35kV、10kV电⽹中的电抗器是⽤来吸收电缆线路的充电容性⽆功的。
可以通过调整并联电抗器的数量来调整运⾏电压。
超⾼压并联电抗器有改善电⼒系统⽆功功率有关运⾏状况的多种功能,主要包括:1、轻空载或轻负荷线路上的电容效应,以降低⼯频暂态过电压;2、改善长输电线路上的电压分布;3、使轻负荷时线路中的⽆功功率尽可能就地平衡,防⽌⽆功功率不合理流动同时也减轻了线路上的功率损失;4、在⼤机组与系统并列时降低⾼压母线上⼯频稳态电压,便于发电机同期并列;5、防⽌发电机带长线路可能出现的⾃励磁谐振现象;6、当采⽤电抗器中性点经⼩电抗接地装置时,电抗器(图5)还可⽤⼩电抗器补偿线路相间及相地电容,以加速潜供电流⾃动熄灭,便于采⽤。
电抗器基本知识介绍及应用培训讲学电抗器(Reactor),也称为电感器(Inductor),是一种电子元件,用于改变电路中的电流和电压的相对关系。
电抗器主要由线圈组成,线圈由绕在绝缘材料上的导线组成,导线既可以是直线型也可以是螺线型。
电抗器的主要作用是引入电感,即储存电流,并抵抗电流的变化。
电抗器常见的分类包括:1. 铁芯电感器(Iron-core Inductor):由有磁性材料组成的铁芯包裹线圈。
铁芯的存在增加了回路中的感应电感,使得电感值较高。
2. 无铁芯电感器(Air-core Inductor):线圈内没有磁性材料的填充物,仅由绕线构成。
无铁芯电感器的电感较低,但适用于高频电路。
3. 互感器(Transformer):由两个或多个线圈组成的电感器。
互感器的主要作用是改变电压。
电抗器的应用领域非常广泛,以下列举几个主要应用:1.电力系统:在电力系统中,电抗器用于调节电压和电流的相位差,以提高电路的功率因素。
电抗器可以用来控制电流的流动,平衡负载和减少电网的失真。
2.电子设备:电抗器常用于电子设备的滤波电路中,用于阻止高频电流通过电路。
通过合理设置电抗器的参数,可以减小电路中的干扰和噪声。
3.电感加热:电感加热是利用电感器的原理来加热导体的技术。
当通过电感器的电流发生变化时,线圈中的磁场也发生变化,导致线圈内的电流产生感应并产生热量。
电感加热广泛应用于工业加热领域,如金属焊接、玻璃制造等。
4.电力电子:在电力电子领域,电抗器可用于控制电流的流动和变化。
例如,在变频器中,电抗器用于控制电机的速度和扭矩。
5.无线通信:在无线通信系统中,电抗器用于匹配天线和发射器/接收器之间的阻抗,以最大化信号的传输效率。
总之,电抗器是电路中常见的元件之一,通过引入电感来改变电路中电流和电压的相对关系。
电抗器在电力系统、电子设备、电感加热、电力电子和无线通信等领域都有重要的应用。
英飞凌IGBT 技术和产品概述及其应用领域IGBT芯片技术及其发展:功率半导体在整个电能供应链中扮演重要角色。
如何提高功率密度是功率器件发展的主题:芯片技术和功率密度:芯片技术的发展趋势——以600/650V 为例600V IGBT 新的里程碑——HighSpeed3:器件型号芯片技术Ic [A]@100°C 大小[mm2]SPW47N60C3 CoolmosTM C3 30 69.3 IKW30T60 TRENCHSTOPTM 30 15.2 IGW40N60H3 High Speed 3 40 19.3HighSpeed3 特性芯片面积只有CoolMOS的28%功率密度高芯片和模块成本低在高温在拖尾电流也很小关断特性接近于CoolMOS,Eoff是IGBT3的40%,是CoolMOS的120%平滑的开关波形,振荡很有限TRENCHSTOP™5 - 25°C Trade-off 曲线Vce(sat) 对Eoff:与英飞凌的Best-in-class Highspeed3 比, TRENCHSTOPTM5 : >60% 低的开关损耗10% 低的导通损耗TRENCHSTOP™5开关特性–接近MOSFET的开关特性,消除拖尾电流。
TRENCHSTOP™5 –应用目标,填补IGBT与MOSFET之间的中到高频开关应用650V TRENCHSTOP™5,产品家族。
F5:超高性能版本需要超低寄生电感设计开关频率:~120kHzH5:逆导型IGBT用于软开关,如准谐振感应加热R5:逆导型IGBT用于软开关,如准谐振感应加热L5:低饱和压降目标:Vcesat =1V @ Inom, 25°C600V/650V 芯片技术的发展:发展背景:•600V 主要应用220V 马达驱动,电源,以小功率为主。
•电动汽车,太阳能等新兴应用功率大,追求高效率,对芯片技术有新的要求IGBT2---IGBT3di/dt 降低25%.过电压减小25%更短的拖尾电流关断损耗在同一水平短路时间6us600V---650Vdi/dt 进一步降低关断损耗增加短路时间10us耐压增加50V电压余量增加180V芯片技术的发展趋势——IGBT4 回顾:芯片技术的发展趋势——IGBT4 回顾:IGBT4 P4 的软特性:2400A-模块的关断特性at Tvj=25°C , Ic= 0,5 Inom (Rg=0,3Ohm,没有有源嵌位) IGBT 3 E3 在测试条件下, 300V 直流电压下就开始振荡。
该滤波电抗器用于低压滤波补偿柜中,与并联电容器相串联,调谐至某一谐振频率,用来吸收电网中相应频率的谐波电流。
低压电网中有大量整流、变流、变频装置等谐波源,其产生的高次谐波会严重危害主变及系统中其它电器设备的安全运行。
滤波电抗器与电容器相串联后,不但能有效地吸收电网谐波,而且提高了系统的功率因数,对于系统的安全运行起到了较大的作用。
接入串联电抗器,电容器电压升高系数-K=1d 1如K=7%1.0610.061≈-d =即运行电压升高7%,工作电流也随之大约7%。
运行经验认为,装有串联电抗器的电容器容量占2/3及以上时,则不会产生谐波谐振,能有效地吸收电网谐波,改善系统的电压波形,提高系统的功率因数,并能有效地抑制合闸涌流及操作过电压,有效地保护了电容器。
串联电抗器型号CKSG-3.5/0.45-7%型式Type低压串联电抗器电抗率Reactor 7%电抗器容量Rated power 3.5kvar 联结Connection 串联电压Se.Vol0.45KV 电流Se.Cur 64.15A 相数Number of phases 三相频率Frequency 50Hz 电感量Inductance 0.902mH 温升Temperature rise <65K 冷却方式Cooling Type 自冷品牌Brand 上海民恩配套电容器容量50kvar 4配套电容电压0.45KV 质保期Warranty period一年三包服务售后维护终身免费维护一.CKSG-3.5/0.45-7%串联电抗器型号含义(标示图)CK S G-3.5/0.45-7%额定电抗率7%(抑制5次7次谐波)系统额定电压0.45KV额定容量 3.5kvar干式铁芯自然冷却三相串联串联电抗器抑制5次7次谐波的民恩滤波补偿电抗器改如何选择呢?根据我公司多年为客户选配电抗器的经验得出以下结论;K值取4.5%~7%针对5次7次谐波抑制效果比较好,但是考虑到安全问题通常电抗率会选到7%或者7%。
ReactorsIntroductionWith 40 years of successful field experience, Trench is the recognized world leader in the design and manufacture of air core, dry type, power reactors for all utility and industrial applications. The unique, custom design ap-proach, along with fully integrated engineering and manufacturing facilities in both North America and Europe have enabled Trench to become the technical leader for high voltage inductors worldwide.A deep commitment to the power industry, along with extensive investment in engineering, manufacturing and test capability give Trench customers the utmost in high quality, reliable products which are individually designed for each application. Trench reactor applications have grown from small, distribution class, current limiting reactors to complex EHV applied reactors surpassing 300 MVA per coil. Reactors are manufactured in accordance with ISO 9001 quality standard. Trench's highly develo-ped research and development program constantly addresses new technologies and their potential ap-plication in reactor products. Trench welcomes challenges for new applications for power reactors.This brochure outlines the features, capabilities and applications of Trench reactors.Although air-core, dry type reactors represent the majority of reactor production volume, Trenchalso produces a highly successful line of iron core/iron shielded and oil type reactors for specific appli-cation (eg. Resonance Grounding/ Petersen Coils). These reactors are also described in detail in other sections of the Trenchproduct catalogue.Design Features ofAir-Core Dry Type Reactors•Epoxy impregnated, fibreglass encapsulated construction•Aluminum construction through-out with all current carrying connections welded•Highest mechanical and short circuit strength•Essentially zero radial voltage stress, with uniformly graded axial voltage distribution between terminals•Low noise levels are maintained throughout the life of the reactor•Weatherproof construction, with minimum maintenance require-ments•Design service life in excess of 30 years•Designs available in compliance with ANSI/IEEE, IEC and othermajor standards.ReactorsFig. 1Three-phase stackedcurrent limiting reactor 2Series ReactorsReactors connected in series with the line or feeder. Typical uses are fault current reduction, load balancing in parallel circuits, limi-ting inrush currents of capacitor banks, etc.Reactor ApplicationsFig. 2Schematic diagramFig. 4Current limiting reactorFig. 3Single phase series reactors Trench reactors are utilized on transmission anddistribution systems. Although it is not possible to list all reactor applications, some of the most common are described below.Current Limiting Reactors,reduce the short circuit current to levels within the rating of theequipment on the load side of the reactor.Applications of current limiting reactors range from the simple distribution feeder reactor to large bus-tie and load balancing reactors on systems rated up to 765 kV/2100 kV BIL.Capacitor Reactors are designed to be installed in series with ashunt connected capacitor bank to limit inrush currents due toswitching, to limit outrush currents due to close in faults and to control the resonant frequency of the system due to the addition of the capacitor banks. Reactors can be installed on system voltages through 765 kV/2100 kV BIL. When specifying capacitor reactors,the requested continuous current rating should account for harmonic current content, tolerance on capacitors and allowable system overvoltage.3Buffer Reactors forElectric Arc Furnaces (EAF).The most effective use of EAFs is achieved by operating the furnace at low electrode current and long arc length. This requires the use of a series reactor in the supply system of the arc furnace transformer forstabilizing the arc.Fig. 5 Buffer reactor for E.A.F.Fig. 6Load flow control reactors Duplex Reactors are currentlimiting reactors which consist oftwo half coils, wound in opposition.These reactors provide a desirablelow reactance under normal con-ditions and a high reactance underfault conditions.Load Flow Control Reactors areseries connected on transmissionlines up to 800 kV.The reactors change the lineimpedance characteristic such thatload flow can be controlled, thusensuring maximum power transferover adjacent transmission lines.4Filter ReactorsFilter Reactors are used in conjunc-tion with capacitor banks to form series tuned harmonic filter circuits, or in conjunction with capacitor banks and resistors to form broad-band harmonic filter circuits.When specifying filter reactors, the magnitudes of fundamental and harmonic frequency current should be indicated. If inductance adjustment for fine tuning is required, the required tapping range and tolerances must be specified. Many filter applications require a Q-factor which is very much lower than the natural Q of the reactor. This is often achieved by connecting a resistor in the circuit.An economical alternative is the addition of a de Q'ing ring structure on a reactor. This can reduce the Q-factor of the reactor by as much as one tenth without the necessity of installing additional damping resistors. (see Fig. 9 below) These rings, mounted on the reactorare simply coupled to the magneticFig. 8Filter reactorsFig. 9Filter reactors withde Q’ing ringsFig. 7Schematic diagramFig. 10Capacitor/filter protection relayfield of the reactor. This eliminatesthe concern of space, connectionand reliability of additional compo-nents such as resistors.The Capacitor/Filter ProtectionRelay CPR 97is a microprocessorbased protection relay speciallydesigned for optimized protectionof shunt banks and harmonic filtercircuits.5Static VAR Compensators are used on transmission systems to improve the overall reliability, correct for voltage fluctuations and power factor as well asincreasing the transmission capability and reducing losses.Shunt ReactorsShunt Reactors are used to compensate for capacitive VARs generated by lightly loaded trans-mission lines or undergroundcables. They are normally connected to the transformer tertiary winding but can also be directly connected on systems up to 115 kV.Fig. 11Schematic diagramFig. 14Thyristor controlled reactorFig. 12Tertiary connected shunt reactorsFig. 13Thyristor controlled shunt reactors and filterreactors in a Static VAR CompensatorThyristor ControlledShunt Reactors are extensively used in static VAR systems, where reactive VARs are adjusted by thyristor circuits. Static VARcompensator reactor applications normally include:•Thyristor controlled shunt reactors (TCR). The compensating power is changed by controlling the current through the reactor by means of the thyristor valves.•Thyristor switched reactors (TSR)•Thyristor switched capacitor reactors (TSC)•Filter reactors (FR)6HVDC-ReactorsHVDC lines are used for longdistance bulk power transmissionFig. 15SchematicdiagramFig. 17HVDC-Smoothing reactorFig. 16AC-Filtersas well as back-to-back inter-connections between differenttransmission networks.HVDC Reactors normally includeSmooting Reactors, AC and DCHarmonic Filter Reactors as wellas AC and DC PLC Noise FilterReactors.7Smoothing ReactorsSmoothing reactors are used to reduce the magnitude of the ripple current in a DC system. They are used in power electronics applications such as variable speed drives and UPS systems. They are also required on HVDC transmission lines for system voltages up to 500 kV.Several design and construction techniques are offered by Trench.Fig. 18 Schematic diagramFig. 19Iron core, forced air cooled reactorFig. 20Air core,encapsulated winding designFig. 21Iron core,water cooled reactor8Test Lab ReactorsTest Lab Reactors are installed in high voltage and high power test laboratories. Some typical applications include current limiting, synthetic testing of circuit breakers, inductive energy storage, artificiallines, etc.Fig. 22Schematic diagramFig. 23Reactor bank for thevoltage circuit for synthetic testingof circuit breakers;32 kA peak to peak,0,318 mH to 353,6 mH,up to 1600 kV BILFig. 25Short circuittest reactorFig. 24Adjustablecurrent limiting reactor9Neutral Grounding ReactorsNeutral Grounding Reactors limit the line to ground fault current to specified levels. Specification should also include unbalanced condition continuous current andduration.Fig. 26Schematic diagramFig. 27Arc suppression coil 110 kV Fig. 28Standard arc suppression coilArc Suppression CoilsSingle-phase neutral grounding (earthing) reactors (arc suppression coils) are intended to compensate for the capacitive line-to-ground current during a single phase gro-und-fault.The arc suppression coil (ASC) represents the central element of the Trench earth fault protection system.Since the electric system is subject to changes, the inductance of the ASC used for neutral earthing must be variable.The earth fault detection system developed by Trench utilizes the plunger core coil (moveable core design). Based on extensive experi-ence in design, construction and application of ASCs, Trenchproducts can meet the most strin-gent requirements for earth fault compensating techniques.10A Trench air core dry type reactor consists of a number of parallel connected, individually insulated, aluminum (copper on request) conductors. These conductors can be small wire or proprietary cables custom designed and manufactured.The size and type of conductor used in each reactor is dependant on the reactor specification. The various styles and sizes of conductors available ensure optimum performance at the most economical cost. The windings are mechanically reinforced with epoxy resin impregnated fibreglass, which after a carefully defined oven cure cycle produces an encapsulated coil. A network of horizontal and vertical fibreglass ties coupled with the encapsulation minimizes vibration in the reactor and achieves the highest available mechanical strength.The windings are terminated at each end to a set of aluminum bars called a spider. This construction results in a very rigid unit capable of withstanding the stresses developed under the most severe short circuit conditions. Exceptionally high levels of terminal pull, tensile strength, wind loading and seismic withstand can be accommodated with the reactor. See Fig. 29 for details on construction.This unique design can be installed in all types of climates and environments and still offer optimum performance.Trench air core dry typereactors are installed in polluted and corrosive areas supplying trouble free operation. In addition to the standard fixed reactance type of coil, units can be supplied with taps for variable inductance.A number of methods are available to vary inductance for fine tuning or to provide a range of larger inductance steps.Trench utilizes various other designs for reactors (eg. iron core, water cooled, etc.) which are described in other sections of thiscatalogue.ConstructionFig. 29Typical Trench air core dry typereactor construction11It is the customer's responsibility to consider these minimum clearances, especially if steelreinforcing in concrete foundations or floors, or structural steel is involved in the building or station design. It is important, even outside these minimum magnetic clearan-ces, to avoid closed electrical loops with metallic parts.Terminals/Magnetic ClearanceIf required, non-magnetic extension brackets can be supplied by Trench to maintain thenecessary magnetic clearance below the reactor. Trench canprovide additional details on space requirements andrecommended reinforcing steel (rebar) design, if requested.Magnetic ClearanceMinimum clearances to metallic parts, and between coils, must be maintained as indicated by Figs. 32and 33. The values shown are only guidelines. Each specific reactor design will specify magnetic clearance requirements.Fig. 30Terminal orientation Fig. 31Terminal detailsMinimum magnetic clearance to other reactors and metallic partsnot forming closed loops (approximate values only)Terminals12Generally, air core, dry type reactors can be installed in either side by side or vertically stacked configurations and are often added to existing substations or locations where space limitations exist. With its highly developed computer design expertise, Trench can design reactors with optimized dimensions, to suit limited space requirements. The multi-spider construction allows flexibility in terminal location, which minimizes connection problems (see Fig. 35).Number of spider arms to be obtained from the actual quotation design.Installation assembly is minimal and typically requires only that brackets and insulators be bolted to the main coil. Installation instructions are provided with each reactor order.Trench takes intoconsideration all aspects of the reactor installation. These include requirements of ventilation, reactor supports, connections and busbar arrangements.Trench can also provide detailed information regarding:•magnetic field distribution analysis for mounting pads and foundations, grounding grids, fences and adjacent structures•Force calculations on adjacent coil installations, bus and cable connectionsInstallation•Seismic analysis on entire reactor assemblies, including support insulators and mounting pedestals, when furnished.Fig. 33Three-phasestacked arrangement13TestingAt Trench each reactor manufactured is subjected to a rigorous test and inspection program. In addition to the routine testing required by ANSI/IEEE or IEC a number of in-process tests are performed on each unit during production to ensure maximum in-service reliability. Each reactor is supplied with a certified test report with the results from all tests performed.In addition to routine testing we have the capability in our High Voltage and Power labs to perform most of the design tests described in the applicable standards. Design tests can be performed at an additional cost or test reports on similar units can be supplied upon request.The materials used in the manufacture of the reactor are also subject to a strict test program. Cooling duct spacers and the fibreglass epoxy resin composite encapsulation are subject to routine mechanical strength and tracking resistance testing. Accelerated thermal and multifactor aging studies are carried out which help to verify performance of the reactor components over their full service life.This testing coupled with our Quality Assurance program enables us to ensure the continuous perfor-mance of our reactors throughout the design service life.LossesThe custom design approach used by Trench allows optimum use of materials to control reactor losses. If a loss evaluation is not indicated in the specification, the reactor will be designed to meet the applicable standards at a most economical initial cost.All customers are aware of the advantages in minimizing system losses and are applying loss evaluation techniques to reactor purchases. In the cases where loss evaluations are included in the reactor specifications, Trench optimizes the initial cost of the reactor plus the cost of operating losses, to ensure the most economical balance. Generally, a loss optimized reactor will operate at a lower temperature rise and will thus extend the reactor overload capability.Trench's ability to design and manufacture low loss reactors al-lows many electric power utilities to economically justify the replacement of older, inefficient reactor installations. The low loss reactors can usually be installed on existing mounting pads.Losses can also be influenced for other purposes. In some applications it is important to control the Q factor (X/R ratio) of the reactor. This may be important at the fundamental frequency or at specific harmonic frequencies where additional losses are advantageous, for example capacitor switching reactors and certain filter applications.Testing/LossesFig. 34High voltage test laboratory 14Trench designs andmanufactures enclosures and support pedestals specifically for air core, dry type reactors.Enclosures, depending on the requirement, are made of steel or fibreglass and can be designed for indoor or outdoor installations.Trench enclosure design minimizes circulating current loops and opti-mizes the size by defining ventila-tion area and acceptable tempe-rature rise. Enclosures have been qualified as completeassemblies by short circuit testing of the enclosed reactor.Trench can supply support pede-stals to elevate reactor live parts to a height commensurate with per-sonnel safety standards. Pedestals also provide propermagnetic clearance below the reactor.Various pedestal designs are available and include fibreglass,braced aluminum and non-magnetic steel designs.Trench can recommend the most practical pedestal for each reactor application. Additional information on enclosures and pedestals is available on request.Sound shields can be provided to reduce the reactor noise level for special applications (HVDC).Enclosures and PedestalsFig. 35Filter reactor with sound shieldFig. 36Filter reactor with top-hatand pedestal15Data required with order•Reactor application•Indoor or outdoor installation•System voltage,impulse insulation level (BIL)•Rated and maximum continuous current (fundamental and harmonics)•Short circuit current level and duration•Rated inductance/impedance•Mounting arrangement (side by side or vertical stack)•Detailed accessory requirements (connectors, buswork, etc.)•Location of installation and site conditions•Ambient temperature range Trench Austria GmbH Paschinger Strasse 49, Postfach 13 A-4060 Linz-Leonding/Austria Phone+43.732.6793-0Fax+43.732.671341E-Mail sales@TrenchAustria.at Trench Brasil LTDAVia Expressa de Contagem, 2685 CEP 32370-485Contagem, MG - BrasilPhone 55. 31. 391-5959Fax 55. 31. 391-1828E-mailtrenchbrasil@ Trench LimitedCoil Product Division71 Maybrook Drive, Scarborough Ontario, Canada M1V 4B6 Phone (416) 298-8108Fax (416)298-2209E-Mail sales@ Trench LimitedInstrument Transformer Division 390 Midwest Road, Scarborough Ontario, Canada M1P 3B5Phone (416) 751-8570Fax (416)751-6952E-Mail sales@ Trench France S.A.16, rue du Général Cassagnou B.P. 70F-68302 St-Louis Cedex/France Phone +33.3.8970 23 23Fax +33.3.89 67 26 63E-Mail sales@ Trench Germany GmbHNürnberger Strasse 19996050 Bamberg/GermanyPhone +49.951.1803-0Fax +49.951.1803-224E-Mail sales@trench.deTrench Switzerland AG Lehenmattstrasse 353CH-4028 Basel/Switzerland Phone +41.61.315 5111Fax +41.61.315 59 00E-Mail sales@trench.chSubject to change without notice04.2000E 600。